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Abstract: Recently, developing multi-UAVs to cooperatively pursue a fast-moving target has become
a research hotspot in the current world. Although deep reinforcement learning (DRL) has made a lot
of achievements in the UAV pursuit game, there are still some problems such as high-dimensional
parameter space, the ease of falling into local optimization, the long training time, and the low
task success rate. To solve the above-mentioned issues, we propose an improved twin delayed
deep deterministic policy gradient algorithm combining the genetic algorithm and maximum mean
discrepancy method (GM-TD3) for multi-UAV cooperative pursuit of high-speed targets. Firstly, this
paper combines GA-based evolutionary strategies with TD3 to generate action networks. Then, in
order to avoid local optimization in the algorithm training process, the maximum mean difference
(MMD) method is used to increase the diversity of the policy population in the updating process of
the population parameters. Finally, by setting the sensitivity weights of the genetic memory buffer
of UAV individuals, the mutation operator is improved to enhance the stability of the algorithm. In
addition, this paper designs a hybrid reward function to accelerate the convergence speed of training.
Through simulation experiments, we have verified that the training efficiency of the improved
algorithm has been greatly improved, which can achieve faster convergence; the successful rate of
the task has reached 95%, and further validated UAVs can better cooperate to complete the pursuit
game task.

Keywords: UAV pursuit game; TD3; genetic algorithm; maximum mean discrepancy; evolutionary
reinforcement learning

1. Introduction

In modern information warfare, UAVs have received more and more attention from
the militaries of various countries [1]. Especially in the Russia–Ukraine war, a large
number of practical applications of UAV technology have achieved remarkable results [2],
fully demonstrating the key role of UAVs in modern warfare. With the development of
unmanned equipment technology, the miniaturization and intelligence of UAVs make it
difficult for traditional air defense systems to respond effectively [3]. It can be said that
UAVs with low costs, miniaturization, and intelligence, especially AI (artificial intelligence)
technology, have shown great war potential in the actual combat environment and have
become the “new darling” on the battlefield.

As a typical differential game problem in air combat [4], the UAV pursuit problem can
be regarded as a multi-agent dynamic game system due to the conflicting objective functions
of both sides [5–7]. The choice of the optimal control strategy for UAVs from both sides
depends on their respective interests [8,9]. Therefore, advanced intelligent decision-making
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technology is needed to assist the commanders of UAVs in real-time tactical decision-
making and command [10]. These intelligent decision technologies can be implemented
using machine learning, artificial intelligence (AI), and autonomous decision algorithms,
enabling UAV swarms to autonomously perceive the environment, analyze intelligence,
make decisions, and perform tasks. Through AI technologies, commanders can quickly
acquire and analyze vast amounts of perception data and receive real-time intelligence and
recommendations to support them in making efficient and correct decisions.

Reinforcement learning (RL) is an intelligent self-learning method that does not re-
quire expert signals or strict mathematical models. It adopts a trial-and-error mechanism
to interact with the environment and constantly tries different behavioral strategies for
reinforcement and improvement. RL is self-adaptive to the dynamic and unknown en-
vironment; therefore, it is suitable for adaptive optimal control methods with the aim of
solving complex nonlinear systems [11]. Based on these characteristics, RL can realize the
confrontation or cooperative behavior of multiple agents, and provide reasonable, reliable,
and dynamic policy support for multi-agent systems. Therefore, it has good prospects for
application in the field of differential games.

To combine the advantages of game theory and the RL algorithm, some scholars intro-
duce RL into the adversarial game modeling process. For example, the multi-agent deep
deterministic policy gradient (MADDPG) algorithm proposed by LOWE R et al. adopts the
method of decentralized execution of actions and centralized training of strategies [12]; the
algorithm has good stability and solves the problem of excessive gradient variance of the
strategy. It can enable multi-agents to find cooperative strategies under the environment
of both cooperation and competition. The collaborative learning model of the joint action
learner is presented in the literature [13], and the effectiveness of this method is proved by
experiments. In addition, there are many algorithms from different perspectives, such as
the Q algorithm based on correlated equilibrium solutions (CE-Q) [14], the Q algorithm
based on Pareto dominant solutions (Pareto-Q) [15], etc. These algorithms provide different
research ideas for solving multi-agent reinforcement learning problems.

