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Abstract: The state-of-the-art geopositioning is the Global Navigation Satellite System (GNSS), which
operates based on the satellite constellation providing positioning, navigation, and timing services.
While the Global Positioning System (GPS) is widely used to position an Unmanned Aerial System
(UAS), it is not always available and can be jammed, introducing operational liabilities. When the
GPS signal is degraded or denied, the UAS navigation solution cannot rely on incorrect positions
GPS provides, resulting in potential loss of control. This paper presents a real-time pipeline for
geopositioning functionality using a down-facing monocular camera. The proposed approach is
deployable using only a few initialization parameters, the most important of which is the map of
the area covered by the UAS flight plan. Our pipeline consists of an offline geospatial quad-tree
generation for fast information retrieval, a choice from a selection of landmark detection and matching
schemes, and an attitude control mechanism that improves reference to acquired image matching.
To evaluate our method, we collected several image sequences using various flight patterns with
seasonal changes. The experiments demonstrate high accuracy and robustness to seasonal changes.

Keywords: geopositioning; UAS; visual odometry; real-time pipeline

1. Introduction

Geopositioning is arguably the most crucial step in navigating Unmanned Aerial
Systems (UAS) either autonomously or by an operator. This is true for several tasks,
including a safe return home, navigating to a designated destination, and assuring a safe
flight. The geopositioning task is currently achieved using the onboard GPS antenna and
sometimes with the addition of an inertial system that uses GPS as a correction signal. In
cases where GPS is degraded, denied, or suffers from the multi-path problem, as in urban
canyons [1], the drift caused by an inertial-only solution becomes unacceptable, and a
backup geopositioning mechanism is required. This paper addresses the need to develop
a real-time geopositioning solution using a down-looking camera generally available on
most commercial drones. The proposed pipeline enables UAS geopositioning by matching
the landmarks from the acquired image to a corpus of landmarks generated offline from a
reference orthophoto available from either Google Earth or local aerial mapping [2].

Several challenges in vision-based UAS geopositioning include changes in the en-
vironment, such as new buildings, roads, etc., rapid changes in attitude, and the size of
the region where the UAS will fly. The environmental changes between the reference and
detected landmarks may be due to the intensity and direction of sunlight, seasonal changes,
and changes in infrastructure. It is expected that a vision-based positioning solution should
be robust to such changes. Additional algorithmic challenges arise from the scale changes
between the reference region and UAS imagery.

To address the aforementioned challenges, we introduce an efficient pipeline shown
in Figure 1 that uses a quad-tree as a geospatial landmark database, a landmark matching
module, and an attitude control module. The geospatial database enables scalability
and dynamically extracts and updates the look-up reference region based on the UAS
motion. The dynamic updates to look-up regions and swift landmark retrieval from the
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database make the algorithm agnostic to how large a spatial area the flight would cover.
The landmark matching module adopts several advanced matching algorithms, such as
SuperGlue [3], to be resilient to environmental changes. The geometry control module
offsets the UAS altitude change and ensures the UAS image is rectified during flight.
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Figure 1. Overview of our proposed UAS geopositioning pipeline. The top left reference orthophoto
from Google Earth is processed to generate the reference landmark dataset in a quad-tree data
structure. Our algorithm requires initial geoposition to generate a list of reference landmarks from
the database. Geometric relation between reference and UAS landmarks to convert pixel coordinates
to latitude and longitude. Kalman filter is applied before output final predicted UAS geoposition to
enhance predicted trajectory smoothness. With the new estimated UAS position, the look-up region
is dynamically adjusted.

The contributions of this paper can be summarized as follows:

• Using an offline geospatial data structure for on-the-fly landmark set retrieval for
matching. The database module uses a geospatial data structure to swiftly gener-
ate a list of landmarks from the look-up region while reducing computational and
data bandwidths.

• Introducing a geometry control module to select appropriate scales that guarantee
matching ground sampling distances across reference and UAS landmarks. This, in
turn, enables the UAS to change its attitude and altitude during flight freely.

• Our approach achieves absolute UAS geopositioning with high accuracy in vertical
and horizontal directions.

• In contrast to our earlier work [1], where the UAS was forced to fly at a fixed alti-
tude and attitude, this paper provides an algorithm that removes fixed altitude and
attitude constraints.

