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Abstract: With the rapid development of digital intelligence, drones can provide many conveniences
for people’s lives, especially in executing rescue missions in special areas. When executing rescue
missions in remote areas, communication cannot be fully covered. Therefore, to improve the online
adaptability of the task chain link in task planning with a complex system structure as the background,
a distributed source-task-capability allocation (DSTCA) problem was constructed. The first task chain
coordination mechanism scheme was proposed, and a DSTCA architecture based on the task chain
coordination mechanism was constructed to achieve the online adaptability of the swarm. At the
same time, the existing algorithms cannot achieve this idea, and the DSTCA-CBBA algorithm based
on CNP is proposed. The efficiency change, agent score, and time three indicators are evaluated
through specific cases. In response to sudden changes in nodes in the task chain link, the maximum
spanning tree algorithm is used to reconstruct the task chain link in a short time, thereby completing
the mission task assigned to the drone entity. Meanwhile, the experimental results also prove the
effectiveness of the proposed algorithm.

Keywords: UAV complex; mission chain; adaptive task planning; distribution coordination mechanism

1. Introduction

Since the beginning of this century, the development of war forms and the emergence
of networked task systems have put forward new demands and challenges for resource
task allocation in complex operations [1]. For the intelligent complex task system, the
characteristics of modern warfare and the application of distributed command mode are
not enough to describe the status quo of coordinated tasks and the uncertain factors on
the battlefield. On the one hand, the acceleration of task tempo and the improvement
of weapon maneuvering performance make the battlefield change rapidly, putting high
requirements on the real-time performance of the allocation algorithm.

On the other hand, the concept of Mosaic warfare proposes that the hybrid decision-
making ability of man-machine integration and the autonomous decision-making and
collaborative ability of intelligent equipment means that intelligent equipment can indepen-
dently recognize the battlefield environment, independently determine the task plan, and
independently implement the task plan under the high dynamic and strong confrontation
task scenario [2]. Intelligent equipment complex relying on the unified self-organization
structure, platform, and mechanism, build the trust ability between heterogeneous multi-
platforms, cluster distributed collaborative perception, distributed intelligent decision and
distributed fire attack, and finally accelerate the battlefield frontier Observation Orientation
Decision Action (OODA) loop operation efficiency [3]. This has inspired the thinking of
this paper, which is devoted to studying the autonomous adaptability of UAV complex
online mission chains [4].

Vidal [5], an early scholar, proposed that two airframes realize a distributed layered
hybrid system architecture, emphasizing the autonomy of the system. In 2004, M.Dias
proposed a centralized global optimization scheme and proposed the problem of multi-
machine collaboration under a dynamic environment [6], mainly oriented to centralized
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allocation. After that, document [7] establishes an organized formation mode tracking and
uses a distributed group game controller better to meet the new organization goal of the
information-sharing graph. The document [8] considers the perception degradation of
UAVs, and a radar tracking model is proposed to improve the perception technology to
assist decision-making. document [9] uses the data-driven distributed formation control
method of multi-population evolutionary games to improve control performance. With
the development of UAV technology, scholars have begun to study UAV dynamic task
allocation and cooperative control in complex environments [10,11], then the intelligent
optimization method is used to optimize [12].

Most of the existing studies rely on the center of charge for centralized allocation [13,14].
The general research idea of the centralized allocation problem is to build a model according
to the problem, and then choose a more appropriate model to solve it, to achieve a higher
algorithm consistency or a shorter time to get the solution of the scheme allocation [15–17].
The distributed problem is to design a collaborative mechanism matching the problem.
When the pre-allocated scheme encounters a problem, the distribution node dynamically
coordinates the task allocation scheme according to the collaborative mechanism. Dynamic
changes in the environment pose a threat to preconceived mission chain schemes. Aiming
at specific emergent tasks, literature [18] proposes an emergent threat countermeasure STC
mechanism to help the algorithm quickly respond to the task environment changes caused
by emergent threats, and Literature [19] designed a chain reconstruction method in which
tasks are inserted into chains.

Mission chain adaptability dynamic planning is a task adaptability mechanism in the
task domain. Its main objectives are to plan the updated list of task targets online for new
task target chains, support chain reconstruction rules, and detect and evaluate the integrity
and compatibility of attack chains. Therefore, the trigger conditions are as follows: a new
task is issued by the superior, a new target threat is discovered, and a failed node exists on
the original chain. Therefore, this paper gradually shifts the research focus from a small
number of centralized static distributions to distributed dynamic distributions. In other
words, Distributed Source-Task-Capability allocation (DSTCA) is introduced. The research
focuses on resource-task-capability allocation to describe complex resource allocation. At
the same time, it can meet the new operational requirements in the complex task system and
greatly strengthen the adaptability and flexibility of the UAV complex under the premise
of the loss of some individuals and other unexpected situations.