In the context of intelligent decision-making for UAVs, the literature [16] employs
reinforcement learning methods to generate maneuvering strategies aimed at enhancing the
survival rate of UAVs in complex aerial combat scenarios. It proposes a unit state sequence
(USS) based on deep double Q networks (DDQNs) and deep deterministic policy gradient
(DDPG) algorithms, and integrates contextual features from the USS using gated recurrent
units (GRUs) to improve the UAV’s capability for state feature recognition and the conver-
gence of the algorithm in intricate aerial combat environments. Reference [17] focuses on
the modeling and simulation of disturbances such as wind and obstacles along paths in the
context of simulations of the drone swarm environment. The research demonstrates that
the presence of these disturbances can significantly alter the deployment and maneuvering
decisions of drone swarms within simulated scenarios. An improved method [18] based
on the Q-learning algorithm is proposed for the mapping of the paths and obstacle avoid-
ance tasks of unmanned aerial vehicles (UAVs) which is compared with the well-known
reinforcement learning algorithm, state–action–reward–state–action (SARSA). During the
obstacle avoidance control process, a reinforcement learning approach is similarly em-
ployed to conduct training within the AirSim virtual environment, wherein parameters are
adjusted and training outcomes are compared.

Deep reinforcement learning (DRL) has advantages in solving the game-confronting
problem, but it still faces three challenges: the time credit allocation problem caused by
sparse rewards in the long cycle process, the lack of effective exploration ability, and the
brittle convergence characteristic, which is extremely sensitive to hyperparameters. To
solve these problems, some researchers proposed evolutionary algorithms (EAs), which use
fitness indicators to integrate sparse rewards and explore diversity based on populations.
The redundancy performance of populations can effectively improve the robustness and
convergence of algorithms. Shauharda Khadka et al. proposed the framework of evolu-
tionary reinforcement learning (ERL) in combination with EAs [19]. The ERL algorithm
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inherits the ability of the evolutionary algorithm in time credit allocation, its effective
exploration ability in diversified strategies, and its stability based on population training,
and strengthens the gradient utilization ability of DRL through offline strategy, which
improves the utilization efficiency of training samples and improves the learning speed of
the algorithm.

Based on the algorithm framework of EAs and DRL, many scholars have proposed
improvements in different aspects. For example, [20] proposes a different combination
scheme in terms of combinatorial optimization; an improved algorithm is designed using a
simple cross-entropy method (CEM) and twin delayed deep determination policy gradient
(TD3). The proposed algorithm is tested on the classic DRL benchmark test set, and the
performance improvement of the algorithm is verified. The architecture of cooperative
heterogeneous DRL algorithms was proposed in the literature [21]; the ERL method is
extended to improve sample efficiency, using online and offline strategies, population
injection is performed when the actor network to be injected significantly outperforms the
evolutionary agent, and the playback buffer is combined with a smaller local playback
buffer, which stores filtered samples to ensure that the best samples are used for training.
The adaptive covariance matrix based on the gradient tree structure in the literature [22]
uses evolutionary strategies (ESs) to improve the diversity of network parameters and a
combination of ESs and RL to improve the performance of the algorithm. Through an
analysis of the literature, it can be seen that the application of the ERL framework greatly
improves the efficiency and convergence of the algorithm, but there are still some problems:
the exploration ability of high-dimensional parameter space is limited; it is easy to fall into
local optimization; the regeneration mode of the population has a great influence on the
stability of the training effect; most of the algorithm validation is limited to the existing RL
environment; and few are applied to the continuous pursuit and escape control problem.

