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Abstract: Automation enhances the capabilities of unmanned aerial vehicles (UAVs) by enabling
self-determined behavior, while reducing the need for extensive human involvement. Future con-
cepts envision a single human operator commanding multiple autonomous UAVs with minimal
supervision. Despite advances in automation, there remains a demand for a “human in command”
to assume overall responsibility, driven by concerns about UAV safety and regulatory compliance. In
response to these challenges, a method for runtime verification of UAVs using a knowledge-based
system is introduced. This method empowers human operators to identify unsafe behavior without
assuming full control of the UAV. Aspects of automated formalization, updating and processing of
knowledge elements at runtime, coupled with an automatic reasoning process, are considered. The
result is an ontology-based approach for runtime verification, addressing the growing complexity of
UAVs and the need to ensure safety in the context of evolving aviation regulations.

Keywords: automation; autonomy; drones; knowledge-based systems; monitoring; rules; runtime
verification; safety; unmanned aerial vehicles

1. Introduction

The use of unmanned aerial vehicles (UAVs) offers potential for a wide range of
scenarios and applications. The exploitation of this potential is being driven forward
by continuous innovation and has gained considerable momentum in recent years. One
indicator of this development is the recent exponential growth in the published literature
on UAVs [1]. In addition, forecasts for the market growth of UAVs, for example, in the
European Union, indicate a significant increase, which underlines the growing importance
of this technology in various sectors [2]. In particular, the use of automation technologies
has a significant impact on the way UAVs are operated. On the one hand, this leads
to a reduction in the amount of human workforce required ([3]); on the other hand, au-
tomation increases the capabilities of the UAVs themselves by enabling them to perform
self-determined tasks ([4]). These developments peak in the vision of a single operator
being able to command and control teams of multiple autonomous UAVs with minimal
human supervision [5].

Despite these advances, however, there is still a demand for a “human in command”
who assumes overall responsibility for the UAV [6]. However, the increasing complexity
of UAVs and the associated difficulty in predicting their behavior raises concerns about
whether humans can adequately take on this responsibility at all. Concerns about the
safety of UAVs are a decisive influencing factor. This aspect becomes particularly important
in the context of legal considerations, as the main objective of aviation regulations is to
ensure an adequate level of safety [2]. There are already multiple approaches that can
guarantee aspects of safety in different ways. For example, the approaches of [7,8] can
monitor and control the altitude of a specific UAV even under adverse conditions. The
commercially available FlySafe system ([9]), on the other hand, can effectively prevent
access to geographical zones. However, these approaches cannot determine whether
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the specified altitude value is appropriate or whether entering a specific zone is indeed
prohibited in a particular situation. In addition, these approaches are only transferable to
different types of UAVs to a limited extent.

Considering this background, this paper presents a method for rule-based runtime
verification of UAVs using a knowledge-based system. This method enables a human
operator to specifically formulate and detect unsafe behavior, taking into account the
particular situation, without taking full control of the respective UAV.

The major contribution of this paper is the automated formalization, updating and
processing of different elements of knowledge at runtime, as well as an automatic reasoning
process based on this. This is used to create and exemplify an ontology-based approach for
rule-based runtime verification.

This paper is organized as follows: Section 2 initially provides necessary background
information on levels of automation and autonomy, followed by safety constraints, ver-
ification techniques and knowledge representation. Section 3 then introduces a method
to create and process verification rules. In Section 4, an implementation of this method is
demonstrated by means of a simple use case for traffic monitoring. Section 5 discusses the
main results presented in this paper, highlighting predictability. Finally, a short conclusion
is given in Section 6, as well as an outlook on further research.

2. Background Information

This section provides necessary background information on automated and autonomous
UAVs and the demand for the safe behavior of such UAVs. Additionally, verification
techniques are discussed with a special focus on rule-based verification. Finally, rule
knowledge and the representation and processing of knowledge in knowledge-based
systems are explained.

2.1. Automated and Autonomous Unmanned Aerial Vehicles

Automation and autonomy, though sometimes used synonymously, have different
meanings, and thus an autonomous operation of a UAV may have differing requirements
regarding certification, insurance coverage or pilot qualifications [6]. Autonomy is con-
sidered a key factor enabling UAVs to perform highly complex missions. It includes
self-determined planning of actions as well as self-organized communication and coor-
dination with other UAVs [4]. Nonetheless, less complex missions may also be usefully
supported by automation techniques. The benefits of automation include the takeover of
specific actions such as stabilization, the ease of planning, executing and repeating missions
and the ability of a single human to command and control multiple UAVs in the role of a
supervisor without needing the skills of a trained pilot [3].

There are various approaches to delineating the meaning of autonomy and automation
in the field of robotics and UAVs. Established scientific approaches include the ALFUS
framework ([10]), considering mission complexity, environmental difficulty and human
independence, and the 10-point scale by Sheridan (adapted in [11]), considering the depen-
dence of human decisions, leveling from total manual control to the complete ignorance of
human decisions. A classification of automation levels for UAVs with a normative status
was released by the European Cockpit Association (ECA). It is based on the established
classification scheme for driving automation, defined in SAE J3016. In six so-called au-
tomation levels, ranging from “No Automation” to “Full Automation”, the ECA defines
responsibilities for the management of flight [6]. A detailed legal classification scheme is
lacking. In Europe, regulation (EU) no. 2018/1139 merely states within its definition of a
remote pilot that during the automated flight of a UAV, the remote pilot remains able to
intervene [12]. Regulation (EU) no. 2019/947 amends that during an autonomous operation
of a UAV, the remote pilot is not able to intervene [13].

Regardless of the classification schemes chosen, it can be stated that autonomy is
similar to higher levels of automation. With each additional level, the ability of the human
operator to control the UAV decreases, while the performance of the automation increases.
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The highest levels of automation or autonomy without the possibility of human interaction
are also described in some schemes, but it remains uncertain whether these levels should
really be reached, such as, for example, a level where the automated system ignores the
human ([11], Level 10). The ECA demands that a human must always be in command [6],
while [14] concludes that the legislator within [12] only states that a course change by the
remote pilot can no longer take place. However, an interaction, e.g., in the form of an
emergency stop, remains possible. Thus, the human may be restricted in their interaction
possibilities with higher automation but always retains possibilities of command and
responsibility for the UAV. This indispensable responsibility implies that the human must
always be able to ensure that the UAV does not violate any constraints, especially in
relation of safety—even with limited means of command. An enablement to determine any
constraint violation is therefore essential.

