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Abstract: Wildlife monitoring can be time-consuming and expensive, but the fast-developing tech-
nologies of uncrewed aerial vehicles, sensors, and machine learning pave the way for automated
monitoring. In this study, we trained YOLOv5 neural networks to detect points of interest, hare
(Lepus europaeus), and roe deer (Capreolus capreolus) in thermal aerial footage and proposed a method
to manually assess the parameter mean average precision (mAP) compared to the number of actual
false positive and false negative detections in a subsample. This showed that a mAP close to 1
for a trained model does not necessarily mean perfect detection and provided a method to gain
insights into the parameters affecting the trained models’ precision. Furthermore, we provided a
basic, conceptual algorithm for implementing real-time object detection in uncrewed aircraft systems
equipped with thermal sensors, high zoom capabilities, and a laser rangefinder. Real-time object
detection is becoming an invaluable complementary tool for the monitoring of cryptic and nocturnal
animals with the use of thermal sensors.

Keywords: wildlife monitoring; uncrewed aerial systems; UAV; UAS; RPAS; aerial survey; thermal
imagery; YOLOv5; neural network training; Capreolus capreolus; Lepus europaeus

1. Introduction

The use of aerial drones for wildlife monitoring has increased exponentially in the past
decade [1–7]. These drones, also known as uncrewed aerial vehicles (UAVs), unmanned
aerial systems (UASs), and remotely piloted aircraft systems (RPASs), can carry a variety
of sensors, including high-resolution visible-light-cameras (RGB) and thermal infrared
(TI) cameras. As the technologies advance and the price of these drones and sensors
drops, they become more accessible to conservation biologists, wildlife managers, and
other professionals working with wildlife monitoring [2–5]. The prospects of drones in
wildlife monitoring have already been proven to save time, create better imagery and
spatial data for especially cryptic and nocturnal animals [8,9], and reduce the risks and
hazards for the observer [10,11]. However, the methods are still in the early stages, and
need further development to be truly superior and cost-saving compared to traditional
monitoring methods. Automatic detection is pivotal for this development, and computer
vision is likely to be the solution [1].

1.1. Automatic Detection and Computer Vision

Over the past decade, artificial intelligence has led to significant progress in the domain
of computer vision, automating image and video analysis tasks. Among computer vision
methods, Convolutional Neural Networks (CNNs) are particularly promising for future
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advances in automating wildlife monitoring [6,12–18]. Corcoran et al. [3] concluded that
when implementing automatic detection, fixed-winged drones with RGB sensors were
ideal for detecting larger animals in open terrain, whereas, for small, elusive animals in
more complex habitats, multi-rotor systems with infrared (IR) or thermal infrared sensors
are the better choice, especially when monitoring cryptic and nocturnal animals. It was
also noted that there is a knowledge gap in understanding the effects of the chosen drone
platforms, sensors, and survey design on the false positive detections made by the trained
models, thereby potentially overestimating [3].

1.2. You-Only-Look-Once-Based UAV Technology

A popular and open-source group of CNNs is the YOLO (You Only Look Once) object
detection and image segmentation models, with several iterations and active develop-
ment [14,19–22], and a technology cross-fusion with drones has already been proposed as
YOLO-Based UAV Technology (YBUT) [6]. The advantages of the YOLO models are that
they are fast [8], making it possible to perform object detection in real-time on live footage,
and that they are relatively user-friendly and intuitive, making the models approachable to
non-computer scientists. By using the Python programming language, it is more accessible
for custom development and customization. This makes it possible to implement it in exter-
nal hardware so that, for example, object detection can be carried out in real-time onboard a
drone. Object detection and tracking of cars and persons are already integrated into several
unmanned aerial systems, such as the DJI Matrice 300RTK [23], but customization of these
systems is limited. The YOLO framework and YBUT show potential for active community
development [6,24]. Examples of this are architectures based on YOLOv5 that improve the
model’s ability to detect minutely small objects in drone imagery [12,25], improved infrared
image object detection network, YOLO-FIRI [26], and improved YOLOv5 framework to
detect wildlife in dense spatial distribution [17].