Based on the ERL architecture and TD3 algorithm, this paper aims to solve the prob-
lem of the Q value being prone to overestimation in the RL algorithm. We choose the
GA algorithm as the evolution operator and adopt the maximum mean difference (MMD)
method to increase the diversity of the updated strategy in the population and improve the
exploration space; at the same time, the GA mutation operator is improved, the perturba-
tion effect of the Gaussian mutation on weight is corrected, and the GM-TD3 algorithm
is proposed. The simulation results show that the training efficiency of the improved
algorithm has been greatly improved, and it can achieve faster convergence, which greatly
improves the task success rate. After training, the UAVs can better complete the pursuit
game task and pursue the enemy UAV.

The main innovations of this paper are as follows:

(1) Based on the continuous task scenario of the multi-drone cooperative pursuit–evasion
game, we improved the traditional TD3 algorithm and designed a GM-TD3 algorithm
based on the ERL framework, which effectively improved the success rate of the
pursuit task. Finally, the effectiveness of the algorithm was verified by simulation.

(2) The MMD method was used to calculate the distance between different strategies, and
the direction of updating some individuals in the population is adjusted to maximize
the difference between the current strategy and the elite strategy, effectively ensuring
greater diversity of the offspring strategy and improving the effective exploration
ability of the algorithm.

(3) We designed a stable mutation operator which can calculate the sensitivity of each
gradient dimension of action to the weight perturbation according to the sample data
in the experience buffer; we used the sensitivity to scale the Gaussian perturbation of
each weight, so as to realize the variation update of the policy network and effectively
improve the stability of the strategy update in the population.

2. Task Scenario Model

The task scenario of this paper is set within a fixed battlefield area, where a high-speed
enemy UAV strikes against our base. In response, our side dispatches multiple UAVs to
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pursue and intercept the enemy drone, while simultaneously navigating around terrain
obstacles. This section provides detailed modeling of the task scenario and UAVs involved.

2.1. Task Scenario

In the two-dimensional battlefield environment with dimensions W × H, there is a
Protected Asset (PA) area, n, a no-fly zone (NFZ), N, and our UAVs and one enemy UAV
with a higher speed targeting our PA. The mission of our UAVs is to intercept the enemy
UAV which are attempting to carry out tasks against our PA. We set all UAVs to be at the
same altitude, regardless of height factors. When our UAVs recapture the enemy UAV or
when the enemy breaks through our defense and into the PA area, the pursuit game task is
terminated. The schematic diagram of the task scenario is shown in Figure 1.
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2.2. UAV Model
2.2.1. UAV Motion Model

In this paper, the UAV adopts a particle mass model, and the motion state of the
UAV is determined by its position and velocity. The linear acceleration ai

vt and angular
acceleration ai

αt are used to control the speed and direction of the UAV, achieving agile
flight, as shown in Figure 2.
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The instantaneous state information Qi
t of the UAV Ui at the current time t can be

represented as follows:

Qi
t =

[
xi

t, yi
t, vi

t, αi
t

]T
(1)

where xi
t and yi

t represent the position of Ui at time t, vi
t represents the velocity, αi

t repre-
sents the heading angle, ai

vt represents the linear acceleration, ai
αt represents the angular

acceleration, and i represents the serial number of the UAV.
So, the instantaneous state information of Ui at time t + 1 is as follows:

vi
t+1 = vi

t + ai
vt · ∆t

αi
t+1 = αi

t + ai
αt · ∆t

xi
t+1 = xi

t + vi
t+1 · cos αi

t+1 · ∆t

yi
t+1 = yi

t + vi
t+1 · sin αi

t+1 · ∆t

(2)

Qi
t+1 =

[
xi

t+1, yi
t+1, vi

t+1, αi
t+1

]T
(3)

where ∆t represents the simulation time step.

2.2.2. UAV Radar Detection and Communication Model

During the mission, the UAVs acquire information through radar detection and com-
munication with each other, as shown in Figure 3.
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Figure 3. Schematic diagram of UAV radar detection and intra-swarm communication model.