2. Related Works

Simultaneous Localization and Mapping (SLAM) is a promising solution for ground
platforms that can be used for aerial platforms [4]. Without a very extended list, some
of the SLAM algorithms used in this regard include MonoSLAM [5] and VINS-mono [6].
Researchers have also considered the cross-view matching approaches for positioning [7].
These methods utilize a Convolutional Neural Network (CNN) to extract landmarks
from UAS-acquired images and reference satellite images and estimate the best-matching
position in a query-to-target strategy [8].
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2.1. SLAM-Based Solutions

SLAM techniques generate 3D point clouds and estimate the sensors’ pose from
sensory data. The UAS geopositioning problem can be considered a pose estimation
problem; hence, SLAM techniques can help. The SLAM literature in UAS geopositioning
uses visual, visual–inertial, and depth camera (RGBD) sensors [9]. Visual-only SLAM
relies on one or more cameras to estimate the camera pose and 3D point by extracting
and matching landmarks. Monocular SLAM is well explored and arguably considered the
most adopted approach due to its reduced hardware requirements. Monocular SLAM is
affected by drift due to dead reckoning. Estimating the metric scale is a problem unless
ground control points (GCP) are provided [5,10]. Having multiple sensors mounted on
the platform, such as an Inertial Measurement Unit (IMU) [6] along with cameras [11–13],
generally helps with metric scale estimation; however, drift and loop closure remains a
challenge and increases as the platform traverses longer distances. To mitigate the UAS
pose estimation, our approach uses geotagged landmarks that can be considered (GCP).

2.2. Cross-View Deep Learning Approaches

Cross-view-based approaches estimate the latent relationship between UAS-collected
imagery and the reference orthophoto available from, for instance, Google Earth. In Ref. [7],
Sixing et al. proposed CVM-Net for the cross-view-based ground-to-aerial geopositioning
task; while this approach was not proposed for UAS, one can apply the method as is to UAS
positioning. CVM-Net uses the Siamese architecture to extract feature maps from acquired
and reference imagery to perform a query-to-target search strategy. Akshay et al. [14]
proposed a cross-view geopositioning method including a Scene Localization Network and
a Camera Localization Network achieving UAS pose estimation from acquired UAS images
and satellite images. Zhuang et al. [8] introduced the MSBA network architecture to extract
landmarks from different views using a multi-branch structure. The network uses a single
UAS image and satellite image gallery as input and estimates the UAS geoposition.

The cross-view approaches use attention mechanisms [15] within transformer ar-
chitecture [16] to generate feature maps for the image; they significantly increase the
computational cost for real-time applications running on the edge. The learned networks
for the images learn the latent view geometric relations; hence, a slight UAS displacement
may result in different feature maps and, consequently, mismatching of cross-view images.
In addition, underlying neural networks trained for one site do not transfer to new areas
and require retraining. The proposed approach in our paper does not require retraining and
can adapt to new flight plans in unseen environments by replacing the look-up database of
ground landmarks. The addition of the attitude control module allows UAS to undergo
rotation and altitude fluctuations.

3. Methodology

The proposed approach comprises three modules: quad-tree look-up, landmark match-
ing, and attitude control. First, the landmarks extracted offline from the reference or-
thophoto are saved in a quad-tree data structure. The landmarks extracted from UAS
imagery are matched to landmarks retrieved from the quad-tree in real-time. We have
tested with multiple landmark extraction and matching algorithms. The matching land-
marks estimate the geometric transformation T and predict the UAS geoposition. The
estimated geoposition is used within the quad-tree look-up module to update the dataset.
The attitude control module uses the recovered transformation to estimate Euclidean plat-
form rotation and altitude to update the UAS global rotation and altitude. These estimated
values keep the acquired image and the landmarks extracted from the orthophoto with
the same orientation and scale. The information flow of the proposed approach is shown
in Figure 1.
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3.1. Geospatial Quad-Tree

Considering the potentially extensive coverage of the UAS flight plans and the sheer
size of reference imagery required for geolocalization (see Figure 2a), we use a quad-tree
look-up module to store geotagged landmarks (see Figure 2b) from the orthophoto for fast
landmark retrieval. The quad-tree is populated offline and can store extensive geographic
areas due to its compressed size. Figure 2c shows example landmarks in red from the quad-
tree. We used the UAS geoposition converted into coordinates of the reference orthophoto
to retrieve the look-up region (shown in red rectangle box in Figure 2a) with a pre-defined
range in pixels (we used 1400× 1400 in experiments).