2. DSTCA Method Based on Contract Network Protocol

DSTCA belongs to the Distributed Resource Management (DRM) category, the core is
the collaboration mechanism between C2, and the research is still in the initial stage [20].
Contract Net Protocol (CNP) is a market mechanism based on auction theory, which has de-
veloped into a relatively mature coordination mechanism in MAS coordination technology
and has a broad application prospect. Therefore, this chapter takes CNP as a collabora-
tive mechanism for solving DSTCA problems between point domain charge nodes, and
combined with the task background, proposes a mission chain-oriented CNP method, and
studies and discusses six key questions in DSTCA, namely, bidding conditions, tender-
ing strategy, bidding strategy, winning strategy, protocol mechanism and contract type
(Table 1).

Table 1. Parameter description table.

Symbol Specification

C protocol
CLi(A) Task requirement group

A Environment/situation set
E Task-System set
W ResourceSet

Y(ti) Decision variable matrix
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Table 1. Cont.

Symbol Specification

nT TaskSet
nA Agents

2.1. Problem Description

DSTCA is the matching situation of all resources and tasks in the case of contract
occurrence, denoted as DSTCA =< C, E >. Let set C represent the mission chain contract
network protocol, denoted as C =< A, G >, A represents a certain assumed environment,
and G represents a matching relationship triggered when A occurs. E =< W, Ta > indicates
the matching set of task resource tasks, and Ta indicates the task set. The hypothetical
environment set can be expressed as A = a1, a2 . . . ana, the operational requirement resource
(system) set can be expressed as W = w1, w2 . . . wnw, and the mission requirement set can
be expressed as nT = nT1, nT2 . . . nTnt, For the hypothetical environment, the combination
of task requirements is CLi(A) =< ci, Wj, ntk >. If there is a definite influence relationship
between ci and Wj, When matching < Wj, nTk >, it is matched again according to C. Define
x ϵ X to be a static space of DSTCA, where how to make distributed adjustment make
unmanned complex system platform and task match dynamically, make swl ϵ SW, l ̸= k
and Cj relation, make the following formula be established at ti moment:

maxZ(ti) =
Nt

∑
i=1

t f di(ti)[1−
na

∏
k=1

nw

∏
j=1

P(X(ij), Y(ti)), psijk(ti)] (1)

where t f di(ti) is the task change rate after normalization at ti time; as decision variable
matrix yjk ϵ (0, 1), xij ϵ (0, 1)

Y(ti) = Yjk(ti), j ϵ [1, na], k ϵ [1, nw] (2)

for the matching between Ti and ci situation. Suppose that yjkxij has a 0–1 distribution
relationship between nTk and nAg under ci = SW determined at time ti. yjk = 1 on the
premise of xij = 1 means that the resource wnw is allocated to the task at time ti. Other
cases do not constitute distributive relations psijk(ti) represents the influence probability
of A set at time ti. In addition, the matching of tasks and resources should also meet the
constraints of weapon capability, resource storage, and other matching conditions.

2.2. Formalize the Task Package Bundle

The motif is a basic unit with high frequency, uniform distribution, and a simple con-
nection structure. The mission chain of the UAV complex includes detection, control [21,22],
and task. Based on UAV functions and combined with the characteristics of UAV complex
tasks, it is necessary to establish a function-oriented UAV complex modular model. Based
on the DoDAF2.0 framework, this paper uses the idea of five functional modules of UAVs
and further divides the task entities of the multi-UAVs complex into five types: cluster
maneuver, reconnaissance and detection, information processing, decision making, and
action taking.

Among them, the cluster maneuver mission chain contains multiple complex ma-
neuver task entities, the reconnaissance and exploration mission chain contains multiple
reconnaissance and exploration task entities, the information processing mission chain
contains multiple information processing task entities, the decision-making mission chain
contains multiple decision-making task entities and the action taking mission chain contains
multiple action task entities.

To make use of predetermined marked data and node attribute information for chain
planning and prediction, scholars have proposed several supervised algorithms [23,24],
which combine network structure information with node and edge-level attributes and
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develop a learning algorithm named supervised random walk for chain prediction in social
networks. The adaptive planning of the target mission chain studied in this paper is a kind
of task network, which is a heterogeneous network HCN with multiple nodes and chain
types [25].