Considering this ambivalence of safety and autonomy, the authors endorse the follow-
ing definition of autonomy: “Autonomy is a state in which a robot system, once activated, is
capable of autonomously performing some or all of the mission tasks, for a specified period
of time or continuously, in specified areas or everywhere, while it must remain possible at
all times for a technical supervisor to shut down the system to a low-risk, operable state in
situations that cannot be foreseen by human judgement” (translated from [14]). It ensures
human governance by setting up goals and an operational framework, while it gives the
UAV the maximum possible self-determination to operate.

2.2. Safety Constraints in the Context of Unmanned Aerial Vehicles

Constraints are spaces or periods of time where the performance of one or more activi-
ties is restricted or prohibited. Together with goals and mission execution, they form the
essence of a mission [15]. Using automated UAVs, it is possible to plan and execute mis-
sions for various scenarios and applications. Established software for so-called autopilots
and control stations (e.g., px4 [16] in combination with QGroundControl [17]) allow the
manual planning of waypoints and the automated, optionally repeatable, execution of these
missions [18]. In such lower levels of automation, it may not yet be necessary to explicitly
formulate constraints due to very good predictability. For instance, waypoints may simply
be plotted around a restricted zone to reach a waypoint. Violation of the constraint is thus
effectively prevented without the UAV having to be aware of the constraint “restricted
zone” or even to understand it. Yet, this represents an ideal state, as missions planned by
humans may contain errors.

However, this linear approach is not suitable for complex missions. Within higher
levels of automation or autonomy, the UAV should be enabled to perform actions based
on the current situation and resolve emerging conflicts on its own in order to achieve its
goals [4]. For this, an understanding of these goals, as well as given constraints, is necessary
in order to provide the UAV with a maximum spectrum of possible actions. A granular
specification of how goals are to be achieved is no longer necessary.

Safety is a serious motivation for formulating constraints. It is defined as the freedom
from risk, which is not tolerable, but is not to be mistaken as a guarantee of total freedom
from any risk [19]. Thus, the absence of safety may result in hazard, danger or even
harm. Since a key ability of UAVs is locomotion, traffic safety, a subarea of safety, is
especially considered as significant. It refers to freedom from intolerable risks caused by
motion [20]. Relevant safety constraints may, for example, be generated by conducting a
safety assessment procedure or additionally be taken from normative or legally binding
sources. A substantial number of such constraints for the traffic safety of UAVs is provided
by the legislator in the form of legal regulations. These are either explicitly formulated
for UAVs or implicitly formulated for aircraft in general [21]. A violation of such a safety
constraint thus constitutes unsafe behavior. Conversely, this means that if absolutely no
safety constraints are violated, the UAV behaves safely. However, the latter statement is
only true if all safety constraints are fully known. This is a case that is difficult to prove,
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especially when considering highly automated UAVs in open, uncontrolled environments
with self-deterministic behavior and the ability to adapt to changing situations.

2.3. Verification of Self-Determined Behavior

Since autonomous UAVs may be used in various environments performing different
scenarios while always exploiting a maximum range of actions as part of their mission
execution, commonly used techniques, such as testing and simulation, are not sufficient
to release them alone [22]. To guarantee compliance with ethical, legal and safety-related
requirements, various techniques for verification may be used. Verification in general is
the confirmation that specified requirements have been met through objective evidence
(e.g., inspections, alternative calculations or document reviews) [23].

In their paper, the authors of [22] provide a comprehensive overview of techniques for
the formal verification of autonomous robotic systems. Established and strongly focused
are heavyweight highly formal techniques such as model checking, integrated formal
methods and theorem proving. However, each of these techniques has specific challenges
and limitations, such as the disadvantage of complex modeling and limited transferability
between programs, the expert knowledge required and the lack of generalizable approaches,
which may impair the application and efficiency of these methods. In addition to these
techniques, runtime verification is said to be highly efficient, especially on the running
system [22].

Runtime verification or runtime monitoring is a lightweight formal method for an-
alyzing just a single execution of a system [24]. It is therefore not reliant on a model or
additional obligations to provide evidence of the correctness of the abstraction or model
creation [25]. Through thorough monitoring of the system itself and a comparison with
requirements, it can perform reliable verification of system executions at runtime.

Runtime verification has proven to be a practical way of detecting and avoiding
erroneous or unsafe behavior, which in the context of UAVs may be a violation of minimum
separation distances or entering restricted zones [26].

In general, three steps are required to develop a component for runtime verification:
specification and formalization of requirements, configuration of a monitoring component
and connecting it to the target system [24]. The last two steps mainly deal with inference
and information access and end up being highly automated. However, the formulation
of requirements is crucial to ensure that the following steps produce correct results. This
demands human-provided formalized input.

For the formalization of human knowledge, rules are particularly well suited [27].
Taking advantage of this aspect, the concept of rule-based runtime verification has emerged.
The rule-based specifications of requirements used here can be constructed intuitively
with syntactically simple if–then conditions and are at the same time very expressive [28].
Rules consist of a premise and a conclusion. A premise (the left-hand side of a rule) can
check for the presence or absence of a particular fact, so-called atoms, and the conclusion
(the right-hand side of the rule) can add or delete facts or produce error messages. If all
atoms of a premise become true, the rule is fired; i.e., the action on the right-hand side is
executed [28].

Rules represent a specific kind of knowledge. In order to process this knowledge in
the course of runtime verification, it needs to be formalized in a machine-readable form.

