The Role of Environments and Sensing Strategies in Unmanned Aerial Vehicle Crowdsensing
Abstract
:1. Introduction
2. Related Work
2.1. Crowdsensing Environments
2.2. Crowdsensing Strategies
2.3. Crowdsensing Applications
2.4. Crowdsensing Challenges and Limitations
2.5. Data Quality
3. Study Design
3.1. Environment Classification
- The open environment refers to places without obvious physical restrictions or obstacles, such as parks, grasslands, wild areas, etc. These places usually have a wide view and space. The UAVs can fly freely without avoiding obstacles;
- The natural environment refers to places with natural obstacles such as forests, hills, and mountains, which are not obviously disturbed by human beings. The UAVs can only move in open spaces due to the obstacles;
- The urban environment refers to places with artificial barriers like city blocks and urban parks. Many tall buildings exceed the maximum flight altitude of UAVs. Therefore, UAVs need to avoid building or other obstacles actively;
- The indoor environment refers to the space consisting of multiple rooms with limited space in buildings. Due to the existence of indoor ceilings and walls, UAVs need to avoid these indoor obstacles actively.
3.2. Sensing Strategies
3.3. Experimental Setup
3.4. Evaluation Metrics
- Measure 2. According to our experimental results, all scenes usually take similar execution times to consume all steps. Based on this, we define the methods’ coverage speed as the coverage rate ratio to the task completion time [65], as shown in Equation (3). The larger coverage speed indicates better performance;
- Measure 3. Our study considers a crowdsensing task successful if the UAVs explore at least 99% of the open area (excluding obstacles) within a maximum number of allowed crowdsensing steps. The success rate [66,67] is calculated by dividing the number of successful tasks () by the total number of tasks (), as shown in Equation (4);
- Measure 4. An additional metric for evaluating the collaborative strategy is human intervention frequency [68,69], which is defined as the ratio of the total number of clicks () to the task completion time (completion time), as shown in Equation (5). The frequency of human intervention aligns closely with the overall operational cost of the UAV crowdsensing campaigns. A lower intervention frequency suggests reduced human effort needed to complete a crowdsensing task successfully. A higher frequency suggests a greater dependence on human oversight, which can introduce more cost. Therefore, minimizing the human intervention frequency should be a goal, aiming to develop more autonomous systems capable of executing complex crowdsensing tasks with minimal guidance.
4. Results
4.1. Efficiency
4.2. Effectiveness
4.3. Human Intervention Frequency
5. Discussion
5.1. The Role of Environments and Sensing Strategies
5.2. Limitations and Caveats
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parshotam, K. Crowd computing: A literature review and definition. In Proceedings of the South African Institute for Computer Scientists and Information Technologists Conference, East London, South Africa, 7–9 October 2013; pp. 121–130. [Google Scholar]
- Guo, B.; Wang, Z.; Yu, Z.; Wang, Y.; Yen, N.Y.; Huang, R.; Zhou, X. Mobile crowd sensing and computing: The review of an emerging human-powered sensing paradigm. ACM Comput. Surv. (CSUR) 2015, 48, 1–31. [Google Scholar] [CrossRef]
- Zappatore, M.; Longo, A.; Bochicchio, M.A. Crowd-sensing our smart cities: A platform for noise monitoring and acoustic urban planning. J. Commun. Softw. Syst. 2017, 13, 53–67. [Google Scholar] [CrossRef]