Bundlel(l ϵ [1, [loiter]n])Each Bundle contains task packages with different functions,
defined as Bundlel =< TLa, TLb, TLc, TLd, TLe; T >, according to the mission task decom-
position, the specific task package is obtained, and the UAV is assigned to the task package,
which contains multiple task entities. Bundlel does not have the function of assigning a
single task and supports intra-pack structure reorganization, and entity bidding to create a
new task, update the task pack, and add to the mission chain.

2.3. Constraint Condition

Aiming at online adaptive dynamic task planning of UAV complex chain, this paper
designs some constraints as follows:

Constraint 1: If the equipment platform is replaced or added with a component that is
most critical to the decision-making of the complex system, The decision time before and
after replacement and addition is tw and t′w, the contribution rate of the equipment system
w to the complex system is:

R′w =
(
t′w − tw

)
/tw (3)

Constraint 2: The dynamic agent is set as the entity executing the task, nA ⊆ [1, n],
and the assignment of task xx shall meet the following requirements:

Di(xi(nT), xJ(nA)) := min||xJ(nA)− xi(nT)|| − Rd < 0 (4)

where Rd is the minimum distance between the agent and target during task assignment.
Constraint 3: According to the order of target type, target model, target state, and target

behavior, the threat degree of the target is determined according to the target behavior.
Constraint 4: The task completion cost dependent on environment state A includes

the cost of the optimal control problem completed at time t = T, where the optimal control
input is u∗i → Ui : [0, T] and the minimization function Ji:

Ji(ui(k); D0, xi(nT)) =
∫ t

0
f (xi(t), ui(t))dt (5)

Constraint 5: In the total task allocation cost of task nT, for nTnt, given a D0, the total
utility should follow:

UnTi (nA; D0) = rnTi − ρnTiRnTi(nA, D0; DnTi) (6)

Constraint 6: The calculation of the efficiency ratio shall follow:

X f = (Sd + R)/Ji(ui(k); D0; xi(nT)) (7)

3. Task Chain Contract Network Protocol(TC-CNP) Method
3.1. Based on the Basic Idea of CNP

From the perspective of decision-makers, the task allocation process based on CNP
mainly includes four stages: Tender, Bidding, Winning, and signing, as shown in Figure 1.
Each agent can simultaneously serve two roles, namely, Tenderer and Bidder. In the
CNP-based task assignment process, participants are composed of task allocators and
recipients and make decisions as bidders and tenderers according to their respective
tendering mechanisms and bidding mechanisms [26]. Different problems can specify
different tendering and bidding mechanisms to achieve the optimal task resource allocation
scheme. As for the DSTCA problem, the adjustment of the distribution scheme needs to
meet certain conditions, and the specific execution ways of the tendering mechanism and
bidding mechanism will be different under different conditions.
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Figure 1. The basic execution process diagram of CNP.

3.2. TC-CNP Method

Contract network protocol network is more suitable for solving distributed problems [27],
based on CNP, many algorithms are proposed to solve the task allocation problem, includ-
ing CBBA, MDP, and model prediction [28–30]. The main purpose of task assignment is to
maximize the efficiency of task execution through the interaction and negotiation between
agents [31,32]. The auction mechanism is embedded in it, mainly so that each agent can
compete for tasks fairly and freely when interacting [33–35].

Under the network structure, the unmanned complex equipment platform can ex-
ercise a variety of new integrated task capabilities. The integrated task capability is an
important way to improve the system efficiency and also puts forward the demand for the
dynamic structure adjustment of the complex system. The main purpose of DSTCA is three
aspects. First, if the UAV node currently performing the task fails, the control relationship
between tasks and system resources in the system can be quickly adjusted to maintain the
survivability of the complex system and improve its adaptability of the complex system.
The second is to expand the effective task area of a complex task, in the effective tasks
area, as early as possible to complete the task, and enhance the task capability; The third
is to improve task accuracy, reduce attack behavior error, and increase the probability of
killing the target. Based on the agent cooperation mechanism in the contract network
protocol, a new mission chain-based contract network protocol based on the DSTCA model
is proposed by considering the individual’s ability to contribute to the task system.

For ∀sclϵSC, if it exists, the system will automatically trigger the default trigger
conditions for the target assigned by the system, and the DSTCA model shall be executed
when the following seven immediate effectiveness protocols are met for task execution.