The detection area of the UAV radar is the fan-shaped area in front of the nose, the
maximum detection distance is dprobe, and the detection angle is 2θprobe. Considering the
constraints of radar tracking performance, the UAV can stably track up to five detection
targets at the same time. We set the safe distance dsa f e and dangerous distance ddanger for
the UAV. When the distance between the UAV and the detection target is less than the safe
distance, there is a collision risk, and the UAV needs to maneuver as soon as possible to
avoid obstacles. When the distance between the UAV and the detection target is less than
the dangerous distance, the UAV collides and crashes.
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The maximum communication distance between the UAV and its teammates is dcomm;
considering communication node constraints, each UAV in the team can communicate with
up to five teammates at the same time.

2.2.3. Pursuit Model

In the UAV pursuit task, when the target UAV enters our airspace, our UAVs begin to
cooperate to pursue the target UAV. The effect of multi-UAVs cooperative rounding up the
target is shown in Figure 4.
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Figure 4 shows the expected results of a cooperative pursuit with three and six UAVs.
Since the maneuverability of the target UAV is better than ours, the basic pursuit strategy
is to make our UAVs evenly distributed around the target UAV, forming an encircling
situation and increasing the success rate of the pursuit task, as shown in Figure 5.
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As shown in Figure 5, when three UAVs cooperate to perform the pursuit task, the
expected distance dexpect_i_tar is shown between our UAVs and the enemy UAV, which
is encircled, and our UAVs block the escape path of the target. The angles between the
individuals inside the UAVs are evenly distributed according to the number of individuals;
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so, the expected angle θexpect_ij is 2π/3, ensuring that the UAVs are evenly distributed
around the circle.

3. Design of GM-TD3 Algorithm
3.1. Framework of ERL

ERL combines the population-based approach of EAs to generate diverse experiences,
train RL agents, and periodically transfer RL agents into EA populations to inject gradient
update information into EAs [19]. ERL solves the time credit allocation problem by using
the whole round reward. The selection operator tends to choose the policy network with
a higher round reward in the policy space based on the fitness index, which is a very
effective form of implicit priority ranking for task scenarios with a long time span and
sparse rewards. In addition, ERL inherits the characteristics of population-based EAs and
has the capability to eliminate any redundancy, which makes the convergence process of
the algorithm more stable. ERL takes advantage of a population’s ability to explore in the
parameter space and action space, making it easier to generate diversification policies for
effective exploration. The basic framework of the ERL algorithm is shown in Figure 6.
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3.2. Genetic Algorithm

In the ERL framework, we choose the genetic algorithm (GA) as the EA. The GA
was designed to search for complex solution spaces where an exhaustive search is not
feasible and other search methods do not perform well. When used as a function optimizer,
the GA tries to maximize the fitness associated with the optimization goal. The GA has
been applied to the design and optimization of various problems and has achieved many
successful applications [23].

The initial population of the GA is a set of randomly selected valid candidate solutions.
The fitness function is used to calculate each individual candidate to obtain the fitness value
of the initial population. After the genetic operators of selection, crossover, and mutation
are applied, the new generation of individuals is re-evaluated [24,25]. The basic flow of the
GA is shown in Figure 7.
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3.3. TD3 Algorithm

In value-based RL algorithms, such as deep Q learning, function approximation errors
are known to lead to overestimation and suboptimal strategies, and this problem has been
shown to persist in the context of actor–critic algorithm models. The TD3 algorithm is
based on double Q learning; by selecting the smaller value of the two estimation functions,
it limits the overestimation of the Q value and uses the double-delay update policy to
reduce the error of each update, further improving the performance of the algorithm.

The TD3 algorithm consists of six neural networks, namely the “actor_eval” pol-
icy estimation network, the “actor_target” policy reality network, the “critic_eval_1” and
“critic_eval_2” value estimation networks, and the “critic_target_1” and “critic_target_2”
value reality networks. The framework of the TD3 algorithm is shown in Figure 8. In the al-
gorithm, two sets of critic networks are used to evaluate the value of the actor network, and
then, the small Q value is selected to update the parameters of the actor network, which can
effectively alleviate the problem of overestimation of the Q value. Such improvement may
lead to some underestimation, but low estimation will only affect the learning efficiency of
training and will not affect the final learning strategy.
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The actor networks take the mean value output of the critic network as the loss function:

Lossactor_eval = −mean(Q(s, a; θcritic)) (4)

Here, Q(s, a; θcritic) is the value assessment of the action behavior output by the critic
network for the actor network under the current state, and the minimum value of the two
critic networks is used for the calculation.