1.3. Mean Average Precision

When training neural networks, here called models, one of the main parameters for
explaining the performance of a model is the mean average precision (mAP) [27]. This is
a metric used to evaluate the performance of a model when predicting bounding boxes
at different confidence levels, and thereby measure the precision of the trained model
in comparison to other models applied to the same test dataset. A training dataset may
be a collection of manually annotated images divided into a set for the training itself, a
validation set, and a testing set, also known as dataset splitting [27]. The validation set
is used to detect the overfitting of a trained model and the test set is used to evaluate
its performance on an unseen dataset. Mean average precision (mAP) consists of several
parameters: precision, recall, and intersection over union (IOU) [18,27]. The precision of a
model (calculated as the number of true positives divided by the sum of true and false
positives generated by the model), describes the proportion of positive predictions that are
correct. The precision of a model does, however, not take the false negatives into account.
The recall of a model, calculated as the number of true positives divided by the sum of true
positives and false negatives, describes how many of the true positives the model correctly
detects. This means that there is a trade-off between precision and recall. Detection becomes
less precise when making more predictions at a lower confidence level, which in return
gives a higher recall. Precision–recall curves visualize how the precision of the model behaves
when changing the selected confidence threshold. The IOU measures how much overlap
there is between the bounding box on an image from the test dataset, manually annotated,
and a bounding box annotated by the trained model, on the same image. Therefore, the
IOU gives a proportion of how much of the object of the specified class and how much of
the surroundings are included in the detection. mAP curves are the mean of the precision–
recall curve for all classes and for all IOU thresholds for each class, so it both takes into
consideration the number of false negatives and false positives, as well as how precise the
bounding boxes are drawn around the object for detection [18,27].
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Povlsen et al. [28] flew in predetermined flight paths at 60 m altitude with a DJI Mavic
2 Enterprise Advanced with the thermal camera pointing directly down (90◦), covering
the transects that were simultaneously surveyed, monitoring hare, deer, and fox. Using
transect counting, it was possible to spot roughly the same number of animals as the
traditional ground-based spotlight count [28]. However, this method covered a relatively
small area per flight, and required post-processing of the captured imagery, still making it
time-consuming. In the present study, we tried a slightly different approach by manually
piloting the UAV continuously, using the scouring method which also had been shown
to match and potentially surpass the traditional spotlight method [9]. By scouring the
area with the camera angled at about 45◦, we attained better situational awareness and
covered a larger area per flight. This approach does require some experience from the
drone pilot [24], both in piloting the drone and camera and in spotting animals in thermal
imagery, but, as we will show, there is a potential in automating this approach using
machine learning (ML) to improve post-processing efficiency and possibly even collect data
in real-time automatically while the drone is airborne. The aim of this study was to provide
a basic, conceptual algorithm for implementing real-time object detection, based on artificial
intelligence, in unmanned aircraft systems (UASs) with the ambition of automating wildlife
monitoring. We trained YOLOv5 neural networks to detect points of interest (POIs), hare
(Lepus europaeus), and roe deer (Capreolus capreolus) in thermal aerial footage. In addition,
we proposed a simple method to determine the ratio of true false positive and true false
negative detections to assess the given mAP and to gain insights into the parameters
affecting the trained model’s precision.

2. Materials and Methods

In order to build a model capable of detecting certain species, a dataset was needed
for the training of the neural network. There is a growing number of datasets with various
animals available [27], but as this study was a proof-of-concept, it was meant to show
that a dataset of any target species can be built with drone images fairly simply. The
custom-trained models should be able to detect specific species, or even individuals, in a
specific environment or setting [29]. The efficacy of the trained models is very dependent
on the settings of the image material it will be used upon. The more similarities there are
between the environmental settings of the stock datasets images and the real-life settings
that the model is applied upon, the better the model [27]. Roboflow.com, an end-to-end
computer vision platform, was used for manual annotation, and the CNN used for custom
training and detection was YOLOv5 [19], both described in detail below.