Contract 1: If there are two alternative nodes ui that are flat and there is no accusative
organizational structure relationship, the node with a larger residual capacity is regarded
as having a larger contribution rate, and the node with a larger residual capacity is selected
for attack.

C1(ui, sci) :< State(ui, R
′
W), State(sci, R

′
W) >→ true/ f alse. (8)

Contract 2: If difficulty RFL-3 occurs during task execution, the reduction rate of
residual value is less than the conventional rate, and the reduction rate of fuel consumption
is greater than the average, the help message will be released;

C2(yhi, vi) :< State(yhi, T), State(Vi, T) >→ true/ f alse. (9)

Contract 3: When the target task set of Wi changes, RWL-1 and the DSTCA allocation
scheme change at the current moment, a more suitable alternative node cj is selected within
a certain period to form a new task combination.

C3(ci, Wj, El) :< State(ci, T), State(Wj, T), State(El , T) >→ true/ f alse. (10)
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Contract 4: If the new target and the original target conflict detection RWL-4, no
conflict, directly added to the own target task list; If conflict detection finds a conflict, the
original target will continue to be executed and the information will be released again to
iterate the idle node. If there is no idle node, immediate efficacy contract 6 will be executed.

C4(Tant, CLi) :< State(aTnt, T), State(CLi, T) >→ true/ f alse. (11)

Contract 5: If there is a new target node, RWL-3, each node will evaluate its own
residual capacity value, and the one with the largest residual value will have priority. COA
planning will be reissued and contract 7 will be executed later.

C5(sci, Listj, C6) :< State(sci, R
′
W), State(Listj, R

′
W), State(C6, R

′
W) >→ true/ f alse. (12)

Contract 6: If there is a new target beyond the original plan, or the node suddenly fails,
re-planning and other cases of RFL-2, meet the normal speed of use of fuel consumption
and capability value, and the minimum time cost is regarded as the largest contribution
rate and the highest reward value.

C6(CLi, Listj, costk) :< State(CLi, C2), State(Listj, C2), State(costk, T) >→ true/ f alse. (13)

Contract 7: If the node fails RWL-4, the current node will publicly release information
and inform itself whether it has advanced authorization node El . If yes, it will send
authorization change instructions to the replacement node; otherwise, it will not send;
Specific content implementation performance contract 7;

C7(El , C6) :< State(El , T), State(C6, T) >→ true/ f alse. (14)

3.3. Capability-Based Bids

A bidding strategy is a way for the bidder to quickly find a suitable contract partner,
while the battlefield situation is complex, the environment changes dynamically at any
time, and the time window is relatively small. For the DSTCA problem, the bidding scope
should be reduced as far as possible. This paper proposes a Capability-based bidding
strategy under the constraint of the adaptive protocol. According to the specific functions
required by the task point, the task replaceable node set is narrowed down, and then the
bidding specification is sent to the appropriate node.

The UAV complex task entities include complex maneuver task entity, reconnaissance
and detection task entity, information processing task entity, decision-making task entity,
and action-taking task entity, which have their respective functions as shown in Table 2.

Table 2. Task entity table.

Type Swarm Maneuver
Task Entity

Reconnaissance
Probe Task Entity

Information
Dealing Task

Entity

Decision Making
Task Entity

Take Action Task
Entity

Symbol TLa TLb TLc TLd TLe

Function Reconnaissance,
strike, decision

Reconnaissance,
strike

Information
transmission,
monitoring

Control and
command

Reconnaissance
and attack

For target nTi, the task matrix can be expressed as:

ΣTal(nTi; C) >= 1, (l = 1||l == 0) (15)

where, the indicates that Ta under task i, the matrix that meets task requirements and
mission chain contract network protocol is greater than 1.
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Similarly, the system matrix can be expressed as:

ΣEen(t; Wi) >= 1, (en = 1||en == 0) (16)

Satisfy that each system provides more than one capability, each task activity selects
more than one system, and different capabilities satisfy linear summation.

The function matrix represents that UAV has decision-making, detection and control,
observation and attack, and other functions. Let’s call it gn,

∀gnϵE, (gn = 1||gn = 0), ∑ gnEen >= 1 (17)

The main influencing factors include orientation Angle, where, the pitch Angle, fuel
value RY, task damage value ZS, weapon remaining number SY, and position informa-
tion WZ.