- Capponi, A.; Fiandrino, C.; Kantarci, B.; Foschini, L.; Kliazovich, D.; Bouvry, P. A survey on mobile crowdsensing systems: Challenges, solutions, and opportunities. IEEE Commun. Surv. Tutorials 2019, 21, 2419–2465. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, B.; Liu, W.; Zhao, Y.; Liu, Z.; Zhao, Z. A cost-quality beneficial cell selection approach for sparse mobile crowdsensing with diverse sensing costs. IEEE Internet Things J. 2020, 8, 3831–3850. [Google Scholar] [CrossRef]
- Hu, C.L.; Lin, K.Y.; Chang, C.K. Incentive mechanism for mobile crowdsensing with two-stage stackelberg game. IEEE Trans. Serv. Comput. 2022, 16, 1904–1918. [Google Scholar] [CrossRef]
- Tao, D.; Wu, T.Y.; Zhu, S.; Guizani, M. Privacy protection-based incentive mechanism for mobile crowdsensing. Comput. Commun. 2020, 156, 201–210. [Google Scholar] [CrossRef]
- Samulowska, M.; Chmielewski, S.; Raczko, E.; Lupa, M.; Myszkowska, D.; Zagajewski, B. Crowdsourcing without data bias: Building a quality assurance system for air pollution symptom mapping. ISPRS Int. J. Geo-Inf. 2021, 10, 46. [Google Scholar] [CrossRef]
- Xiong, J.; Ma, R.; Chen, L.; Tian, Y.; Lin, L.; Jin, B. Achieving incentive, security, and scalable privacy protection in mobile crowdsensing services. Wirel. Commun. Mob. Comput. 2018, 2018, 8959635. [Google Scholar] [CrossRef]
- Khan, F.; Rehman, A.U.; Zheng, J.; Jan, M.A.; Alam, M. Mobile crowdsensing: A survey on privacy-preservation, task management, assignment models, and incentives mechanisms. Future Gener. Comput. Syst. 2019, 100, 456–472. [Google Scholar] [CrossRef]
- Yu, Z.; Ma, H.; Guo, B.; Yang, Z. Crowdsensing 2.0. Commun. ACM 2021, 64, 76–80. [Google Scholar] [CrossRef]
- Xie, X.; Bai, T.; Guo, W.; Wang, Z.; Nallanathan, A. Cooperative Computing for Mobile Crowdsensing: Design and Optimization. IEEE Trans. Mob. Comput. 2023. [Google Scholar] [CrossRef]
- Liu, C.H.; Chen, Z.; Zhan, Y. Energy-efficient distributed mobile crowd sensing: A deep learning approach. IEEE J. Sel. Areas Commun. 2019, 37, 1262–1276. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhao, Y.; Chen, B.; Qiu, S.; Liu, Z.; Xie, K.; Ma, L. A crowd-aided vehicular hybrid sensing framework for intelligent transportation systems. IEEE Trans. Intell. Veh. 2022, 8, 1484–1497. [Google Scholar] [CrossRef]
- Chon, Y.; Lane, N.D.; Li, F.; Cha, H.; Zhao, F. Automatically characterizing places with opportunistic crowdsensing using smartphones. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 481–490. [Google Scholar] [CrossRef]
- Dutta, J.; Chowdhury, C.; Roy, S.; Middya, A.I.; Gazi, F. Towards smart city: Sensing air quality in city based on opportunistic crowd-sensing. In Proceedings of the 18th International Conference on Distributed Computing and Networking, Hyderabad, India, 5–7 January 2017; pp. 1–6. [Google Scholar]
- Eisenman, S.B.; Lane, N.D.; Campbell, A.T. Techniques for improving opportunistic sensor networking performance. In Proceedings of the Distributed Computing in Sensor Systems: 4th IEEE International Conference, DCOSS 2008, Santorini Island, Greece, 11–14 June 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 157–175. [Google Scholar]
- Nadour, M.; Cherroun, L. Using flood-fill algorithms for an autonomous mobile robot maze navigation. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 546–555. [Google Scholar] [CrossRef]
- Deepak, B.; Parhi, D.R.; Raju, B. Advance particle swarm optimization-based navigational controller for mobile robot. Arab. J. Sci. Eng. 2014, 39, 6477–6487. [Google Scholar] [CrossRef]