2.4. Representation and Processing of Rule Knowledge

The use of ontologies is suitable for the unambiguous definition and application of rule
knowledge. An ontology is a knowledge base that models a common understanding of a
domain. One of the goals of ontologies is to describe information in a machine-readable and
unambiguous way so that computer systems, such as a UAV in this case, have a common
understanding and can process this information [29]. In other words, this unambiguous
and machine-readable meaning of information enables the combination or integration of
heterogeneous systems from different manufacturers, thus enabling interoperability [30].
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Unlike conventional data formats used in various computer systems, such as XML
or JSON, information in an ontology is given as semantics, i.e., meaning and relations.
Semantics are implemented in an ontology through terminological knowledge, which
expresses class knowledge. This class knowledge basically applies to the domain and
defines classes of resources and relations [31]. For example, the class UAV, the class
HumanOperator and the relation hasHumanOperator can be defined to associate a pilot with
a drone. The most complex relationships can be expressed in ontologies. In addition to
terminological knowledge, an ontology consists of assertional knowledge, which expresses
factual knowledge. Factual knowledge represents a specific case within the domain by
describing actual individuals and their relationships [31]. For example, the definitions
of a UAV, Hexacopter_1, as an individual of the class UAV and a pilot, John Doe, of the
class HumanOperator. In addition, John Doe can be defined as the operator of the UAV
Hexacopter_1 with the defined relationship hasHumanOperator.

The class knowledge of ontologies enables a major advantage of ontologies: reasoning.
New implicit information is derived from already-specified information, the assertional
knowledge [32]. Standard reasoning, e.g., checking class memberships, can be extended
with custom rules. Additional knowledge can be inferred using such custom rules [33].
Depending on the domain, different rules can be integrated, e.g., rules for checking the
unsafe behavior of autonomous UAVs. The use of rules makes decisions and conclusions
more transparent and easier to understand compared with other verification techniques. If
unsafe behavior is inferred, it can be reconstructed from the rules and their premises.

Reasoning and such rules are supported by the open-world assumption of ontologies.
The open-world assumption implies that a knowledge base is potentially always incomplete.
Just because a certain fact is not known does not mean that this fact does not exist or
is false [34]. The open-world assumption is transferable to the determination of safe
behavior. From the limited number of known unsafe behavior patterns and the incomplete
information available about a given situation, it cannot be inferred that the behavior is
safe, because important information may be missing. However, it can be determined
that certain events represent unsafe behavior. In contrast to the open-world assumption,
the closed-world assumption assumes that everything that is not known is wrong [34].
The open-world assumption allows for flexibility in dealing with incomplete or changing
information, which is the case in an environment as dynamic as verifying (un)safe behavior
of UAVs.

Accordingly, ontologies can also be extended by adding new knowledge, both class
and factual knowledge. Ontology design patterns (ODPs) are often used in this context. An
ODP represents the vocabulary of a common understanding of a community (e.g., standard
or law). Such modular ODPs can be combined by importing the corresponding ODPs into
an ontology and aligning them via relations [30]. Such an ontology is called an alignment
ontology. Despite the combination, the individual ODPs are managed separately and
independently. In principle, ontologies are reusable, since the knowledge about a domain
is described independently of a specific task. This reusability is enhanced by the use of
ODPs because they are standardized concepts [30].

These ODPs are often used to build concrete domain ontologies. In principle, ontolo-
gies can be created at different levels of abstraction. For example, upper ontologies focus
on general terms such as object or event and are therefore at a very abstract level, while
reference ontologies focus on a specific, still abstract area of knowledge such as medicine
or engineering. Domain ontologies are even more specific and relate to a concrete domain,
such as autonomous drones, and finally, there are application ontologies, which are the
most specific and are developed for concrete applications, such as a mission for a UAV.
Concepts of the more abstract levels are often specialized in the more specific levels [35].

The method presented in the following section considers a combination of the elements
presented here. It takes into account the lack of predictability of autonomous UAVs in
mission execution. Considering the lack of predictability of autonomous UAVs in the
execution of missions, it focuses only on current behavior. Knowledge-based reasoning



Drones 2024, 8, 26 6 of 19

within an ontology is used to verify whether safety-relevant constraints, represented by
rule knowledge, are violated or not.

3. Method for Rule-Based Verification of Unmanned Aerial Vehicles

This section presents the developed method for rule-based verification of autonomous
unmanned aerial vehicles by means of a knowledge-based system. It may be used both
to identify potential hazards prior to mission execution and to detect unsafe behavior
during mission execution. Therefore, first the structure of a suitable knowledge base is
presented, followed by the formulation of verification rules. Closing the verification process
is explained. The method presented here is not intended to replace a fully fledged risk
assessment but can usefully supplement one.

3.1. Selective Acquisition and Alignment of Knowledge

This first step of the method serves to create an initial knowledge base. This serves
as the necessary foundation in the format of an ontology on which all subsequent method
steps are based, such as the formulation of rules for safety constraints. This ontology may
be viewed as a catalog of classes and properties that may exist in a specific domain from
the perspective of a person using a specific language to talk about the domain [36]. This
initial structure is therefore mainly built from class knowledge.

Since safety constraints for UAVs are not directly dependent on specific goals, they
instead depend highly on the given scenario, the environment, or internal factors of the
UAV itself [15]. It is therefore necessary to first acquire this domain-specific knowledge and
to formalize it in a suitable way, i.e., machine-readable, for the UAV. An important source
of knowledge for this process is expertise, which is available mainly from human experts or
from the literature. Acquiring this expertise is a complex, labor-intensive process and much
more than a simple transfer of knowledge into a machine-readable format [29]. Therefore,
the acquisition of knowledge may be carried out successfully in various ways [37]. If the
resulting ontology fits the domain perfectly, a suitable domain model can be created simply
by filling the ontology with the instances [29].

As this ideal is difficult to achieve in reality through a single monolithic ontology, a
modular, reusable approach is focused on here. Therefore, several ODPs are used, combined
with an application ontology and a domain ontology within an alignment ontology. This
approach was first presented in [21].

In a consecutive method, the authors present a way to formalize an exhaustive knowl-
edge base of safe behavior for unmanned autonomous systems. Therefore, firstly, relevant
knowledge sources are identified, relevant statements are extracted, and knowledge el-
ements are formalized and incorporated, creating multiple ODPs. ODPs are considered
as the main instruments for this knowledge base. An ODP can, for example, contain a
classification scheme for UAVs or define various attributes, e.g., the current flight altitude
of a UAV.