QJj =

{
QJj + RYj ∧ ¬ZSj ∧ SYj ∧WZj;nT /∈ ∅

QJj − RYj ∧ ¬ZSj ∧ SYj ∧WZj;nT ∈ ∅
(18)

The overall capability value is determined by the UAV’s position information and
where, RY, ZS, SY and WZ information, where in WZ information is affected by orientation
Angle, pitch Angle and height:

WZj = Yi
tili−pitch

⊕
Cj

directed

⊕
Hj (19)

where, Individual capability GTj is a correlation function based on individual functions
of UAV, including reconnaissance capability ZCc, strike capability DJc, information trans-
mission capability XIc, command and control capability ZKc. The calculation method is
as follows:

ZCc(nTj, Tal , T) =

{
1;Csel f (RYj ∧WZj ∧ ¬ZSj) ∨ Ctime(nTj, Tal , T)

0;else
(20)

DJc(nTj, Tal , T) =

{
1;Csel f (RYj ∧ SYj ∧WZj ∧ ¬ZSj) ∨ Ctime(nTj, Tal , T)

0;else
(21)

XIc(nTj, Tal , T) =

{
1;Csel f (RYj ∧ ¬ZSj) ∨ Ctime(nTj, Tal , T)

0;else
(22)

ZKc(nTj, Tal , T) =

{
1;Csel f (RYj ∧WZj ∧ ¬ZSj) ∨ Ctime(nTj, Tal , T)

0;else
(23)

3.4. Tendering Strategy Based on TC-CNP

The bid value was set as the weight value of the edge, and tendering was conducted
according to the bid value to realize mission chain reconstruction the Bidder was tested to
see whether the range was met, and bidders were allowed to participate in tendering if the
range was met. Tenderer can find target sets RW∗(nTj) ϵ Drws for tendering bids based on
current information about other nodes:

RW∗(nTj) = [rwj ϵ Bundlel ∧ ∃QJj > α ∧ GTj ̸⊂ ∅]. (24)

Only when the individual capability GTj is not empty and the global capability QJj
meets the tendering threshold, the tendering value for the target nTj can be calculated.
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For ∀rwj ϵ Bundlel , tendering cannot be conducted because Ci cannot be satisfied, so
tendering can be conducted according to the following formula:

nT∗j = argmaxUi(nTj) (25)

Ui(nTj) = Ui[Si(nTj)]−Ui(Si) (26)

The tendering strategy is given as shown below the Algorithm 1.

Algorithm 1 The tendering strategy BidsS

Input: RW∗; nTj;; Current status information
Output: Bids← B(nTj)

if: Bi(nTj <= 0)
bijl = 0

elseif:
bijl = 1

Find Si and return; & Compute the Ui(nTj)
The updated label value is based on formula 25
Update Si
endif

end

3.5. Bidding Strategy Based on Maximum Spanning Tree

Bidding mainly selects appropriate Bids from bidders, relies on the function of the
winning bidder, the bid value is set as the weight value of the edge, and bids according to
the size of the bid value to realize mission chain reconstruction. Bidders can participate
in the bidding according to their ability measurement if they meet the range. Bidders
bid according to the current information status of other nodes. The key point of the
winning strategy is to select the best task executor according to a certain evaluation function
([bestInEdge]). The bidding strategy is shown in Algorithm 2:

Save the best bid information and the best score value, and save the current position
with the best score information.

Algorithm 2 The Bidding strategy WBidsS

Initialization: G =< V, E >; root, score
Output: spanning-tree

Initialize: F← []; T
′ ← []; score← []

for: each v ϵV
do: bestInEdge← argmaxe = (u,v)ϵE score[e]

F ← F ∪ bestInEdge
for: each eϵE

do: score
′e←score[e]←score[bestInEdge]

if: T = (V, F) is a spanning tree
return
else

C ← a cycle in F
G
′ ← CONTRACT(G, C)

T
′ ← MAXSPANNINGTREE(G

′
, root, score

′
)

T ← (T, C)
return T

endif
endfor
end
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4. Improvement on CBBA Algorithm-DSTCA Results

According to the characteristics and solution process of the DSTCA problem, the
TC-CNP solution framework based on contract network protocol is extended to CNP. In
the process of UAV complex offensive and defensive tasks, by establishing the immediate
effectiveness protocol of the mission chain and designing the auction algorithm based on
the immediate effectiveness protocol, the decision-making framework can be known as
Desicion =< ES, RW, BS, TA; BidsS, WBidsS, FT >. It is mainly composed of seven parts:
bidding conditions, task notice, bidding description, task brief, tendering strategy, bidding
strategy, and time.