(a) (b) (c)

Figure 2. (a) is a 2.5 × 2.5 km2 reference orthophoto obtained from Google Earth using Google
Maps API. The red rectangle box indicates the look-up region corresponding to the estimated UAS
geoposition. Reference orthophoto can also be generated using aerial mapping. (b) Automatically
extracted landmarks with known geopositions that are stored in geospatial quad-tree data structure
illustrated in (c).

Quad-tree is a tree-based data structure where each internal node has four children
partitioning the space into four quadrants [17]. When each node reaches maximum capacity,
it splits to extend the tree. The quad-tree recursively decomposes space into adaptive nodes,
making it very efficient for geospatial indexing geographic regions, as shown in Figure 3. In
Figure 4, we compare data retrieval efficiency between quad-tree and brute force methods.
The inference time of a quad-tree exhibits a linear relationship with the retrieval area,
while brute force execution maintains nearly constant performance, as it processes all data
regardless of the size of the lookup region. Quad-tree takes less than 1% of the brute force’s
time to find appropriate landmarks demonstrating the retrieval efficiency of quad-tree for
real-time UAS geopositioning applications. An added benefit of the quad-tree is its ability
to increase geospatial coverage by updating the underlying tree; hence, we suggest using
similar data structures.

3.2. Landmark Retrieval and Matching

Given the geoposition of a UAS, a list of landmarks is retrieved from the quad-tree
data structure indexed by their geoposition. During the retrieval process, landmarks of
an extended area are retrieved to reduce access to the quad-tree. As shown in Figure 5,
the look-up region visualized within the aerial orthophoto overlaps with the acquired
image at the UAS geoposition. We observe, however, that changes in the scene remain a
significant challenge. For instance, differences in the image for a UAS flown in summer and
winter using the same flight plan are shown in Figure 5b,c, where the vegetation appears
significantly different. Besides seasonal differences, differences due to construction may
also be observed, such as the gray building and its surrounding road network within the
red box in Figure 5.



Drones 2023, 7, 569 5 of 18

Figure 3. Visualization of the quad-tree for the reference orthophoto landmarks extracted offline.

Figure 4. Efficiency of quad-tree compared against brute force search. It is important to note that the
y-limit behaves differently in the left and right range considerations.
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(a) Look-up Region

(b) Summer View

(c) Winter View

Figure 5. (a) The look-up region and landmarks from the reference orthophoto at the UAS geoposition.
(b,c) UAS images acquired in summer and winter, respectively. Appearance differences can be seen
due to seasonal changes and construction changes highlighted inside the red box.

The reference orthophoto generated from imagery is generally historical and is differ-
ent from the imagery acquired during the UAS flight, and traditional landmark (keypoint)
matching algorithms collectively perform poorly. We have selected Oriented FAST and Ro-
tated BRIEF (ORB) [18] as a representative of traditional schemes and also adopted the more
recent landmark detection/matching algorithm SuperGlue [3]. SuperGlue is observed to be
resilient to seasonal changes and provides a more extensive set of matching landmarks from
the reference orthophoto and the acquired USA image. This is illustrated in Figure 6, where
the algorithm provides matches despite construction changes and seasonal differences.

(a) Look-up Region

(b) Summer View (SuperGlue)

(d) Winter View (SuperGlue)

(c) Summer View (ORB)

(e) Winter View (ORB)

Figure 6. (a) Look-up region from the reference orthophoto superimposed with matched landmarks.
(b∼d) UAS acquired images with superimposed matched landmarks for two seasons and changes in
the building layout due to construction.
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Apart from the above challenges in matching, another essential characteristic typically
addressed in most of the published literature is the invariance of the matching schemes to
rotation and scaling observed frequently in the UAS geopositioning problem as the platform
changes altitude and attitude. We have tested ORB and SuperGlue matching performance
under attitude changes (5◦–50◦) and altitude changes (60–100 m). As shown in Figure 7,
SuperGlue performs comparably better than ORB, but its performance drops significantly
after 40◦. The effect of altitude change on landmark matching is shown in Figure 7.

Figure 7. The effect of changes in the attitude on the matching to orthophoto using the SuperGlue
and ORB algorithms. Attitude changes are common during UAS flight, and invariance is critical
for successful geopositioning. We note that generally, SuperGlue works well in rotations smaller
than 40◦. Beyond 40◦, the performance significantly reduces. ORB’s landmark count is consistent at
around 1000 due to its internal settings as a handcrafted landmark extractor.