Critic networks update the network parameters in the value-based mode, and the loss
function is as follows:

Lossi
critic_eval = [r(st, at) + γ ·Q′(st+1, at+1; θi

critic_target)−Q(st, at; θi
critic_eval)]

2
(5)

Here, i = 1, 2 represents the two critic networks, r(st, at) is the reward that the
agent receives after taking action at and interacting with the environment in state st,
Q
(

st, at; θi
critic_eval

)
is the evaluation of action at in state st that is output by the “critic_eval_i”

network, and Q′
(

st+1, at+1; θi
critic_target

)
is the evaluation of action at+1 in state st+1 that is

output by the “critic_target_i” network.
The network parameters are updated by minimizing the loss functions of the critic_eval

and actor_eval networks during training. The network parameters of the critic_target_1,
critic_target_2, and actor_target are updated with soft update mode.

3.4. Maximum Mean Discrepancy

As the traditional EA is prone to local optimization, we introduce the MMD method
to calculate the difference between the current policy and the elite policy in the population
and increase the diversity of policies by gradient updating, thus greatly improving the
solution space exploration ability of the algorithm.

Assuming that the elite policy in the current population is πη , the gradient update
of the network parameter φ of the actor network is in the direction of maximizing the
difference between the current policy and πη , while maximizing the cumulative return.
The difference is calculated by using the square of the MMD.
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Let us say that given samples x1, . . . , xn ∼ P and y1, . . . , ym ∼ G, since the square of
the MMD can only be estimated from the sample of a given distribution, then the square of
the MMD between distributions P and G is calculated as follows:

MMD2({x1, . . . , xn}, {y1, . . . , ym})
= 1

n2 ∑i,j′ . . . k(xi, xi′)− 2
nm ∑i,j . . . k(xi, yj) +

1
m2 ∑j,j′ k(yj, yj′)

(6)

Here, k(·, ·) is the Gaussian kernel function, as shown below:

k(xi, xi′) = exp(−∥xi − xi′∥2

2σ2 ), σ > 0 (7)

In the above equation, σ is the standard deviation.
The square of the MMD between the elite policy πη and the policy πφ is denoted as

DMMD
(
πη , πφ

)
and calculated as follows:

DMMD(πµ, πϕ) = MMD2(πµ(·|s), πϕ(·|s))s ∼ D (8)

Here, D represents the experience sample buffer.
The objective function of the actor network considering the maximization of cumula-

tive returns is as follows:
Jπ(ϕ) = Es,a∼πϕ [QθQ

1
(s, a)] (9)

When DMMD
(
πη , πφ

)
satisfies the gradient update, the objective function of the actor

network is calculated as follows:

JMMD(ϕ) = Es,a∼πϕ |QAQ(s, a)|+ βEs

[
MMD2(π∗(·|s), πϕ(·|s))

]
(10)

Here, β is the weight factor used for regulation.

3.5. Stable Mutation Operator

To improve the stability of the algorithm, a separate individual sample buffer is set for
each member of the population and the RL agent, which contains the recent experience of
the individual, and depending on its capacity K, the buffer can also contain the experience
of its parent [26]. Since the buffer can span multiple generations, the individual sample
buffer of each agent is referred to as genetic memory.

Even for gradient descent methods, the stability of policy updates is an issue, as
inappropriate step sizes can have unpredictable consequences in terms of performance.
In this paper, a stable mutation operator is proposed, which first samples a batch of NM
empirical samples from the genetic memory, then calculates the gradient of each dimension
of the sample output action, and finally calculates the sensitivity s of the samples’ action to
the network weight perturbation as follows:

s =

√√√√Σ|A|k (
NM

∑
i
∇θµθ(si)k)

2 (11)

Then, the following formula is used to adjust the network parameters to form a stable
mutation operator:

θ = θ + x/s (12)

where x ∼ N(0; σ), and σ is the variance of the perturbation, such that the behavior of
the policy network generated by the variation in the offspring sample does not mutate
significantly from that of its parent.