- Perez-Carabaza, S.; Besada-Portas, E.; Lopez-Orozco, J.A.; de la Cruz, J.M. Ant colony optimization for multi-UAV minimum time search in uncertain domains. Appl. Soft Comput. 2018, 62, 789–806. [Google Scholar] [CrossRef]
- Husain, Z.; Al Zaabi, A.; Hildmann, H.; Saffre, F.; Ruta, D.; Isakovic, A. Search and rescue in a maze-like environment with ant and dijkstra algorithms. Drones 2022, 6, 273. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, Z.; Chen, B.; Qiu, S. Leveraging Human-AI Collaboration in Crowd-Powered Source Search: A Preliminary Study. J. Soc. Comput. 2023, 4, 95–111. [Google Scholar] [CrossRef]
- Liu, J.; Shen, H.; Narman, H.S.; Chung, W.; Lin, Z. A survey of mobile crowdsensing techniques: A critical component for the internet of things. ACM Trans. Cyber-Phys. Syst. 2018, 2, 1–26. [Google Scholar] [CrossRef]
- Wu, E.; Peng, Z. Research Progress on Incentive Mechanisms in Mobile Crowdsensing. IEEE Internet Things J. 2024, 11, 24621–24633. [Google Scholar] [CrossRef]
- Fascista, A. Toward integrated large-scale environmental monitoring using WSN/UAV/Crowdsensing: A review of applications, signal processing, and future perspectives. Sensors 2022, 22, 1824. [Google Scholar] [CrossRef] [PubMed]
- De Vito, S.; Esposito, E.; Massera, E.; Formisano, F.; Fattoruso, G.; Ferlito, S.; Del Giudice, A.; D’Elia, G.; Salvato, M.; Polichetti, T.; et al. Crowdsensing IoT architecture for pervasive air quality and exposome monitoring: Design, development, calibration, and long-term validation. Sensors 2021, 21, 5219. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Zhao, Y.; Guo, Z.; Jin, H.; Gan, X.; Wang, X. Towards fine-grained spatio-temporal coverage for vehicular urban sensing systems. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021; pp. 1–10. [Google Scholar] [CrossRef]
- Xiang, C.; Zhou, Y.; Dai, H.; Qu, Y.; He, S.; Chen, C.; Yang, P. Reusing delivery drones for urban crowdsensing. IEEE Trans. Mob. Comput. 2021, 22, 2972–2988. [Google Scholar] [CrossRef]
- Alvear, O.; Calafate, C.T.; Cano, J.C.; Manzoni, P. Crowdsensing in smart cities: Overview, platforms, and environment sensing issues. Sensors 2018, 18, 460. [Google Scholar] [CrossRef]
- Hasenfratz, D.; Saukh, O.; Sturzenegger, S.; Thiele, L. Participatory air pollution monitoring using smartphones. Mob. Sens. 2012, 1, 1–5. [Google Scholar]
- Dutta, P.; Aoki, P.M.; Kumar, N.; Mainwaring, A.; Myers, C.; Willett, W.; Woodruff, A. Common sense: Participatory urban sensing using a network of handheld air quality monitors. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, Berkeley, CA, USA, 4–6 November 2009; pp. 349–350. [Google Scholar]
- Liu, L.; Liu, W.; Zheng, Y.; Ma, H.; Zhang, C. Third-eye: A mobilephone-enabled crowdsensing system for air quality monitoring. Proc. Acm Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 1–26. [Google Scholar] [CrossRef]
- Fekih, M.A.; Bechkit, W.; Rivano, H.; Dahan, M.; Renard, F.; Alonso, L.; Pineau, F. Participatory air quality and urban heat islands monitoring system. IEEE Trans. Instrum. Meas. 2020, 70, 9503914. [Google Scholar] [CrossRef]
- Lashkari, B.; Rezazadeh, J.; Farahbakhsh, R.; Sandrasegaran, K. Crowdsourcing and sensing for indoor localization in IoT: A review. IEEE Sens. J. 2018, 19, 2408–2434. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, Z.; Shibasaki, R.; Song, X. Domain adversarial graph convolutional network based on rssi and crowdsensing for indoor localization. IEEE Internet Things J. 2023, 10, 13662–13672. [Google Scholar] [CrossRef]