The principle of action is to calculate the utility of each agent to the target, which is the
bid. Based on the bid value proposed by each individual, agents communicate with each
other within a certain time range to get the best bid. The most critical point is that they must
know each other’s bid, which is a discrete task allocation problem. CBBA is a distributed
auction protocol that provides a demonstrably good solution to the problem of multi-agent
multitasking in local area networks [36,37]. It mainly includes the iteration between two
stages: one is the package construction stage, where each agent generates an ordered task
package locally, which conforms to the composition of the expected task package and can
be directly indexed to the initial function chain; the other is the consensus stage, where
conflicts are resolved by using consensus algorithm through the local communication
between neighboring agents.

The algorithm is mainly improved based on the CBBA algorithm to detect whether
there is a task status according to the update , otherwise start to announce the task, and
quickly locate the task package, according to the tendering strategy, and bidding strategy
to determine the content of the task book to issue the set of objects, and then determine
whether to bid [38]. First of all, it is necessary to determine the radius range of task
packages, within which task packages will be reassigned, to ensure that there will not be
too many or too few UAV agents involved in task reassignment.

Each Agent determined to participate in the bidding task adds a new task to the
task package and then uses the mission chain contract network protocol in Section 3.3 to
calculate the highest score as the bidding value. Use the bid values of the bid as the bid set
in Section 3.4 to generate the bid strategy. Successful bidding agents complete new tasks
without the need for additional consensus stages. For an Agent with a premium outbid,
the task is released from the package and updated through communication. The specific
algorithm flow is shown in Figure 2.

First, initialize the working parameters, set up the bundle and target range complex,
initialize the reward value, Then calculate the score of each Agent (calculate the score
through the distance formula, then use the reward-punishment function), then determine
whether to participate in the bid and update the bid value by running the CBBA bundle.
Return the index task with the best bid by calculating the bid, checking the fitness of each
Agent and task, and checking for a match. Then save the best bid task location, save the
bidding information, and algorithm flow refers to Algorithm 3 pseudo-code.

The Sale Contract is a new mission released, from the new mission objective System
Wj to provide cooperative engagement capability against the nTj unit, the sale contract is
only useful if the buyer can afford the mission.

Ui(nTj)
k
sale = maxUi(nTj)

k, (k = 1, 2, . . . , nt) (27)

Replacement contract is task rescheduling, urgent task processing. The bidding unit
does not meet the requirements of the value of the residual capacity, and insufficient
capacity is found in the process of executing the task, which is secondary scheduling, so
the replacement target needs to be found for replacement.

Ui(nTk)
k
swap = maxUi(nTj, nTi), (i, jϵ[1, nt]) (28)
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Exchange contracts exist in emergencies and where the reward value is high.

Uik
replace(nTj, nTi) = maxUireplace(nTj, nTi), (i, jϵ[1, nt]) (29)

Figure 2. The basic execution process diagram of RW-CBBA.

Algorithm 3 DSTCA-CBBA
Input: initialize working variabls
Output: score

while(doneflag ==0) & taskidx == 0
check for conflicts
(Ta, Ti)← CBBA− Params, CBBA− Data, Graph, t, T;

for: n = n + 1ϵ[1, N]
Bid− values← (CBBA− Data(n), agents(n), tasks− Ta, n)
complex ← (R, Ta, Ti > 0)
end

if
else

T = T + 1; Maintainloop
end

allscores ← Rij, Ui, x, xlj
UpdateCluster(ci)&MaxSpanningTree
for: each eiϵE do

minDist←←← argmin Dist(ei, cj) jϵ1, 2, . . . k
if minDistance /∈ l(ei)

then ml(ei)← minDistance
changed← true
end

end
end
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5. Discussion

In this paper, the UAV complex task case background is used, and the comprehensive
information of A country’s Marines to recover lost land—the island as the experimental
basis. The list of UAV complex resources and the number of available UAVs is shown in
Table. Dynamic task link adaptive scheme planning is shown in Figure 3.

Figure 3. Adaptive dynamic programming of task links.