3.3. Geometric Transformation

The geometric transformation T between the UAS-acquired image and the reference
orthophoto can be estimated using the matching landmarks. The following discussion will
explain the relation in pixel coordinates that can be modified to use the geopositions of
the reference landmarks. In our implementation, we use a down-looking camera with a
stabilizer generating images with landmarks at xI . Transformation matrix between xI and
landmark xL from the reference orthophoto is

xL = T× xI . (1)

The transformation between the down-looking UAS image and the reference data
can be computed using 2D transformations as detailed in [19]. In Section 4 of this paper,
we compare the pseudo-perspective, affine, and homography transformations listed in
Table 1. The pseudo-perspective transformation approximates a perspective transformation
using a simpler model that includes rotation and translation and a scale factor based
on the object’s distance from the camera. The affine transformation adds shearing and
independent scaling in the directions of x and y. The homography introduces perspectivity
to the affine transformation. We should note that since the reference data are “orthophoto”
theoretically, the pseudo-perspective is a more appropriate choice than homography.
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Table 1. Transformation variants in 2D space.

DoF 1 Matrix Proprieties

Pseudo-Perspective 4

 sr11 sr12 tx
sr21 sr22 ty

0 0 1


Scaling

Rotation, Translation,

Affine 6

 a11 a12 tx
a21 a22 ty
0 0 1


Shearing

Pseudo-Perspective,

Homography 8

 h11 h12 h13
h21 h22 h23
h31 h32 1


non-Parallelism

Affine,

1 Degree of Freedom.

In Figure 8, we show an illustration where the UAS flies over the building and acquires
two consecutive images CAMt and CAMt+1. In Figure 8a,b, the ground landmarks Bt
and Bt+1 intersect on the ground, and the building landmark A intersects on the building
roof. The difference is that in the projective model, the building landmark A on the roof
was projected on the ground as At and At+1, resulting in shearing and non-parallelism.
In the pseudo-perspective model, landmark A was vertically projected onto the ground,
which preserves the shearing effect and keeps lines parallel. Figure 8c presents an or-
thographic camera model; all lines are parallel in both images. This ideal state does not
practically exist unless a digital elevation model is used along with the image to generate
the orthographic image.

CAMtCAMt+1

Bt , Bt+1

A

(b) Pseudo-Perspective

At, At+1

CAMtCAMt+1

Bt , Bt+1 At At+1

A

(a) Projective

CAMtCAMt+1

Bt+1

(c) Orthographic

At

Figure 8. (a) Assuming camera model is a pinhole, features from the 3D world coordinates are
projected to 2D image coordinates. Taking the ground plane as the reference, the features on the
building roof diverge when extending the projection lines to the ground. (b) The pseudo-perspective
model is a constrained projective model that assumes 3D features have the same depth by ignoring
the height of the building. (c) The orthographic model is based on the orthographic projection; it
preserves parallel lines and does not contain perspective effects.

3.4. Attitude Control

As was discussed, attitude changes cause landmark matching problems (see Figure 7),
which results in geopositioning errors. As shown in Tables 2 and 3, with the change
in altitude, especially when the platform is below 100 m, landmark matching efficiency
significantly reduces, resulting in geopositioning errors. This is due to the scale difference
between reference orthophoto and UAS-acquired images.
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Table 2. The effect of UAS altitude on landmark matching efficiency by comparing the number of
matches (SuperGlue).

Altitude (m)
Not Adjusted 1 Adjusted

Feat. 2 Matches 3 Pct. (%) 4 Feat. Matches Pct.

50 3488 343 9.83 1059 301 28.42
60 3568 406 11.38 1459 343 23.51
70 3749 470 12.54 1947 396 20.34
80 3954 546 13.81 2434 510 20.95
90 4085 639 15.64 2956 604 20.43
100 4137 746 18.03 3489 700 20.06

1 Disabling altitude control applied using Equation (3). 2 Extracted landmarks from UAS imagery. 3 Matched
landmarks to the reference dataset. 4 Valid landmarks pct., matches/feat.

Table 3. The effect of UAS altitude on landmark matching efficiency by comparing the number of
matches (ORB).

Altitude (m)
Not Adjusted 1 Adjusted

Feat. 2 Matches 3 Pct. (%) 4 Feat. Matches Pct.