3.6. GM-TD3 Algorithm

The framework design of the GM-TD3 algorithm is shown in Figure 9.
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Figure 9. Framework of GM-TD3 algorithm.

The execution steps of the GM-TD3 algorithm are as follows:

(1) Randomly initialize K policy networks as the initial population; randomly initialize
the actor networks and critic networks of the TD3 algorithm; randomly initialize the
GA algorithm;

(2) Initialize the task scenario, interact the policy network with the environment, and
obtain the sample data and store them in the replay buffer R;

(3) Train the TD3 algorithm networks with the sample data;
(4) Interact with the environment to evaluate the strategic populations;
(5) Calculate the fitness values of the individuals in the population and organize the

policy network; select the individuals with the highest fitness as the elite strategy πµ;
(6) Order the individuals in the population based on their fitness values from high to low,

and perform cross-mutation on the top K/2 individuals in the sorted population to
achieve updates;

(7) Combine the elite strategy and the MMD method to train and update the remaining
policy network in the population and generate a new population;

(8) Calculate the fitness of the policy network in the TD3 algorithm and compare it with
the worst individual with the lowest fitness in the population; if the policy network
of the TD3 algorithm is better than the worst individual in the population, the worst
individual will be replaced periodically;

(9) If the algorithm converges or the maximum number of iterations is reached, output
the optimal policy network; otherwise, go to (2).

The flowchart of the GM-TD3 algorithm is depicted in Figure 10 and Algorithm 1.
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The pseudo-code of the GM-TD3 algorithm is as follows:
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Algorithm 1: GM-TD3

Randomly initialize K policy networks to generate population popπ , initialize the replay buffer R,
initialize the maximum number of iterations G, evaluation of round episode M;
Initialize the actor network parameters θµ and their target network parameters θµ′, and critic1,
critic2 network parameters θQ

1 , θQ
2 and their target network parameters θQ′

1 , θQ′
2 of the TD3

algorithm;
Initialize GA parameters;
Construct a noise generator and a random number generator, and define control probability w;
While number of iterations n is less than G:

For policy network πiϵpopπ :
For evaluation rounds episode = 1 · · ·M:

For steps n = 1 · · ·N:
Reset environment and initial state s0;
Select an action based on the current policy network at = π(st|θπ) + noiset;
Execute action at, obtain reward rt, update to status st+1;
Store (st, at, rt, st+1) in R;
Calculate reward rtotal = rtotal + rt;
Set st ← st+1 ;

End for
End for
Calculate the fitness of the current policy network: fi = rtotal/episode;

End for
Random sample (st, a, r, st+1) from R for training;
Update the critic_eval network parameters to minimize losses:

at+1 = πθ(st)

y = r + γ·mini=1,2Q
θQ

i
(st+1, at+1)

θQ
i ← argmin

θQ
i

N−1∑
(

y−Q
θQ

i
(st+1, at)

)2

Calculate the loss function and obtain the gradient:
Loss = −mean(v(s, a))

Update actor_eval network parameters by gradient descent method:
∇ϕ J(ϕ) = N−1∑∇aQ

θQ
1
(s, a)|a=πϕ(s)∇ϕπϕ(s)

If reach the “target” network update period:
Update target network parameters using soft update mode;

End if
Rank the policy network according to the fitness assessed, and select the policy network with the

highest fitness as the elite policy π*;
For policy network πiϵpopπ :

For i = 1 to K/2:
The strategy population was cross-mutated to generate progeny and renew the population.

End for
For i = K/2 + 1 to K1:

Samples are extracted from R to train actor networks and update population;
Network parameters are updated by gradient descent method:

Jπ(ϕ) = Es,a∼πϕ

[
Q

θQ
1
(s, a)

]
End for
For i = K/2 + 1 to K1:

Samples are extracted from R for training actor networks and update population;
Network parameters are updated by gradient descent method:

JMMD(ϕ) = Es,a∼πϕ

[
Q

θQ
1
(s, a)

]
+ βEs

[
MMD2(π*(·|s

)
, πϕ(·|s))

]
End for

End for
A new policy population popπ′ was formed and added to the training process;
For policy network πiϵpopπ′:

For evaluation rounds episode = 1 · · ·M:
For steps n = 1 · · ·N:

Reset environment and initial state s0;
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Algorithm 1: Cont.