- Lahoz-Monfort, J.J.; Magrath, M.J. A comprehensive overview of technologies for species and habitat monitoring and conservation. BioScience 2021, 71, 1038–1062. [Google Scholar] [CrossRef]
- Bioco, J.; Fazendeiro, P. Towards forest fire prevention and combat through citizen science. In Proceedings of the New Knowledge in Information Systems and Technologies, Galicia, Spain, 16–19 April 2019; Springer: Cham, Switzerland, 2019; Volume 1, pp. 904–915. [Google Scholar]
- Sudhakar, S.; Vijayakumar, V.; Kumar, C.S.; Priya, V.; Ravi, L.; Subramaniyaswamy, V. Unmanned Aerial Vehicle (UAV) based Forest Fire Detection and monitoring for reducing false alarms in forest-fires. Comput. Commun. 2020, 149, 1–16. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Zhao, D. Deep reinforcement learning-based automatic exploration for navigation in unknown environment. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 2064–2076. [Google Scholar] [CrossRef]
- Jacobs, R.L. Knowledge work and human resource development. Hum. Resour. Dev. Rev. 2017, 16, 176–202. [Google Scholar] [CrossRef]
- Memmert, L.; Bittner, E. Complex problem solving through human-AI collaboration: Literature review on research contexts. In Proceedings of the Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2022. [Google Scholar]
- Abedin, B.; Meske, C.; Junglas, I.; Rabhi, F.; Motahari-Nezhad, H.R. Designing and Managing Human-AI Interactions. Inf. Syst. Front. 2022, 24, 691–697. [Google Scholar] [CrossRef]
- Maadi, M.; Akbarzadeh Khorshidi, H.; Aickelin, U. A Review on Human–AI Interaction in Machine Learning and Insights for Medical Applications. Int. J. Environ. Res. Public Health 2021, 18, 2121. [Google Scholar] [CrossRef]
- Dellermann, D.; Calma, A.; Lipusch, N.; Weber, T.; Weigel, S.; Ebel, P. The future of human-AI collaboration: A taxonomy of design knowledge for hybrid intelligence systems. arXiv 2021, arXiv:2105.03354. [Google Scholar]
- Zhao, Y.; Hu, C.; Zhu, Z.; Qiu, S.; Chen, B.; Jiao, P.; Wang, F.Y. Crowd sensing intelligence for ITS: Participants, methods, and stages. IEEE Trans. Intell. Veh. 2023, 8, 3541–3546. [Google Scholar] [CrossRef]
- Abualsaud, K.; Elfouly, T.M.; Khattab, T.; Yaacoub, E.; Ismail, L.S.; Ahmed, M.H.; Guizani, M. A Survey on Mobile Crowd-Sensing and Its Applications in the IoT Era. IEEE Access 2019, 7, 3855–3881. [Google Scholar] [CrossRef]
- Pryss, R.; Reichert, M.; Schlee, W.; Spiliopoulou, M.; Langguth, B.; Probst, T. Differences between android and ios users of the trackyourtinnitus mobile crowdsensing mhealth platform. In Proceedings of the 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS), Karlstad, Sweden, 18–21 June 2018; pp. 411–416. [Google Scholar]
- Daraghmi, Y.A.; Wu, T.H.; İk, T.U. Crowdsourcing-Based Road Surface Evaluation and Indexing. IEEE Trans. Intell. Transp. Syst. 2022, 23, 4164–4175. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Y.; Li, D.; Deng, X.; Huang, S.; Liu, H. An incentive mechanism based on behavioural economics in location-based crowdsensing considering an uneven distribution of participants. IEEE Trans. Mob. Comput. 2020, 21, 44–62. [Google Scholar] [CrossRef]
- Luo, T.; Huang, J.; Kanhere, S.S.; Zhang, J.; Das, S.K. Improving IoT data quality in mobile crowd sensing: A cross validation approach. IEEE Internet Things J. 2019, 6, 5651–5664. [Google Scholar] [CrossRef]
- Zhu, X.; Srirangam, S.; Mari, T. Strategies for Green Space Management in Mountain Cities Based on the Habitat Suitability for Urban Birds Breeding. Land 2023, 12, 1465. [Google Scholar] [CrossRef]