50 4000 838 20.95 2872 909 31.65
60 4000 968 24.20 3398 993 29.22
70 4000 953 23.83 3753 955 25.45
80 4000 996 24.90 3893 1008 25.89
90 4000 994 24.85 3965 931 23.48
100 4000 1000 25.00 4000 925 23.13

1 Disabling altitude control applied using Equation (3). 2 Extracted landmarks from UAS imagery. 3 Matched
landmarks to the reference dataset. 4 Valid landmarks pct., matches/feat.

To overcome the landmark-matching problems related to rotation and scaling, we
designed an attitude control module that enables UAS to freely change attitude and altitude
during flight while ensuring good landmark matching despite the scale and orientation
differences between the acquired image and the reference dataset. Using the pseudo-
perspective transformation, we estimated the control module transformation as follows:

PL =

(
cos θoffs ∗ soffs − sin θoffs ∗ soffs tx
sin θoffs ∗ soffs cos θoffs ∗ soffs ty

)
︸ ︷︷ ︸

S2×3

∗PI (2)

where θoffs is the rotation offset in reference to the north, (tx, ty) is UAS translation, so f f s
is the offset ratio from landmark scale between resized UAS acquired image and the
landmarks generated from the reference orthophoto. For a UAS with a fixed focal length
camera, the scale has a linear relationship with the drone’s altitude (see Figure 9):

Scale = 0.01114674 + 0.0895404 ∗ Altitude (3)

where the slope and intercept are computed from the plot Figure 9, and the slope would
change with a change in lens parameters. This equation converts the initial UAS attitude A0
to the same scale at which the look-up landmark descriptors are generated. By activating
the attitude control, we observe increased accuracy and precision in landmark matching as
shown in Table 1, especially at low attitudes. The algorithm used by the attitude control is
given in Algorithm 1.
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Figure 9. Illustration of the UAS flight height and scale relationship (blue). At each height, we
collected over 200 observations with descriptive statistics visualized as candlesticks (green).

Algorithm 1 Attitude control module working process
Input: θt−1, st−1
Output: θt, st

if Nmatches ≥ T then
S2×3 = PI

−1 ∗ PL
θo f f s = arctan(s21/s11) . s11, s21 ∈ S2×3
so f f s = s11/ cos θoffs
st = st−1 ∗ soffs and θt = θt−1 + θoffs

else
soffs = 1 and θoffs = 0
st = st−1 and θt = θt−1

end if

While we conjecture the following should not differ for various platforms, in
Algorithm 1, T, the threshold for matching landmarks, is empirically set to 50 for the
UAS we use in our experiments. To ensure the attitude control module works on other
UAS platforms, the scale–altitude linear relationship in Equation (2) must be estimated due
to camera focal length changes.

4. Experiments

In this section, we evaluate the proposed UAS geopositioning approach using two
variations of landmark matching approaches—ORB and SuperGlue. We use the pre-
trained SuperGlue model without additional training. The experiments section is orga-
nized into several subsections. First, we discuss the in-house generated datasets and UAS
geopositioning accuracy under several scenarios. This is followed by an analysis of the
effectiveness of the Geographic Information System (GIS) [20] filter generated using Open-
StreetMap [21]. We compare two matching schemes and validate our pipeline running in
real-time. All experiments are coded and tested with a 12GB NVIDIA TITAN X GPU. Finally,
the geopositioning accuracy of the proposed approach is shown to outperform a common
SLAM approach.

4.1. Datasets

The dataset is collected using a DJI Mavic Air 2 drone with an onboard camera. Several
flight plans were designed to address various scenarios, including suburban residential
areas, university campuses, surface parking lots, and farmlands. We force UAS to fly over
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100 m above the ground to ensure flight safety and sufficient features to be collected. Over
a flight altitude of 100 m, little variation such as moving vegetation due to wind could be
ignored. Please see Figure 10 for sample images from each flight plan. The images are
acquired every 3 m at a platform speed of 2.5 m/s. The attitude and altitude of UAS are
allowed to change during flight with a maximum angular velocity of 250 ◦/s, an ascent
speed of 4 m/s, and a descent speed of 3 m/s. The UAS speed is limited to 18 m/s. The
UAS reference geoposition position has been extracted within a hovering accuracy range of
±1.5 m horizontally and ±0.5 m vertically.

We stored an approximate initial take-off geoposition (±10 m) and orientation (±10◦)
of UAS for each flight plan. The scaling relationship discussed earlier is embedded into
the geopositioning algorithm. We should note that, in practice, the proposed approach has
high initial position and attitude tolerances. Experimental evaluations show that the initial
geoposition and attitude accuracy can be within ±120 m and ±40◦, respectively. We would
like to note that, compared with our approach, alternative geopositioning methods, such as
variations of SLAM, require highly accurate initialization.