Select an action based on the current policy network at = π(st|θπ) + noiset;
Execute action at, obtain reward rt, update to status st+1;
Store (st, at, rt, st+1) into R;
Calculate reward rtotal = rtotal + rt;
Set st ← st+1 ;

End for
End for
Calculate the fitness of the current policy network: f ′i = rtotal/episode;

End for
Calculate the fitness of the policy network in TD3 algorithm fTD3;
If the policy network of TD3 algorithm outperforms the worst individual in the population:

If the number of iterations has reached the update cycle:
Replace the worst individual in the population with the policy network in TD3 algorithm;

End if
End if

End while

4. UAV Pursuit and Escape Game Strategy Based on GM-TD3 Algorithm
4.1. Design of State Space and Action Space

In the multi-UAV cooperative pursuit task, the actions of both sides are trained by the
RL method, and the corresponding state space and action space design are shown below.

4.1.1. State Space and Action Space of Our UAVs

The state space Si of our UAV Ui includes instantaneous state information Ii
uav, target

relative position information Ii
tar, and detection information Ii

detect:

Si = [Ii
uav, Ii

tar, Ii
detect] (13)

The instantaneous state information Ii
uav includes the UAV’s position (xi, yi), speed vi,

and heading angle αi, as shown below:

Ii
uav = [xi, yi, vi, αi] (14)

As shown in Figure 11, the distance and azimuth angle of Ui relative to the enemy
UAV are taken as the target relative position information Ii

tar.

Ii
tar = [di, βi] (15)

βi = αi − ϕi (16)

Here, di is the distance between Ui and the expected rendezvous point, ϕi is the
azimuth angle of the line between Ui and the expected rendezvous point, and βi is the
azimuth angle of the expected rendezvous point relative to the course of Ui.

To ensure the internal stability and obstacle avoidance ability of the UAVs, five targets’
information which can be stably tracked by the radar of Ui is added into the state space as
detection information:

Ii
detect = [di

1, βi
1, di

2, βi
2, di

3, βi
3, di

4, βi
4, di

5, βi
5] (17)

Here, di
1, di

2, di
3, di

4, and di
5 are the distance of Ui relative to the detected targets, and

βi
1, βi

2, βi
3, βi

4, and βi
5 are the azimuth angle of the detected targets relative to Ui. If less

than five targets are detected, the corresponding information is set to 0.
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Linear acceleration and angular acceleration are used to control the motion of the UAV;
so, the action space of Ui is as follows:

Ai = [ai
v, ai

α] (18)
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4.1.2. State Space and Action Space of Enemy UAV

The state space S of the enemy UAV includes instantaneous state information Iuav,
task information Itask, and detection information Idetect:

S = [Iuav, Itask, Idetect] (19)

The instantaneous state information Iuav is the same as that of our UAVs.
The objective of the enemy UAV is to avoid the NFZs, evade capture by our UAVs,

and complete the attack task on the PA as soon as possible; so, the distance and azimuth
angle of the PA relative to the enemy UAV are added to its state space as task information.

Itask = [dPA, βPA] (20)

βPA = αPA − ϕPA (21)

Here, dPA and ϕPA are the distance and azimuth angle between the enemy UAV and
the PA; βPA is the azimuth angle of PA relative to the course of enemy UAV.

Similarly, the five targets’ information stably tracked by the radar of the enemy UAV
is input into the state space as detection information:

Idetect = [d1, β1, d2, β2, d3, β3, d4, β4, d5, β5] (22)

Here, d1, d2, d3, d4, and d5 are the distance of the enemy UAV relative to the detected
target, and β1, β2, β3, β4, and β5 are the azimuth angle of the detected target relative to the
enemy UAV. If less than five targets are detected, the corresponding information is set to 0.