The approach of [21] is extended here by the representation of an application ontology.
This application ontology is used to map the basic vocabulary regarding a mission for
autonomous UAVs. It defines the structure of a mission, consisting of goals, constraints
and mission execution. The established constraints of a geofence and a safety landing
point (SLP) are already integrated here. A geofence represents the maximum operational
area available for a mission. It must not be left. An SLP represents a position where a
safe landing can be made, e.g., in the event of a communication breakdown. The use of
geofences and SLPs is established for automated UAV missions and may be determined,
e.g., with QGroundcontrol. They are therefore also considered a necessary component of
missions for autonomous UAVs. A mission contains at least one goal. Additional goals
may be linked in parallel or sequentially. Goals, geofences and SLPs are determined by
positions, among other things.

The method described in [21] finishes with an alignment step. Equivalences or sub-
classifications can be conducted here in order to seamlessly link the individual elements of
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knowledge. Further ODPs can also be included at a later date, e.g., when facing another
mission in a different environment.

Following the alignment process, it is now possible to add factual knowledge. For
example, individuals can be created for a mission including goals, geofence, an SLP and
the associated UAV. Further factual knowledge is generated automatically, especially at
runtime. Figure 1 illustrates a fragment of this knowledge base. It focuses on an individual
representing a UAV of the class C3. The UAV is associated with a mission as defined by the
application ontology. In addition, the UAV has a specific relation to represent the current
flight altitude of 130 m.
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This process of acquisition and alignment of knowledge creates an exhaustive knowl-
edge base in the format of an ontology containing class knowledge and possibly also factual
knowledge. The knowledge base does not yet contain rule knowledge. Thus, for example,
the affiliation of a UAV with a certain UAV class can be modeled, and the UAV can be
equipped with attributes such as the current flight altitude. However, in order to determine
that the current flight altitude represents an exceeded limit and the UAV therefore poses
danger, rule knowledge is required.

3.2. Formulation of Rules

This step of the method describes how to systematically formulate rules for safety-
related constraints. The success of this step depends largely on expert knowledge of both
the constraint and the previously created knowledge base. To provide additional support
for conducting this step, five sequential stages for rule formulation are given:

1. Momentary adjustment;
2. Formulation of an error-oriented if not. . ., then rule;
3. Unambiguous assignment to knowledge elements;
4. Reformulation to an if. . ., then rule;
5. Error classification.

In order to explain these five stages, a simple example is given: The European regu-
lation (EU) 2019/945 ([38]) states that the maximum altitude of a C3 UAV is 120 m. This
example objectively represents a legally binding constraint concerning the safe behavior
of a UAV. In order to monitor this constraint using a component for rule-based runtime
verification, it must be reformulated without altering the substantive content. In this con-
text, it is important that resulting rules always be formulated from the perspective of the
UAV to be monitored in order to clearly identify the respective unsafe behavior. To avoid
uncertainties within the rule, disjunctions (logical OR) are to be avoided. This means that
several similar rules may have to be formulated, which, however, always formulate an
unambiguous cause of unsafe behavior in the respective premise.

In stage 1 (momentary adjustment), the constraint is initially adjusted so that it can
capture the current moment. In order to permanently comply with the constraint, the given
limit of a maximum altitude must be maintained at all times. For this purpose, the current
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altitude of the UAV must be taken into account and compared with the maximum altitude
value. After stage 1 has been applied to the example, an initial rule states: “The current
altitude of a C3UAV is not greater than 120 m”.

As stated in Section 2.2, it is challenging to ascertain that perfect safety has been
achieved. This state is also difficult to harmonize with the open-world assumption of
ontologies. Nevertheless, it is feasible to identify individual violations of safety-related
constraints representing unsafe behavior. Detecting such violations therefore becomes
crucial for enhancing overall safety. Thus, when verifying the behavior of autonomous
UAVs, unsafe behavior is of primary interest. This must consequently be detected and
reported so that a human operator can initiate a counteraction. Rules must therefore be
formulated in an error-oriented manner within stage 2 (formulation of an error-oriented if
not. . ., then rule). This is merely a syntactic adaptation. If a given constraint is violated,
and thus not fulfilled, an error results. This means that the cause of unsafe behavior, here
the exceeding of a limit value, must be formulated in the premise of a rule. It is also
important that the premise of a rule always contains an atom representing the specific UAV.
Completing stage 2, the rule states: “IF NOT (The current altitude of a C3UAV is not greater
than 120 m) THEN Error”.

In stage 3 (unambiguous assignment to knowledge elements), all atoms of the premise
are to be assigned to existing knowledge elements of the previously created knowledge
base. This step is not trivial, as it requires detailed knowledge of the various elements
within the ontology and must not violate the meaning of the original constraint. For the
given example, the class C3UAV, as a subclass of UAV, and the property hasCurrentAltitude
were identified. The modified rule states: “IF NOT (There is a C3UAV AND this C3UAV has
a value hasCurrentAltitude AND the value of hasCurrentAltitude is not greater than 120 m)
THEN Error”.

Subsequently, the preceding universal negation of the premise must be resolved
within stage 4 (reformulation to an if. . ., then rule). The reformulation of the negation of
linked atoms is defined by Boolean algebra. Equation (1) shows that the negation (¬) of a
conjunction (∧) is the disjunction (∨) of negations.

¬(A ∧ B) = (¬A ∧ B) ∨ (A ∧ ¬B) ∨ (¬A ∧ ¬B) (1)

The atoms of the premise separated by disjunction represent a logically correct refor-
mulation of the rule. However, the disjunction also means that it is sufficient for a single
disjunction to be fulfilled in order to fire the entire rule. Therefore, it is important to identify
the parts of the premise that actually cause unsafe behavior and to remove any disjunction
that does not contribute to it. In the example, a negation of the classification does not lead to
unsafe behavior and is consistently removed. It merely remains: “IF there is a C3UAV AND
this C3UAV has a value hasCurrentAltitude AND NOT the value of this hasCurrentAltitude is
not greater than 120 m THEN Error”. (The double negation is to be resolved conclusively
but is retained for reasons of presentation.)