Residential Area University Campus

Surface Parking Farm

Figure 10. Example images from the dataset containing flight plans for scenarios including residential,
university campus, surface parking, and farmland.

4.2. Evaluation

To assess the results qualitatively, we show the predicted UAS trajectories based on the
pseudo-perspective projection under different scenarios. The yellow trajectories represent
the predicted trajectory compared with the red ones generated from reference GPS sensor
readings. Quantitative accuracy and the details of the flight plans from the dataset are given
in Table 4. Each flight plan is provided in a column with the information given in the first
four rows: traversed distance, initial attitude (orientation) and altitude, and the altitude
change for each plan. This is followed by two additional blocks of four rows detailing the
geopositioning accuracy with the minimum, maximum, mean absolute error (MAE), and
the standard deviation of the predicted horizontal and vertical geoposition against UAS
reference geoposition during the flight. Due to the limited reference sensor geopositioning
accuracy mentioned in Section 4.1, we reported all quantitative results except the standard
deviation in decimeters. For all the scenarios, the MAE for the proposed approach is below
7.1 m horizontally and below 4.5 m vertically, and is within the uncertainty of the onboard
GPS sensor positioning specs.
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Table 4. The flight-plan information (first quad) and the predicted horizontal (second quad) and
vertical (third quad) geopositioning quantitative analysis against reference geospatial data.

Resi. Campus PKG. Farm1 Farm2

Dis. (km) 2.2 0.78 1.4 2.1 1.4
Init. Orien. 1 0◦ 0◦ 60◦ 90◦ 180◦

Init. Alt. (m) 140 140 90 130 140
Alt. Fluct.(m) 2 105–140 110–140 90–145 120–145 130–149

Min. Err. (m) 3 1.5 2.1 3.9 0.1 1.0
Max. Err. (m) 3 10.1 9.6 9.7 7.4 5.1

MAE (m) 3 6.0 6.3 7.1 4.0 3.4
Std (m) 4 1.74 1.74 1.07 1.54 1.07

Min. Err. (m) 5 0.0 0.0 2.0 0.0 0.0
Max. Err. (m) 5 12.3 6.4 6.1 5.30 4.1

MAE (m) 5 2.9 1.8 4.5 1.8 1.2
Std (m) 6 3.1 1.53 0.70 1.25 1.05

1 UAS initial clockwise orientation in reference to North direction. 2 UAS altitude fluctuation during the whole
testing flight. 3 UAS horizontal geopositioning (GPS level) accuracy in meters. 4 UAS horizontal geoposition-
ing (GPS level) precision. 5 UAS vertical geopositioning (Altitude level) accuracy in meters. 6 UAS vertical
geopositioning (Altitude level) precision.

4.3. GIS Filtering and Its Effectiveness

During the generation of the landmark dataset, detected landmarks in the geo-rectified
orthophoto are kept or removed from the dataset depending on the type of object to which
they belong. To facilitate this filtering, as discussed in [1], the geopositions of the landmarks
are checked against the OpenStreetMap GIS information, and the landmarks that belong to
buildings are removed. The resulting set of points generally lay on the roads and greenery.
Noting that this filtering is offline, it does not increase the processing time of the platform
geopositioning.

The effect of GIS filtering on geopositioning can be analyzed in horizontal plane
coordinates and platform attitude. The quantitative comparison for geopositioning accuracy
with and without GIS filtering is shown in Tables 5 and 6, respectively, in horizontal and
vertical directions. The table lists minimum, maximum, and mean (MAE) errors and the
standard deviation of error. We can see from the results that pseudo-perspective and affine
transformations provide better results than the homography transformation, especially
when GIS filtering is enabled. We should note, however, that the horizontal accuracy does
not change significantly with or without the GIS filter for the affine and pseudo-perspective
transformations.

Table 5. Horizontal UAS geopositioning accuracy tabulated by minimum, maximum, mean absolute
error, and standard deviation (in meters) under three transformation variants and activating or
deactivating the GIS filter.

GIS Filter Transformation
Residential Area University Campus Parking Farm1

Min. Max. MAE Std. Min. Max. MAE Std. Min. Max. MAE Std. Min. Max. MAE Std.