2.1. Collecting Thermal Footage of the Species

To build up a database of thermal images for later annotation, two drones were used: a
DJI Mavic 2 Enterprise Advanced (M2EA) and a DJI Matrice 300RTK (M300) with a Zenmuse
H20N payload. The thermal camera on the M2EA had a resolution of 640 × 512 pixels, a field
of view (FOV) of 48◦, and 16× digital zoom. The two thermal cameras in the H20N both had a
resolution of 640 × 512 pixels, a FOV of 45.5◦ and 12.5◦, with 4× and 32× zoom, respectively.
The chosen thermal color palette was white-hot consistently for all footage, to keep it simple
and broadly applicable. The imagery was captured by night, in biotopes ranging from heath
and dunes in areas near Skagen and Lyngby Hede, Thy, to woodland and agricultural areas
near Ulsted and Brønderslev, Denmark (Figure 1).

Weather conditions ranged from dry nights at temperatures around 10 ◦C, over heavy
rain at temperatures around 5 ◦C (M300 only), to snow-covered ground at temperatures
around −5 ◦C. The drone-mounted thermal cameras did not show an absolute temperature
range, but a relative one, so the difference between these weather conditions was not
obvious in the footage afterwards. However, in the snow-covered landscapes, footprints
and tracks were very visible. Rain did not obscure the footage noticeably, but the occasional
heavy fog could cover the lens with condensation, rendering the cameras almost unusable.
The contrasts between the animals and the background with ambient temperatures were
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more dependent on what was in the frame, e.g., trees, big patches of monotonous field,
sea, or sky, than the actual temperature difference. Emissivity, the characteristic of specific
materials’ ability to emit and absorb thermal radiation, also plays a big part in how objects
seen through the thermal lens present themselves in relation to each other. Still, images
from the video footage were captured with VLC using VideoLAN.
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Figure 1. Map of the areas where the thermal imagery was captured: Lyngby Hede, Brønderslev,
Ulsted, and Skagen, Denmark.

2.2. Image Annotation

For manual annotations of the images, comprising the datasets used for training of the
models, Roboflow.com was used. Square bounding boxes were placed around the objects, with
the three classes: points of interest (POIs) (Figure 2), hare (Figure 3), and roe deer (Figure 4).
POIs are everything that a drone pilot would react to and zoom in on to inspect further when
manually searching for animals in the terrain. Images of hare and roe deer were taken from
various flight heights and zoom levels, and species recognition was performed manually
based on both contour and patterns of movement. The datasets included images with no
objects as a baseline to improve the distinction of background when training [27].

Augmentations were applied to the annotated images to create a larger and more robust
dataset. These produced copies of the images that were flipped horizontally and vertically
and rotated 90◦ clockwise, counterclockwise, and upside down. Other augmentations, such
as cropping, blur, saturation, and brightness, were not applied to the dataset to keep it simple.
In the preprocessing, the images were resized to fit within 640 × 512 pixels [27]. The dataset,
including the augmentations, was divided into a training set, a validation set, and a test set
for each of the three models: hare, roe deer, and POI (Table 1).

Table 1. The number of images before augmentations, approximate number of objects per image,
and the total number of training, validation, and test images, including the augmented images, to
comprise the three datasets (hare, roe deer, and point of interest) for training.

Number of
Annotated Images

Number of
Objects per Image

Number of Training
Set Images

Number of
Validation Set Images

Number of Test
Set Images

Hare 627 ~1.1 1310 123 40
Roe deer 158 ~1.3 313 31 17

POI 260 ~5.4 549 46 21
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as roe deer (Capreolus capreolus). 