Finally, in stage 5 (error classification), the conclusion of the rule must be specified more
precisely. The usage of predefined error states in the conclusion facilitates the classification
and a subsequent counteraction to those errors. The established terms hazard, danger and
harm are used for this purpose. Harm, for example, is defined in ISO 12100 ([39]) and
is specified according to the severity of the harm, ranging from minor to critical. This
also makes it possible to prioritize the counter-reaction to errors by, e.g., giving preference
to a critical harm over an environmental hazard. The error states and their respective
subdivisions are also part of the presented application ontology. This results in the final
rule: “IF there is a C3UAV AND this C3UAV has a value hasCurrentAltitude AND the value
of this hasCurrentAltitude is greater than 120 m THEN this C3UAV causes a MinorHarm”
(the classification of this damage as minor is not universally valid and depends on the
respective risk assessment). At this point, it can be seen that the conclusion also serves to
link the determined error state with the UAV atom of the premise.
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There are different rule languages for creating rule knowledge in ontologies, some
of which can be converted into one another [40]. In the remainder of this paper, the
lightweight and established rule language SWRL ([41]) is used. In Table 1, the final example
rule is displayed as an SWRL-Rule. The premise of the rule is created from atoms for the
classification of the UAV (line 1), the query of the current altitude of this UAV (line 2) and
the comparison of this altitude with the maximum value of 120 m (line 3), each linked
via conjunctions (circumflex symbol). The conclusion in line 4 is indexed with an arrow
symbol. It links the UAV with the defined error state. The addition of an explanatory text
within the conclusion is not necessary but may support a human operator understanding
the respective cause of unsafe behavior.

Table 1. SWRL-Rule for unsafe behavior caused by exceeding the maximum altitude.

Line No. SWRL-Atom

1 C3UAV(?myUAV)
2 ˆ hasCurrentAltitude(?myUAV, ?altitude)
3 ˆ swrlb:greaterThan(?altitude, 120.0, “xsd:float”)
4 −> MinorHarm(?myUAV, “The UAV has exceeded the maximum altitude”)

In SWRL, variables are indexed with question marks. Instead of these variables, it is
also possible to refer to concrete individuals of the ontology. For example, exception rules
that do not apply to all instances of a class can be created in this way.

Some rules may already be checked before the start of the mission. They are used to de-
tect hazardous missions. Those missions cannot be executed without violating constraints.
Thus, UAVs tasked with such missions pose potential hazards.

3.3. Processing of Verification before and during a Mission

To perform the process of runtime verification, two steps must be repeated alternately
and permanently: updating factual knowledge and inferring it. At runtime, the UAV
therefore adds new factual knowledge and modifies existing factual knowledge within the
ontology. Each observation and each action of the UAV is formulated as precisely as possible
with individuals and properties according to the created template of class knowledge. For
example, a relation to the current flight altitude is linked to the corresponding individual
representing a UAV. The current altitude must be continuously modified here as a literal.
After each update of the factual knowledge, an inference process is conducted. This
process is mainly concerned with working through all existing rules. It checks whether the
individual atoms of a particular premise apply. If all partial elements of the premise of a
rule are fulfilled, it fires, and the condition is executed. In the context of this method, an
error state is therefore attached to the individual of the UAV concerned. Any new error
must be immediately communicated to the human operator.

In order to exploit the full potential of the method, it is evident that the UAV must
provide access to information about its actions and observations. The update rate of
this information is highly relevant. There are various so-called reasoners for automated
inference within an ontology, many of which are suitable for inferring from rule knowledge.

In the next section, the method described here is illustrated by means of a practical
use case. In order to enable a comparison of the respective method steps, the development
of the knowledge base, the formulation of rules and the processing of verification are also
separated into subsections.

4. Implementation and Use Case

This section demonstrates the implementation of a rule-based verification component
based on the method presented in Section 3. Therefore, a use case for traffic monitor-
ing is considered. The use case is described both with missions in a simulation-based
environment and a real-life environment. The implementation was conducted using the
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system architecture presented by the authors of [42]. Figure 2 provides an overview of this
system architecture.

Drones 2024, 8, x FOR PEER REVIEW 10 of 20 
 

of the knowledge base, the formulation of rules and the processing of verification are also 
separated into subsections. 

4. Implementation and Use Case 
This section demonstrates the implementation of a rule-based verification component 

based on the method presented in Section 3. Therefore, a use case for traffic monitoring is 
considered. The use case is described both with missions in a simulation-based environ-
ment and a real-life environment. The implementation was conducted using the system 
architecture presented by the authors of [42]. Figure 2 provides an overview of this system 
architecture. 

 
Figure 2. Overview on the used system architecture (adapted from [42]). 

The system architecture outlined in [42] was developed to deploy heterogenous au-
tonomous mobile robots in both simulated and real-world scenarios and is primarily 
based on the Robot Operation System 2 (ROS2) [43]. To simplify the integration of the 
various software components used, the container technology Docker is used, which addi-
tionally guarantees independence from the respective host system. Gazebo, a physis sim-
ulator, is chosen to emulate the real world and simulate robot behavior, providing sensor 
data. The separation of server and client reduces computing effort, with the Gazebo client 
on the host system and the Gazebo server in a Docker container. Each robot features a 
specific Container Engine containing a Robot Basic Controller and a Companion Environ-
ment. While [42] addresses various heterogeneous robots, this paper focuses solely on 
aerial robots, i.e., UAVs. 

The Robot Basic Controller, represented here by the px4 platform, manages control 
mechanisms, such as UAV rotor control. The associated px4 autopilot software (here the 
v1.14 release is used) integrates with Gazebo for command transmission and simulation 
data reception. The Companion Environment comprises the Function Core, overseeing 
functional processes at a higher abstraction level than the Robot Basic Controller. It is 
linked to the Robot Basic Controller via a Real-Time Publish Subscribe bridge. This unit 
encapsulates basic functions, such as the movement to given waypoints, offering a single 
peripheral interface for execution within a ROS2 environment. 

The Cartridge within the Companion Environment serves as an interface for devel-
opers, facilitating individual development, testing and code variations. Within the Car-
tridge, the containerized ROS2 packages for the Rule-Based Verification Component 
(highlighted in red) and a communication module (highlighted in orange) were inte-
grated. The capabilities for mission execution of the respective UAV are considered a black 
box within the Cartridge (highlighted in black) and are not further described, since the 
focus is on explaining the function of the Rule-Based Verification Component. 