The command is responsible for the dynamic link adaptability planning, which be-
longs to the task adaptability mechanism of the task domain. Its main objectives are to
update the list of task objectives online, plan for new task target links, support link recon-
struction rules, and detect and evaluate the integrity and compatibility of attack links. The
triggering conditions are as follows: a new task is assigned from the superior, a new target
is discovered, and a faulty node exists on the existing link. The mode-switching rule base
includes the target update rule, original task link reconstruction rule, new link generation
rule, link integrity, compatibility detection and evaluation rule, etc. The specific steps of
the implementation of the mechanism are:

(1) Update the task target list
(2) Generate alternatives online according to switching rules
(3) Evaluate options and their compatibility with existing mandates
(4) Select a new task link scheme

Based on Section 3, we improved the CBBA algorithm, and the simulation model of
multi-task assignment is established. First, 10 UAV entities are selected to perform 20 tasks.
The running diagram of the simulation process is shown in Figures 4 and 5 The task cluster
was established to improve the efficiency of task allocation and execution. The parameters
were set as nA = 10, nT = 20 and nA = 8, nT = 15, respectively, and the tests in Table 3
were carried out (Figures 6 and 7). The dotted line in the Figure represents the trajectory
process performed by the UAV entity, and the task target is represented by the square
entity. The mission packet is represented by a dotted circle, the asterisk is represented by
the drone entity, and DSTCA-CBBA determines the direction of the dotted line. Therefore,
the normal operation of Figures 4–6 has shown the preliminary implementation of the
algorithm simulation. Then the score, utility, and time need to be analyzed and compared.



Drones 2024, 8, 553 12 of 21

Table 3. UAVS complex resource table.

Types of Drones Quantity Function Selection
Quantity

Reconnaissance UAV 18 Reconnaissance and detection 2
Decision UAV 20 Command, decision, strike 2
Attack UAV 16 strike 3

Reserve UAV 18 Reconnaissance, strike, decision 2
Information processing UAV 5 Information transfer and detection 1

Figure 4. The simulation process diagram for the new task appears.

Figure 5. The separate adjustment process of the new task.

At the beginning of the war, the pre-task planning scheme was generated. First, 10 agents
are set to perform 10 tasks, and the performance control parameter is J(Ui(s)) = 1/2∫ t

0 |Ui(Tk)|2dt. Use ode45 differential solver to solve, adjust parameter lambda(Tk) = 1,
kϵ[0, 1], By changing the location information through setting, the UAV Agent must try
to reach the nTk position at time t = t( f ,Tk)

. Tasks.task − type sets the specific type of
task, which consists of task entities with different functions. Set, the number of iterations.
The task scheduling scheme is shown in Figure 4. Therefore, the DSTCA model is used to
calculate task redistribution. As shown in Figures 4 and 5 the parameter value of Agent-task
is 10–10, and the parameter setting of 20–20, respectively. The asterisk indicates the agent,
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the red square indicates the target, the dotted line indicates the path, and a blue dotted line
indicates the CBBA assignment method.

Then, set the second case. The number of Agents is different from the number of
tasks. Not every Agent can perform tasks, and some agents are idle. Set parameter
nt = 10, nw = 20, other parameters remain unchanged, as shown in Figure 6. The change
task marked with a red circle is to increase the demand, which requires the assistance of
other agents.

Figure 6. nA = 10, nT = 20 simulation process diagram.

Figure 7. nA = 8, nT = 15 simulation process diagram.

The solution framework in Section Capability-Based Bids and Improvement on the
CBBA algorithm in Section Bidding Strategy is used to establish the three-dimensional data
graph of tasks, agents, and utility, as shown in Figure 7.

By using the solution framework in Section 3 and the improved CBBA algorithm in
Section 4, the three-dimensional data graph of tasks, Agents, and time cost is established, as
shown in Figures 8–11. The time cost is relatively independent of the number of tasks and
Agents.When the number of tasks increases, the global utility value increases linearly with the
number of tasks Figure 12, while the increase of utility increases exponentially with the number
of Agents. The larger the problem-solving space, the more task requirement wi needs to be
executed. Agents will choose the nearest mission area, and the higher the reward value will be.
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Figure 8. Computation time based on the nA = 10, nT = 20, k = 500.

Next, to verify the validity of the instant-efficacy protocol, it is necessary to further
compare and analyze the original algorithm (without setting the instant-efficacy protocol)
and the auction algorithm based on the instant-efficacy protocol. The comprehensive
evaluation index is used for analysis as follows:

(1) Comparative analysis of task completion time

Firstly, the completion time of the task was compared and analyzed, and the number
of iterations was set as k f = 100 (from Figures 13–16). For a reassigned task bid, set the
reward range to rewardϵ[0, 0.3]. We use the task execution time in the first column as a
comparison, and the results show that the overall running time of the algorithm increases
with the number of tasks of the agent, and the time consumption increases slowly. Does
not occupy a very large time cost.