Figure 2. Examples of manually generated bounding boxes (yellow lines) annotating points of interest
(POIs) in a thermal image. The image was captured at nighttime, 700 m away from the animals, with
a white-hot, relative temperature palette. The animals were during the flight identified as roe deer
(Capreolus capreolus).
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Figure 3. Examples of manually generated bounding boxes (purple lines) annotating hare (Lepus
europaeus) in thermal images. The images were captured at nighttime, 60–500 m away from the
animals, with a white-hot, relative temperature palette. The animals were manually identified by
both contour and movement patterns.
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Figure 4. Examples of manually generated bounding boxes (yellow lines) annotating roe deer
(Capreolus capreolus) in thermal images. The images were captured at nighttime, 120–500 m away from
the animals, with a white-hot, relative temperature palette. The animals were manually identified by
both contour and movement patterns.

2.3. Custom Training of YOLOv5 for Object Detection

To custom train YOLOv5 neural networks, an online Google Colab repository, or
Notebook, maintained by Roboflow was used (https://github.com/roboflow/notebooks/
blob/main/notebooks/train-yolov5-object-detection-on-custom-data.ipynb (accessed on
21 December 2023) [30]. This repository integrates seamlessly with the online Roboflow
software, and the annotated datasets were inserted directly by a link. There are, however,
many other options, online as well as offline, to train a YOLOv5 model [19,22,27,30]. The
specific training parameters used were as follows: image size of 640, batch number of 16,
300 epochs, and yolov5l.pt weights (large model) [18]. The remaining hyperparameters
were default.

2.4. Evaluating Model Accuracy, Detection, and False Positives and False Negatives

To assess the training, the plugin Weights & Biases, an AI developer platform, was
used (wandb.ai). This automatically stores data about each training progress and calculates
parameters such as precision, recall, and mAP to be accessed online later. An amount of
300 epochs was chosen as standard, but most training sessions had the best mAP_0.50 at
less than 100 epochs and therefore ended automatically at around 200 epochs.

Mean average precision can be a good indicator of the precision of the trained
model [18,27]. However, it assumes that all false positives and false negatives are reg-
istered using the input test set, which leaves room for bias. Therefore, we have manually
tested a small sample to check for false positive and negative detections (Figure 5) to hold
this against the mAP calculated using the model itself, showing a method to assess the
trained models’ own assessments of precision.

To manually test the number of false positives and false negatives that the models
would produce on a new set of images, 100 aerial images of both hare, roe deer, and POIs,
in similar settings and zoom range as the training datasets, were chosen to be run through
the trained models. The confidence threshold for the YOLOv5 detection was set to 0.5 and
0.8 for hare and roe deer, and 0.2, 0.5, and 0.8 for POIs, meaning that detected objects with
a confidence score lower than the selected threshold would not be included in the output

https://github.com/roboflow/notebooks/blob/main/notebooks/train-yolov5-object-detection-on-custom-data.ipynb
https://github.com/roboflow/notebooks/blob/main/notebooks/train-yolov5-object-detection-on-custom-data.ipynb
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(Figure 5). A confidence threshold of 0.2 is too low for practical use, but it was included to
assess the number of false negatives and false positives the model produced at this level.
The detections were made offline on an Anaconda-installed version of YOLOv5 (git cloned
in January and February 2023) but using the models trained in the Google Colab repository.
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Figure 5. Examples of automatically annotated thermal images, including false positives and false
negatives, and the corresponding confidence scores. Bounding boxes were made with object detection,
using custom-trained YOLOv5 neural networks. The images were captured at nighttime, 60–300 m
away from the animals, with a white-hot, relative temperature palette. The animals, false positives,
and false negatives were later manually identified by both contour and movement patterns in the
original footage.