Figure 2. Overview on the used system architecture (adapted from [42]).

The system architecture outlined in [42] was developed to deploy heterogenous au-
tonomous mobile robots in both simulated and real-world scenarios and is primarily based
on the Robot Operation System 2 (ROS2) [43]. To simplify the integration of the various
software components used, the container technology Docker is used, which additionally
guarantees independence from the respective host system. Gazebo, a physis simulator, is
chosen to emulate the real world and simulate robot behavior, providing sensor data. The
separation of server and client reduces computing effort, with the Gazebo client on the
host system and the Gazebo server in a Docker container. Each robot features a specific
Container Engine containing a Robot Basic Controller and a Companion Environment.
While [42] addresses various heterogeneous robots, this paper focuses solely on aerial
robots, i.e., UAVs.

The Robot Basic Controller, represented here by the px4 platform, manages control
mechanisms, such as UAV rotor control. The associated px4 autopilot software (here the
v1.14 release is used) integrates with Gazebo for command transmission and simulation
data reception. The Companion Environment comprises the Function Core, overseeing
functional processes at a higher abstraction level than the Robot Basic Controller. It is
linked to the Robot Basic Controller via a Real-Time Publish Subscribe bridge. This unit
encapsulates basic functions, such as the movement to given waypoints, offering a single
peripheral interface for execution within a ROS2 environment.

The Cartridge within the Companion Environment serves as an interface for develop-
ers, facilitating individual development, testing and code variations. Within the Cartridge,
the containerized ROS2 packages for the Rule-Based Verification Component (highlighted
in red) and a communication module (highlighted in orange) were integrated. The ca-
pabilities for mission execution of the respective UAV are considered a black box within
the Cartridge (highlighted in black) and are not further described, since the focus is on
explaining the function of the Rule-Based Verification Component. Development and
simulation-based testing of further Cartridge elements can be conducted easily via an
Ubuntu-based host system.

For real-life UAVs, the px4 autopilot software operates on an associated hardware
controller. The Companion Environment can be similarly implemented on the actual UAV
using a separate high-performance companion computer, such as a maker board. The
containerized elements of the Cartridge can thus be transferred to the real UAV without
modification. The platform approach presented by these authors makes it possible to easily
develop and implement so-called creative functions for UAVs without having to exercise
direct control over the actuators used; thus, no detailed expertise on the UAVs architecture
is needed.
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In the following, first the use case is described, and then the considered knowledge
base is presented. After this, some exemplary verification rules are formulated and ex-
plained, and their processing is shown for selected events.

4.1. Description of the Considered Use Case

In their paper, the authors of [44] examine research in the area of UAVs used for
traffic monitoring. They emphasize the high potential of UAVs for traffic monitoring.
However, the implementation of real-life scenarios is said to be particularly hindered due
to regulatory constraints. As the primary legal concern revolves around regulatory matters,
given that aviation regulations are primarily designed to ensure an appropriate standard
of safety ([2]), the use case presented here focuses on two missions for UAVs for traffic
monitoring in consideration of safety-relevant regulatory constraints. It is not within the
scope of this paper to present new approaches for the processing or analysis of traffic data.
The actual process of traffic monitoring at the selected locations therefore is of secondary
importance in the following.

A simulation-based mission using the physis simulator Gazebo and a simplified real-
life mission are presented. The use case is intended to show the treatment of constraints
considered with both external and internal dependencies. For this purpose, a special focus is
given to constraints due to geographical zones and constraints due to UAV classification. In
mission M1, a quadcopter UAV is used in a simulation-based environment. The quadcopter
is a class C5 UAV of the Specific category. The mission M1 is located in a part of the German
city of Hamburg. The real-life mission M2 uses a commercial hexacopter. The hexacopter is
a class C3 UAV of the Open category. Mission M2 is located on a scaled-down test field.
Within their missions, the UAVs are tasked with monitoring traffic at multiple selected
locations (goals) within a given road network. In order to enable the maximum range of
actions, no specifications are made regarding the process of goal achievement. Thus, no
predetermined sequence of the mission-goals is made. Figure 3 shows a top view of the two
missions and respective goals for the simulated mission M1 (a) and the real-life mission
M2 (b). Each mission contains five goals. Their numbering does not represent a sequence.
Each UAV is located near goal no. 1 at the start of the mission. Geographical zones (colored
polygons) and the mission-specific geofence (red polygon) are also shown here. Due to its
given nature, the test field unfortunately does not contain a visible road network. As the
test field does not have the same geographical dimensions as the simulation environment,
geographical zones, maximum velocity and maximum altitude had to be scaled down.
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In order to execute its respective mission, the UAV has to fly to every goal and monitor
the traffic at these locations. Any possible violation of constraints has to be detected by the
rule-based verification component and reported to a human operator. This component is
designed as an add-on and thus cannot influence the behavior of the UAV itself. Instead, the
human operator is provided three limited means of control: abort the mission by returning
and landing on the SLP, abort the mission by immediate landing or ignore the report and
continue the mission.

4.2. Considered Knowledge Base

In order to conduct safe traffic monitoring missions with UAVs, it must be ensured
that no constraints are violated. This applies in particular to safety-related legal constraints.
Various legal regulations impose requirements on the operation of UAVs. For example, the
European regulations (EU) 2019/947 ([13]), (EU) 2019/945 ([38]) and (EU) 2020/1058 [45],
as well as the German national regulation Luftverkehrsordnung ([46]), are relevant for
these missions, which are situated in a major German city. Together, these three Euro-
pean regulations result in a comprehensive classification and categorization for UAVs.
Depending on the class and category, different velocities or maximum takeoff masses apply.
These specifications apply throughout the entire scope of the regulations. In simple terms,
they therefore only depend on the internal dependencies of the UAV (as long as the UAV
does not leave the borders of the EU). The regulation [46] is a national supplement to the
Standardized European Rules of the Air. Among other things, it describes the type and
scope of geographical zones and the conditions under which UAVs may operate inside
them. These geographical zones only exist at certain locations and therefore represent
constraints with mainly external dependencies.