Figure 9. Computation time based on the nA = 10, nT = 20, k = 1000.
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Figure 10. Computation time based on the nA = 8, nT = 15, k = 500.

Figure 11. Computation time based on the nA = 8, nT = 15, k = 1000.

Figure 12. Utility at time t.

Using the control variable method, the number of tasks and Agents and the number
of dynamically adjusted tasks remain unchanged. The improved algorithm DSTCA-CBBA
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algorithm is compared with the original algorithm CBBA. The experimental results show
that with the increase in the number of iterations, the completion time of the DSTCA-CBBA
algorithm tends to be stable and lower than that of the original algorithm CBBA. As shown
in the figure below, when the parameter of the algorithm is set to 8–15, the algorithm is 1-a
for 500 iterations and 1-b for 500 iterations for 10–20. Similarly, when the parameter is set
to 8–15, the algorithm is 2-a for 1000 iterations and 2-b for 1000 iterations for 10–20.

Figure 13. The algorithm iterates comparison graph 1-(a).

(2) Task completion utility comparative analysis.

In the fourth part and the fifth part, two sets of different experimental parameters
nA = 10, nT = 20 and nA = 8, nT = 15 are set respectively. To ensure the completeness
of the experiment and test the algorithm index, the total utility calculation convergence
of these two sets of parameters is carried out respectively. The experimental results are
shown in Figure 17 and 18. The total utility a and b show different utility result values.
In the case of different parameter Settings, the Settings of task and agent are 10–20 and
8–15 respectively, and if the Settings are the same color and background cloth, it is easy to
mistake that two pictures of the same graph are placed. Therefore, it is carefully observed
that although they have different parameter Settings, they all converge to a single vertex.
The convergence process is represented by the gradient change, so the utility value can
converge to 8 as the task is executed. Then the improved algorithm is compared with the
original CBBA algorithm.

Set A3, and set the number of iterations to (Figure 19), (Figure 20), and (Figure 21)
respectively. using the real-time efficacy protocol-based CSCTA-CBBA algorithm and the
original algorithm CBBA for comparative analysis. Calculate utility analysis for F2 times.

Figure 14. The algorithm iterates comparison graph 1-(b).
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Figure 15. The algorithm iterates comparison graph 2-(a).

Figure 16. The algorithm iterates comparison graph 2-(b).

Figure 17. Total Utility (a) with the parameters nA = 10, nT = 20.

According to the experimental results, the number of iterations is respectively k f = 100
(Figure 19), k f = 500 (Figure 20), and k f = 1000 (Figure 21). With the same Settings of other
parameters, the completion efficiency of the DSTCA-CBBA algorithm is higher than that of
the original algorithm CBBA.
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Figure 18. Total Utility (b) with the parameters nA = 8, nT = 15.

Figure 19. The utility calculation comparison diagram of the algorithm was iterated 100 times.

Figure 20. The utility calculation comparison diagram of the algorithm was iterated 500 times.
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Figure 21. The utility calculation comparison diagram of the algorithm was iterated 1000 times.

6. Conclusions

In this paper, a DSTCA model is constructed based on contract network protocol to
solve the mission chain adaptability problem of the UAV complex, and the resource-task-
capability allocation method is proposed for the first time. According to the application
scenario, TC-CNP is proposed based on CNP, and the bid value, bidding strategy, and
bidding strategy based on the capability of TC-CNP are designed. Then using the improved
CBBA algorithm, the DSTCA-CBBA algorithm is designed, and a specific case is used to
verify the experiment. Through the concrete simulation verification, it is found that the
algorithm is more effective in the case of iteration 100 times, 500 times, and 1000 times
from the two indexes of time and efficiency, and also verifies the effectiveness of the
DSTCA method.

As shown in Figures 13–15, DSTCA is marked in blue, and CBBA original algorithm is
marked in orange. When there is no task change at the beginning, the task consumption
time of the DSTCA algorithm is relatively small. The time consumption of both algorithms
fluctuates with the sudden change of tasks, and then gradually flattens out when the cluster
starts executing tasks. When the task changes, the difference in time consumption between
the two algorithms is not large. However, you can still see that DSTCA consumes slightly
less time. This shows that the algorithm is effective.

In future work, we plan to simulate the adaptive work in the environment of Ubuntu to
verify whether the method effectively improves the adaptive performance of the distributed
mission link of UAVs, and verify the effectiveness of the DSTCA method by using the
simulation means.
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