3. Results

The mAP of the models was 0.99 and 0.96 for hare and roe deer, while for POIs it was
0.43. The best mAP for all models was reached at 100 epochs (Figure 6). The relatively
low mAP for the POI model is also seen in the manually tested false negatives and false
positives, where only 60% of the detections were annotated correctly, at a confidence limit
of 0.20, while the hare model and the roe deer model had 72% and 97% correctly annotated,
with 0% and 24% false positives (see Table 2 for all values). Precision and recall could be
re-calculated from the manual results to find the best confidence threshold, but as model
optimization was not the goal of this study, it was refrained.
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Table 2. The model and chosen confidence limit of the detection and the mean average precision
(mAP) of the trained neural networks. The number of objects in the 100 images per detection run and
the percentage of correctly annotated objects, false negatives, and false positives produced by the
models at various confidence limits and manually identified.

Model/
Confidence Limit

Trained
Model mAP

Number
of Object

Correctly
Annotated %

False
Negative %

False
Positive %

Hare 0.50 0.99 169 100 0 21
Hare 0.80 0.99 169 72 28 0

Roe deer 0.50 0.96 133 100 0 58
Roe deer 0.80 0.96 133 97 3 24

POI 0.20 0.43 624 60 40 10
POI 0.50 0.43 624 29 71 2
POI 0.80 0.43 624 0 100 0

4. Discussion

The mAPs of the hare model and the roe-deer model were very high, 0.99 and 0.96
(Table 2), and it is likely that the roe deer model could become even more precise with
a larger training dataset (Table 1) [27,30]. The high mAP could be a sign of overfitting;
however, the images upon which the trained models were applied were in similar settings
and zoom range as the training datasets, making overfitting less likely. The POI model only
reached 0.43 (Table 2) and would need improvement to be useful. This could be achieved
by building a larger training dataset, possibly even several datasets, with more similarities
to the settings the model should later be applied upon, such as weather conditions, drone
flight height, and biotope type [27,30]. Since the POI should be detected at longer distances
(>500 m), they consist of very few pixels; therefore, a variation of, or addition to, the
YOLOv5 framework to detect very small objects and optimized for thermal imagery, should
be added [12,17,26]. When choosing images for datasets, objects should have approximately
the same size as in the target footage that the model would be applied upon [8].

The manual test for false negatives and false positives showed that, with the trained
models, the optimal confidence level threshold for the hare model and roe deer model lies
somewhere between 0.50 and 0.80 to give the optimal ratio between correct annotations,
false negatives, and false positives (Table 2). This would also be improved with a larger
training dataset tailored to the situation. The POI model only annotated 60% correctly
at the lowest confidence limit of 0.20, which also suggests that this trained model needs
further improvement to be functional. The mAP curves (Figure 6) showed that less than
100 epochs were sufficient to reach the optimal mAP during training. This indicates that
relatively little training time is needed, even with a significantly larger training dataset. The
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method of manually assessing false negatives and false positives was very time-consuming
but indicates that, even with a mAP near 1.0, the models can produce more than 20% false
positives at a confidence limit of 0.50 and miss 28% of the objects needed to be detected
at a confidence limit of 0.80 (Table 2). This points out that mAP should not be the only
parameter used to assess a trained model. As mentioned, several initiatives could be
taken to improve the models, such as building a sufficiently large training dataset and
customizing the dataset to the specific setting where object detection would be applied,
but further studies are needed to elucidate this. This method could be used to assess and
pinpoint the most significant of the tweaked parameters.