In the first step of the method, the class knowledge of the EU regulations and the
national regulation will first be assembled and aligned. This serves to create a machine-
readable knowledge base as a foundation for the following steps. In [21], a method was
presented with which ODPs can be created and aligned from legal regulations. This was
used to create an ODP for the regulation [46]. Further ODPs for the regulations [13,38]
have already been published by the authors of [47] and can therefore be easily imported
here. Regulation [45], which is a supplement to [38], was again created using the method
from [21]. These four ODPs are supplemented by the application ontology described
in Section 3.1 and combined into an alignment ontology. This alignment ontology now
represents an exhaustive and detailed knowledge base for the considered use case. It
is available online at github.com/RIVA_Safety. It is possible to integrate additional ODPs
into this alignment ontology to map further use cases. To improve the illustration of the
application, the repository also contains a video of a simulation-based use case.

In the following, mission-specific knowledge is integrated into the form of factual
knowledge. First, the necessary individuals are created for the missions, goals, geofence
and SLP. Next, individuals are automatically created for geographical zones within or
intersecting the geofence. To this end, more than 30 European countries provide different
platforms that define such zones. For Germany, this is the platform dipul ([48]) provided by
the Federal Ministry for Digital and Transport. Using the associated application program-
ming interface (API), it is possible to automatically retrieve information about the zones.
Figure 4 shows the information provided by the API for an outdoor pool within the area of
mission M1 (a) and its transfer to the ontology as an individual with multiple corner points
(b). For reasons of simplification, this individual is referred to as “Outdoor-Pool_1” in the
following. In addition to a classification of the zone, the API provides a unique identifier as
well as lower and upper limits. The coordinates of the corner points can also be determined
using the API. It should be noted that the spatial extent of a zone within the ontology only
takes into account the intersection with the mission-specific geofence. Other geographical
zones or parts thereof that are located outside the geofence are not included in the ontology.
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For the smaller real-life mission M2, similar geographical zones had to be created
manually instead. The triangular orange zone shown in Figure 3b is also intended to
represent an outdoor pool. The corresponding individual in the respective ontology is
given the name “Outdoor-Pool_2” and three corner points.

Enriched by factual knowledge, it is now possible to formulate both generally valid
rules based exclusively on class knowledge and specific rules that also take factual knowl-
edge into account.

4.3. Formulation of Rules

In the following, some rules are exemplarily presented to express constraints for
the two missions. First, the example rule described in Table 1 is also used here, but in a
scaled version with a maximum altitude limit of 12 m. Second, the geographical zone from
Figure 3 is used to demonstrate how individuals are taken into account in rules.

The regulation [46] permits the operation of UAVs above outdoor swimming pools
outside opening hours. Consequently, when conducting stage 1 (momentary adjustment)
of rule formulation, the resulting initial rule must take into account a combination of the
current location of the UAV and the current time. In stage 3 (unambiguous assignment
to knowledge elements), in addition to the general applicable classes and properties, the
specific individual Outdoor-Pool_1 needs to be selected. Lastly, the error classification
MediumDanger is selected within stage 5 (error classification). Table 2 shows the resulting
SWRL-Rule. It applies to any UAV, or subclass thereof, in relation to the Outdoor-Pool_1
referred to. While the respective locations are compared in line 2, the time check is carried
out in lines 3–5.

Table 2. SWRL-Rule for unsafe behavior concerning a specific geographical zone.

Line No. SWRL-Atom

1 UAV(?myUAV)
2 ˆ isAbove(?myUAV, Outdoor-Pool_1)
3 ˆ hasTimeStamp(?myUAV, ?currentTime)
4 ˆ swrlb:greaterThanOrEqual(?currentTime, “09:00:00”, “xsd:dateTime”)
5 ˆ swrlb:lessThanOrEqual(?currentTime, “17:00:00”, “xsd:dateTime”)

6 −> MediumDanger(?myUAV, ”The UAV operates above Outdoor-Pool_1 within opening
hours”)

An equivalent rule is created for Outdoor-Pool_2. When compared with Table 1, the
modularity of the rules is highlighted here. The complexity of rules can be increased by
adding any number of atoms.
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Other rules relevant to the use case describe the minimum altitude over residential
areas of 100 m and the restriction on flying over the hatched zones shown in Figure 3.

As soon as this rule knowledge has been added to the ontology, this can be transmitted
to the respective UAV, where it is used for runtime verification.

4.4. Use Case Execution and Processing of Rules

The execution of the use case is described using selected events from the two missions.
As soon as the ontology is transmitted to the respective UAV, the first task of the verification
component is to check the respective given mission. Herewith, no hazards are identified
for mission M1 before execution. In the case of mission M2, goal no. 4 cannot be reached
without violating constraints. Either the hatched geographical zone would have to be flown
over without permission or the geofence would have to be left. The verification component
therefore reports a hazard. Consequently, mission M2 is adjusted so that goal no. 4 is
removed from it.

In mission M1, traffic monitoring is carried out at the individual goals at a height of
80 m. Between the goals, the UAV flies at an altitude of 120 m. In some cases, the UAV is
still climbing while flying over residential areas and has an actual flight altitude of less
than 100 m. The verification component reports the resulting danger. However, the human
operator decides to ignore the report and continue the mission. Mission M1 is therefore
successfully completed.

In mission M2, traffic monitoring is carried out at the individual goals at a height of
8 m. Between the goals, the UAV flies at an altitude of 12 m. While the UAV moves from
goal no. 3 towards goal no. 2, it does not avoid the zone of Outdoor_Pool-2. When the
UAV enters the zone at 10 a.m., the associated rule fires and the human operator is warned.
He decides to abort the mission with an immediate landing. Figure 5 shows the landed
UAV in the geographical zone and the cause of the warning within the ontology.
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During the time period in which the human operator reacted to the warning and took
the decision to land, the UAV kept flying unhindered and moved further into the zone. The
landing ends the mission M2. It therefore concludes unsuccessfully.

5. Discussion

In this section, this paper’s results will be discussed. The authors emphasize that
the presented approach does not aim to outperform other existing approaches in terms of
processing time. Given its knowledge-based nature, extensive data processing is necessary,
leading to a potential performance drawback. Instead, the focus is on introducing a
powerful and broadly applicable approach that effectively addresses various external and
internal safety constraints.
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Below, firstly some limitations of the presented method and its implementation and
possible starting points for further research and investigations are addressed and secondly
the necessity of predictive runtime verification is discussed.