- Murakoshi, S.; Kawai, M. Use of knowledge and heuristics for wayfinding in an artificial environment. Environ. Behav. 2000, 32, 756–774. [Google Scholar] [CrossRef]
- Guo, P.; Wang, Y.; Meng, Q.; Li, J. Experimental study on an indoor scale solar chimney setup in an artificial environment simulation laboratory. Appl. Therm. Eng. 2016, 107, 818–826. [Google Scholar] [CrossRef]
- Orlova, N.A.; Orlov, D.N. Elements of artificial environment. Urban Constr. Archit. 2018, 8, 78–84. [Google Scholar] [CrossRef]
- Zhan, Y.; Xia, Y.; Liu, Y.; Li, F.; Wang, Y. Incentive-aware time-sensitive data collection in mobile opportunistic crowdsensing. IEEE Trans. Veh. Technol. 2017, 66, 7849–7861. [Google Scholar] [CrossRef]
- Gong, D.; Lu, L.; Li, M. Robot path planning in uncertain environments based on particle swarm optimization. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; pp. 2127–2134. [Google Scholar] [CrossRef]
- Elshamarka, I.; Saman, A.B.S. Design and implementation of a robot for maze-solving using flood-fill algorithm. Int. J. Comput. Appl. 2012, 56, 8–13. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Engelbrecht, A.P. Fundamentals of Computational Swarm Intelligence; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Zhao, Y.; Zhu, Z.; Chen, B.; Qiu, S. Crowd-powered source searching in complex environments. In Proceedings of the CCF Conference on Computer Supported Cooperative Work and Social Computing, Taiyuan, China, 25–27 November 2022; pp. 201–215. [Google Scholar]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Cardone, G.; Foschini, L.; Bellavista, P.; Corradi, A.; Borcea, C.; Talasila, M.; Curtmola, R. Fostering participaction in smart cities: A geo-social crowdsensing platform. IEEE Commun. Mag. 2013, 51, 112–119. [Google Scholar] [CrossRef]
- Jasim, I.A.; Al-Jaberi, A.A.; Al-Maliki, L.A.; Al-Ansari, N.; Al-Mamoori, S.K. Do the population density and coverage rate of transit affect the public transport contribution? Cogent Eng. 2022, 9, 2143059. [Google Scholar] [CrossRef]
- Amato, M.; Werba, J.P.; Frigerio, B.; Coggi, D.; Sansaro, D.; Ravani, A.; Ferrante, P.; Veglia, F.; Tremoli, E.; Baldassarre, D. Relationship between influenza vaccination coverage rate and COVID-19 outbreak: An Italian ecological study. Vaccines 2020, 8, 535. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Yu, Y.; Liu, S.; She, C.; Guo, L.; Vucetic, B.; Li, Y. Multi-UAV Coverage Path Planning: A Distributed Online Cooperation Method. IEEE Trans. Veh. Technol. 2023, 72, 11727–11740. [Google Scholar] [CrossRef]
- Minikel, E.V.; Painter, J.L.; Dong, C.C.; Nelson, M.R. Refining the impact of genetic evidence on clinical success. Nature 2024, 629, 624–629. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Zhou, Y.; Wang, F.; Wang, J.; Yao, X.; Imran, M.; Luo, S. Imidacloprid reduces the mating success of males in bumblebees. Sci. Total. Environ. 2024, 928, 172525. [Google Scholar] [CrossRef]
- Touloupou, P.; Fronterre, C.; Cano, J.; Prada, J.M.; Smith, M.; Kontoroupis, P.; Brown, P.; Rivera, R.C.; de Vlas, S.J.; Gunawardena, S.; et al. An ensemble framework for projecting the impact of lymphatic filariasis interventions across sub-Saharan Africa at a fine spatial scale. Clin. Infect. Dis. 2024, 78, S108–S116. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, X.; Zhen, X.; Zheng, H.; Chen, H.; Chen, H.; Liao, H.; Zhu, J.; Wang, C.; Zheng, Z.; et al. Meta-analysis of effects of yoga exercise intervention on sleep quality in breast cancer patients. Front. Oncol. 2023, 13, 1146433. [Google Scholar] [CrossRef]