4.1. Conceptual Algorithm for Automated Wildlife Monitoring Using YBUT

In Figure 7, we propose a conceptual algorithm for implementing real-time object
detection in unmanned aircraft systems (UASs), with the ambition of automating wildlife
monitoring. This concept requires a drone mounted with a camera with good zoom
capabilities and a laser rangefinder. Increased spatial accuracy can be achieved with RTK
technology (Real-Time Kinematic positioning) but is not a necessity. The flowchart starts
with the drone flying autonomously in a predetermined flight path at a high altitude. In
most countries with EU legislation, the maximum altitude is 120 m [31]. The camera is
angled at 45◦, and the camera feed is passed through external hardware with a graphics
processing unit (GPU), such as a Jetson Nano or similar, or the DJI developer kit. On
this external hardware, neural networks (NNs), such as pre-trained YOLOv5, would be
installed and running, continuously detecting the camera feed.
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In the first stage, only the NN trained to detect POI would be activated. When a POI
is detected, a script takes over the user controls to fly the drone and control the camera
autonomously, but with the possibility of the drone operator overriding and overtaking
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manual control. This script would require extensive development and fine tuning to be
functional, depending on the accessibility of the UAS. The script will stop and hover the
drone mid-flight and take over the controls of the camera to zoom in on the detected POI,
while saving the GPS coordinate using the laser rangefinder. Meanwhile, it switches to
another NN that is trained to detect several target species, and possibly even sex or age
if using segmentation annotating NN, or individuals [29]. If the density of the monitored
animals is high, a NN trained to detect groups of animals may be needed [17]. The script
will zoom in on, and possibly track, the POI until a detection is made. If detection is
not possible within a predetermined time frame, the observation would be registered as
unidentified. This annotation will be saved along with the coordinate, the camera will
zoom out, and the script will reset to look for new POIs.

4.2. Limitations of Study

As the proposed algorithm is merely conceptual, there will be several challenges to
be solved, such as keeping track of the detected animals if they are moving, so they will
not be counted twice, and keeping track of POIs to investigate. Legislation may also prove
to be an obstacle, since most countries only allow flying a drone within the visual line of
sight (VLOS) of the drone operator without special permits [31]. Safety issues, such as the
risk of losing control of the drone, must also be addressed. The mAPs (Table 2) suggest
that the selection of training data for the POI should be revised, enhanced, and possibly
differentiated into specific habitats, settings, and weather conditions. It would be useful to
investigate the effects of background composition in the training data and the degree of
similarity to the settings that the object detection is applied upon.

4.3. Similar Studies and Perspectives

Since the start of this project, several iterations and improvements on the YOLO models
have been released, with YOLOv8, YOLO-NAS, and YOLO9000 being some of the state-
of-the-art models at the time of writing. Which model to choose depends on the choice in
hardware and application, but the differences in performance between the models are minor
compared to the importance of the quality of the training datasets [27]. Several studies have
combined aerial footage analysis with the use of machine learning [4,6,8,12,14,15,25,32–37],
and the increased use of drones for wildlife surveys highlights the need for automation
when analyzing imagery. This opens up possibilities of combining real-time object detection
and tracking with commercial drone technology. The newest YOLO models have been
shown to be able to track and count objects in real-time using custom-trained versions [27],
making it possible to quantify a survey directly. With the fast development of image
segmentation, only marking the pixels containing objects for detection, and implementation
of unsupervised learning, the resolution of the gathered data can become significantly
higher, making it possible to determine sex, age, body condition, or even recognition of
individual animals.

5. Conclusions

In this study, we presented a basic, conceptual algorithm for implementing real-time
convolutional neural network-based object detection in unmanned aircraft systems, with
the ambition of automating wildlife monitoring. We trained YOLOv5 neural networks
to detect points of interest (mAP 0.43), hare (mAP 0.99), and roe deer (mAP 0.96) in
thermal aerial footage. The mAPs suggest that the selection of training data for the POI
should be revised, enhanced, and possibly differentiated into specific habitats, settings,
and weather conditions. We proposed a simple method to determine the ratio of true false
positive and true false negative detections to assess the given mAP, and to gain insights
into the parameters affecting the trained model’s precision. This showed that the object
detection model’s own assessment of the training would miss a number of false positives
and false negatives, even with a mAP near 1, which indicates that mAP should not be
the only parameter used to assess a trained model, and that manual control is needed.
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Several initiatives could be taken to improve the models, such as building a sufficiently
large training dataset and customizing the dataset to the specific setting in need of object
detection, but further studies are needed to elucidate this. This method could be used to
assess and pinpoint the most significant of the tweaked parameters.
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