5.1. Limitations

The method and implementation presented here should not be regarded as concluded
in their entirety, nor free of limitations. The realization of a general interface between the
UAV and the runtime verification component appears to be the most important. Although
the component is able to process the provided information, it requires explicit knowledge
of where the UAV provides which information in which format.

Although the information on geographical zones from the official platform ([48]) is
preferable to that provided by other available platforms, it is also incomplete or outdated in
parts. A useful addition to this platform is the consideration of perception through sensor
technology and its integration and updating within the knowledge base.

In addition, no special attention was paid in this paper to an overflowing knowledge
base. In principle, the more knowledge is available, the more can be inferred from it. How-
ever, especially for systems with low computing power, too much unnecessary knowledge
also increases the effort and duration of the inference, so removing unnecessary ODPs
before a mission or the selective deactivation of nonapplicable rules should be considered
further. As such, ref. [49] impressively demonstrates the correlation between the size of an
ontology and the computing time for different reasoners and thus reinforces the need to
keep the respective knowledge base small and simple.

Using the method not only to passively detect unsafe behavior but also to actively
counteract it automatically is a promising extension. However, this requires in-depth
knowledge of the capabilities and skills of the UAV.

Expanding on the rule-based approach, an implementation with behavior trees is also
conceivable in order to enable both an increase in performance and means of counterac-
tion. Behavior trees are particularly suitable for sequential condition chains [50]; thus,
they can select an appropriate branch for a UAV counteraction depending on the detected
situation [51]. However, they are also generally suitable for the mere detection of unsafe be-
havior. Transferring the rules determined here into a behavior tree may provide advantages
in the performance of the verification component. However, this requires a preliminary
corresponding compilation that transfers these rules into branches and leaves of a behavior
tree. If the rules within this process are strictly separated, the tree will contain parallels and
redundancies, but if the rules are intertwined, the behavior tree will be difficult to maintain.

5.2. Predictive Runtime Verification

The rule-based approach to the verification of autonomous and automated UAVs
presented in this paper can be used as a valuable complement to support a human oper-
ator monitoring one or multiple UAVs. Due to its modular and expandable design, it is
advantageous to use existing geo-awareness functions, as it can also check the conditions
of operation for geographical zones. However, this method still only detects states in which
unsafe behavior in the form of a hazard, danger or harm has already occurred. In addi-
tion, the comparatively complex knowledge processing, especially with low-performance
systems, can have an additional negative effect, e.g., where a UAV has already advanced
further into a geographical zone before the message is sent. The human reaction time in
connection with the transmission times of the warning and the counter-reaction increases
this negative effect. The consequence is a temporary unhindered continuation of unsafe
behavior, which is illustrated in Figure 5a.

It is therefore worth discussing whether it is sensible to extend the presented method
with a predictive component that conducts a warning, e.g., before entering a geographic
zone. This predictive component should be available for all existing ontologies and should
therefore be able to be integrated into the application ontology.
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This means determining the minimum distance at which a UAV comes to a stop
in front of a geographical zone or avoids it. If the distance between the UAV and the
geographical zone equals this minimum distance, a warning must be transmitted to the
human operator.

To initiate a discussion, a concept for determining this minimum warning distance is
presented here. The minimum warning distance at which the UAV comes to a standstill
in front of the zone depends largely on the reaction time of the human operator and the
deceleration of the UAV (assuming delay-free transmission of messages and data processing
of the UAV). The reaction distance depends on the reaction time of the human and the
current velocity of the UAV. At constant deceleration, the deceleration distance depends on
the maximum counterthrust and the current velocity. If the distance between the UAV at
Position P1 and a geographical zone is equal to the minimum warning distance, the UAV is
stopped on the edge of the zone. Therefore, an additional fixed buffer distance is taken into
account, which causes the UAV to be stop at position P2 before the zone. Figure 6 provides
a graphical representation of this concept.
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In their paper, the authors of [52] quantified the reaction time of air traffic controllers
as 2–3 s. As the literature does not provide any comparable values for human operators of
UAVs, this reaction time is considered as an adequate reference value.

6. Conclusions and Outlook

Motivated by the ambivalence about increasing autonomy on the one hand and the
demand for safety and controllability on the other, an approach to detecting unsafe behavior
of autonomous UAVs was presented here. A method for rule-based runtime verification
was developed for this purpose. By using a knowledge-based system in the format of an
ontology, it is possible to formalize rule knowledge and draw conclusions from it with
the help of inference. For this purpose, factual knowledge is automatically updated and
generated within the ontology. The method is designed to be modular and repeatable and
can therefore be expanded to include further domain knowledge for different scenarios and
applications. A simple use case was implemented to demonstrate the functionality of the
method, and the knowledge base developed for this is also openly available. Furthermore,
limitations of the presented approach, especially with regard to predictivity, were discussed.
Some of these current limitations offer potential for interesting future research.

To conclude, the approach presented for rule-based verification was demonstrated
to be effective. Using a knowledge-based system instead of data-driven approaches only
requires little expertise about the respective UAV, which enables reusability and adaptability
to multiple different UAVs. Since this approach is designed as a monitoring add-on that
does not conduct automated counteractions, it is also possible to combine it with existing
safety components without causing conflicts.

However, it should also be noted that the approach in its current form has potential
to increase its efficiency. In addition to implementation-dependent factors such as the
computing power of the respective UAV, method-dependent factors, such as the size of the
respective knowledge base, should primarily be taken into account.
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It is to be expected that within the still-developing field of UAVs, further legal, nor-
mative and technical constraints for the safe operation of UAVs will be formulated, and
existing constraints may be amended. The resulting need for a generalizable and maintain-
able approach can therefore be solved by the rule-based approach presented here. A rule
base created in this way may even be certified by authorities.

The authors intend to focus further research on the interface between the autonomous
UAV and the component for rule-based runtime verification. Concepts of communication
for software agents offer potential for successful interoperability. Furthermore, it is intended
to extend the presented approach to other modalities and to enable the monitoring of a
team of heterogeneous autonomous robots that must comply with different rules.
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