- Ho, J.; Tumkaya, T.; Aryal, S.; Choi, H.; Claridge-Chang, A. Moving beyond P values: Data analysis with estimation graphics. Nat. Methods 2019, 16, 565–566. [Google Scholar] [CrossRef]
Literature | Environment | Application Scenario |
---|---|---|
[27] | Urban | Vehicular urban sensing |
[28] | Urban | Reuse delivery drones |
[29] | Urban | Environmental monitoring |
[16,30,31,32] | Urban | Air pollution monitoring systems |
[34,35] | Indoor | Indoor localization |
[36] | Natural | Biodiversity conservation |
[37] | Natural | Monitoring forest fires |
This paper | Urban, indoor, natural | Various application scenarios |
Literature | Sensing Strategy | Application Scenario |
---|---|---|
[15] | Opportunistic | Determining a location’s category |
[16] | Opportunistic | Air quality monitoring |
[18] | Algorithmic | Mobile robot maze navigation |
[21] | Algorithmic | Autonomous search and rescue |
[22] | Collaborative | Source searching |
This paper | Opportunistic, algorithmic, collaborative | Various application scenarios |
Metrics | Factor | Degree of Freedom | F-Value | Pr (>F) |
---|---|---|---|---|
Efficiency (coverage speed) | Environment (E) | 3 | 76.360 | 3.1 × 10−35 |
Strategy (S) | 2 | 1505.350 | 1.4 × 10−141 | |
E × S | 6 | 48.323 | 2.4 × 10−39 | |
Effectiveness (coverage rate) | Environment (E) | 3 | 96.008 | 1.5 × 10−41 |
Strategy (S) | 2 | 201.346 | 4.1 × 10−53 | |
E × S | 6 | 6.389 | 2.8 × 10−6 |
Coverage Speed (%/s) | Opportunistic (vs. Algorithmic, Collaborative) | Algorithmic (vs. Collaborative) | Collaborative |
---|---|---|---|
Open | ( 9.9 × 10−10, 1.8 × 10−5) | () | |
Urban | (6.8 × 10−8, 7.9 × 10−10) | ( 0.10) | |
Indoor | ( 1.8 × 10−22, 7.9 × 10−10) | ( 2.9 × 10−6) | |
Natural | ( 6.8 × 10−8, 7.9 × 10−8) | ( 0.20) |
Coverage Rate (%) | Opportunistic (vs. Algorithmic, Collaborative) | Algorithmic (vs. Collaborative) | Collaborative |
---|---|---|---|
Open | ( 1.5 × 10−4, 1.4 × 10−5) | ( 0.03) | |
Urban | ( 8.4 × 10−26, 7.3 × 10−10) | ( 3.6 × 10−9) | |
Indoor | ( 6.8 × 10−8, 7.1 × 10−10) | ( 1.3 × 10−5) | |
Natural | ( 6.4 × 10−8, 6.3 × 10−10) | ( 0.18) |
Opportunistic | Algorithmic | Collaborative | |
---|---|---|---|
Open | 0 | 100 | 100 |
Urban | 0 | 0 | 81 |
Indoor | 0 | 25 | 92 |
Natural | 0 | 50 | 78 |
Measure | Environmental Categories | |||
---|---|---|---|---|
Open | Urban | Indoor | Natural | |
Human Interventions (intervention frequency) |
Open-Urban | Open-Indoor | Open-Natural | Urban-Indoor | Urban-Natural | Indoor-Natural | |
---|---|---|---|---|---|---|
Interventions Frequency | 0.001 ** | 0.022 * | 0.152 | 0.154 | 0.036 * | 0.351 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Hu, C.; Zhao, Y.; Zhu, Z.; Ju, R.; Qiu, S. The Role of Environments and Sensing Strategies in Unmanned Aerial Vehicle Crowdsensing. Drones 2024, 8, 526. https://doi.org/10.3390/drones8100526
Zhou Y, Hu C, Zhao Y, Zhu Z, Ju R, Qiu S. The Role of Environments and Sensing Strategies in Unmanned Aerial Vehicle Crowdsensing. Drones. 2024; 8(10):526. https://doi.org/10.3390/drones8100526
Chicago/Turabian StyleZhou, Yaqiong, Cong Hu, Yong Zhao, Zhengqiu Zhu, Rusheng Ju, and Sihang Qiu. 2024. "The Role of Environments and Sensing Strategies in Unmanned Aerial Vehicle Crowdsensing" Drones 8, no. 10: 526. https://doi.org/10.3390/drones8100526
APA StyleZhou, Y., Hu, C., Zhao, Y., Zhu, Z., Ju, R., & Qiu, S. (2024). The Role of Environments and Sensing Strategies in Unmanned Aerial Vehicle Crowdsensing. Drones, 8(10), 526. https://doi.org/10.3390/drones8100526