Activated
Pseudo-perspective 1.5 10.1 6.0 1.74 2.1 9.6 6.3 1.74 3.9 9.7 7.1 1.07 0.1 7.4 4.0 1.54

Affine 1.6 10.4 6.0 1.69 2.4 9.7 6.3 1.71 3.9 9.5 7.1 1.06 0.1 7.6 4.1 1.55
Homography 0.9 16.0 7.3 2.68 1.6 18.5 7.6 3.15 4.4 16.0 8.0 1.74 0.3 11.1 5.0 2.26

Deactivated
Pseudo-perspective 1.5 10.1 6.0 1.71 1.9 9.8 5.7 1.61 3.9 9.7 7.1 1.08 0.1 7.7 4.0 1.54

Affine 1.7 10.3 6.0 1.70 2.4 9.8 5.7 1.57 3.7 9.5 7.1 1.08 0.1 7.8 4.1 1.54
Homography 0.8 15.7 7.4 2.80 1.0 26.9 8.6 4.60 3.2 27.1 8.3 2.40 0.3 33.7 5.1 2.96
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Table 6. Vertical UAS geopositioning accuracy reported in minimum, maximum, mean absolute
error and standard deviation (in meters) under pseudo-perspective and affine transformations and
activating or deactivating GIS filter.

GIS Filter Transformation
Residential Area University Campus Parking Farm1

Min. Max. MAE Std. Min. Max. MAE Std. Min. Max. MAE Std. Min. Max. MAE Std.

Activated Pseudo-perspective 0.0 12.3 2.9 3.10 0.0 6.4 1.8 1.53 2.0 6.1 4.5 0.70 0.0 5.3 1.8 1.25
Affine 0.0 12.1 3.1 3.24 0.0 6.5 1.8 1.56 1.8 6.2 4.5 0.67 0.0 6.1 1.9 1.35

Deactivated Pseudo-perspective 0.0 12.0 3.4 3.40 0.0 29.5 6.2 8.28 2.1 6.0 4.5 0.66 0.0 5.5 1.8 1.25
Affine 0.0 12.2 3.4 3.38 0.0 33.7 6.6 8.59 0.6 6.1 4.4 0.68 0.0 5.7 1.9 1.30

In contrast to the more minor horizontal errors in Table 5, the attitude errors in Table 6
are affected significantly by the application of the GIS filter, especially for the university
campus area (see Figure 11), where features from building tops and the ground have
different heights. The predicted altitude and reference altimeter readings are plotted as a
function of time shown in Figure 12. When the platform flies over high buildings, most
matching features are from the building tops. Without a GIS filter, those building features
are mistakenly assumed on the ground, thus increasing the positioning error. On average,
without the GIS filter, the MSE and maximum errors of altitude estimation are, respectively,
6.22 and 29.50 m. When the GIS filter is activated, the MSE decreases to 1.89 m with a 69.6%
improvement, and the maximum error decreases to 6.40 m with a 78.3% improvement.
This is visible in regions 1, 2, and 3, shown in Figure 13, where the UAS flies over tall
buildings such as the Thompson Library or the RPAC building at the Ohio State University
Campus. In multiple experiments at the UAS flying altitude of 110 m, we observed that
buildings below 15 m do not violate the constraints for the pseudo-perspective and affine
transformations, and the GIS filter is unnecessary. Our experiment results from the parking
and Farm1 columns in Table 6 validate this.

4.4. SuperGlue vs. ORB

Compared to ORB and earlier approaches, we consider the SuperGlue to be arguably
the next-generation detection and matching approach using neural networks. From this
perspective, the ORB and SuperGlue tests result in two outcomes. The first one is about
the detection and matching success rate, especially in the presence of a historical landmark
dataset. SuperGlue is tested superior to ORB when the reference landmark features are
generated from infrequently updated Google Maps aerial orthophotos. The higher number
of matching features from SuperGlue results in better estimating the transformation matrix.
This advantage vanishes when the reference landmarks are generated from a recent aerial
mapping. Figure 14 shows the qualitative matching performance of SuperGlue vs. ORB.
Quantitative results for more recently acquired landmark datasets are shown in Table 7. It
can be observed that both SuperGlue and ORB work well and achieve similar accuracy in
UAS geopositioning where the speed of error on average is 3.4 m/s. The predicted trajec-
tories are visualized in Figure 15 and are compared with the reference trajectory (plotted
in red). Yellow and blue trajectories almost overlap, which agrees with the quantitative
analysis in Table 7.
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Residential Area

Surface Parking Farm

University Campus

Figure 11. In horizontal space, four scenarios superimposed with GPS sensor readings during the
flight are shown in red, the predicted geopositions using our approach in yellow and ORB-SLAM3 in
monocular mode predicted geopositions in green. The reference and predicted start and end positions
are the red pin icons. Vertical results can be seen in Figure 16.

Region 1

Region 2

Region 3

Figure 12. UAS reference geoposition (red) and estimated UAS geopositioning. The blue trajectory
shows the GIS filter-activated trajectory, and the green shows the deactivated trajectory for pseudo-
perspective transformation. The GIS filter significantly improves the predicted altitude in regions 1, 2
and 3.
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Region 1

Region 2
Region 3

Region 1

Region 2

Region 3

(b) Perspective view 2(a) Perspective view 1

Figure 13. Visualization of the UAS vertical geopositioning from two perspective views on Google
Earth, activating the GIS filter (red) vs. deactivating it (yellow). The regions 1∼3 correspond to the
same regions in Figure 12.

SuperGlue ORB

Figure 14. Landmark matching performance of SuperGlue (left) vs. ORB (right). The aerial or-
thophoto used for the comparison is generated by aerial mapping.

Figure 15. Geopositioning test at a farm site (referred to Farm2 in Table 4), SuperGlue (yellow) vs.
ORB (blue). The red is the reference trajectory from the platform GPS sensor. The right figures show
zoomed-in trajectories of the black boxes in the left image.

Another outcome of this experiment is the practical use of the detection and matching
scheme for real-time edge computing applications. The ORB-based pipeline has a higher
processing speed averaging 7 fps which is twice the speed of the SuperGlue-based pipeline.
During the flight, the faster processing allows faster flight and a larger lever arm between
consecutive image acquisitions (see Table 7 for details).
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Table 7. UAS geopositioning pipeline landmark matching scheme (SuperGlue vs. ORB) comparison
on horizontal geopositioning accuracy, pipeline inference speed, and allowed UAS maximum speed
for high-end GPUs.

Min. 1 Max. 1 MAE 1 Std 1 fps 2 dist 3 Max. Speed 4

SG 5 1.0 5.1 3.4 1.08 3.40 33 112
ORB 1.0 5.1 3.4 1.06 6.58 90 592

1 Measures of UAS geopositioning accuracy, meter(s). 2 UAS Geopositioning pipeline average running speed,
f/s. 3 Allowed maximum distance between two consecutive frames, m/f. 4 Max. speed = fps × gap, m/s.
Theoretically, this is the allowed maximum speed under the promise of ensuring the pipeline run in real time.
5 SuperGlue.

4.5. Comparison with SLAM

SLAM-based approaches rely on only visual odometry or its combination with inertial
measurements. For a fair comparison, we chose a recent monocular SLAM approach.
Considering that SLAM solutions are relative, we initialized the camera pose with the
altitude and attitude of the platform. For comparison, we use ORB-SLAM3, the most recent
version of the ORB-SLAM series [11–13].

In Figures 11 and 16, we show horizontal and vertical geopositioning results generated
from our approach (blue trajectory) and ORB-SLAM3 (green trajectory), respectively, com-
pared with reference onboard GPS sensor and altimeter readings (red trajectory). We can
see from the figures that the relative solution of SLAM results in drift in the both horizontal
plane and altitude without any external correction. The error for the altitude estimation is
much higher than the horizontal error due to the better spatial distribution of landmarks in
the horizontal plane.

Residential Area University Campus

Surface Parking Farm 

Figure 16. Horizontally, we compare our approach (blue trajectory) with monocular ORB-SLAM3
(green trajectory) and the reference altimeter readings (red trajectory). Under each scenario, the
horizontal comparisons are shown in Figure 16.

5. Conclusions

In this work, we have introduced a real-time positioning pipeline that can provide
absolute 3D space geopositioning and works better than state-of-the-art approaches. In
this approach, the UAS can fly in extensive geospatial coverage and change attitude and
altitude without losing vertical and horizontal accuracy. To achieve this performance, we
introduce a fast geospatial database containing geo-tagged and labeled landmarks and
an attitude control mechanism to mitigate matching problems due to platform motion.
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The pipeline can be extendable and contain other modules. We included a GIS filtering
module that improves vertical errors to demonstrate this. Compared with recent SLAM
methods, our approach provides real-time absolute geoposition and does not suffer from
drift problems.
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