In the same way, linear acceleration and angular acceleration are used to control the
motion of the enemy UAV; so, the action space is as follows:

A = [av, aa] (23)

4.2. Design of Neural Network Structure

In the GM-TD3 algorithm framework, there are two types of neural networks in
which the “actor” networks are used to select the actions of the UAVs and output the
linear acceleration and angular acceleration of the UAVs to control the motion. The “critic”
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networks are used to evaluate the value of the actions selected by the “actor” networks and
guide the “actor” networks to learn and optimize the policies.

The two types of neural networks are both set as five-layer network structures, and the
number of neurons in each layer according to the gradient forward propagation direction is
as follows: “actor” networks (64, 128, 256, 128, 2) and “critic” networks (64, 128, 258, 128, 1).
In addition to the output layer, the other layers of the neural networks are activated by
the ReLU activation function. Considering the requirements of the UAV action space, the
output layer is activated by the tanh activation function.

4.3. Design of Reward Function

In the multi-UAV cooperative pursuit task, we set up the mixed-reward function to
guide the UAVs to complete their respective tasks according to the task objectives of both
sides, as shown below.

4.3.1. Design of Reward Function for Our UAVs

The mixed-reward function of our UAV Ui in the cooperative pursuit task is as follows:

ri = c1rsingle + c2rall + c3rdanger + c4rbound (24)

Here, rsingle is the individual reward for the UAV, rall is the global reward for the UAV,
rdanger is the UAV’s collision reward, rbound is an out-of-bounds reward for the UAV, and
c1, c2, c3, c4 are the weight factors.

The individual reward function of the UAV is set as follows:

rsingle = β1
∣∣dij − dexpect_ij

∣∣+ β2
∣∣di_tar − dexpect_i_tar

∣∣ (25)

Here, β1 and β2 are the weight factors, dij is the distance between two adjacent UAVs
Ui and U j, dexpect_ij is the expected distance between two adjacent UAVs Ui and U j, di_tar is
the distance between UAV Ui and the enemy UAV, and dexpect_i_tar is the expected distance
between UAV Ui and the enemy UAV. The individual reward is mainly to reward or punish
the trapping situation between the UAV and the target.

The global reward function of the UAV is set as follows:

rall = βall
(
dtar − d′tar

)
(26)

Here, βall represents the weight coefficient, while dtar and d′tar represent the distance
between the UAV and the enemy UAV at time t and t + 1, respectively. The global reward
function mainly evaluates the action of the UAV according to the change in the relative
position relationship between our UAV and the enemy UAV.

The collision reward function of the UAV is set as follows:

rdanger =


−30 i f dij ≤ ddanger

βdanger

(
dsa f e − dij

)
i f ddanger < dij ≤ dsa f e

0 others
(27)

Here, βdanger is the weight coefficient, dsa f e is the safe distance between adjacent UAVs,
and dij is the current distance between the adjacent UAVs Ui and U j. The collision reward
mainly rewards or punishes the UAV depending on whether it is at a safe distance from
the other UAVs.

The out-of-bounds reward of the UAV is set as follows:

rbound =

{
−100 i f xi < 0 or xi > W or yi < 0 or yi > H

0 others
(28)
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Here, xi and yi are the positions of UAV Ui; W and H are the length and width of the
battlefield. The out-of-bounds reward function mainly rewards or punishes the UAV for
flying out of the boundary or not.

4.3.2. Design of Reward Function for Enemy UAV

The mixed-reward function of the enemy UAV in the cooperative pursuit task is as follows:

r = b1r′all + b2r′danger + b3r′bound (29)

Here, r′all is the global reward function, r′danger is the collision reward function, r′bound
is an out-of-bounds reward, and b1, b2, b3 are the weight factors.

The global reward function for the enemy UAV is set as follows:

rall = βall
(
dPA − d′PA

)
(30)

Here, βall represents the weight coefficient, and dPA and d′PA are the distance between
the enemy UAV and the PA at time t and t + 1, respectively. The global reward function
mainly evaluates the action of the enemy UAV based on the change in the relative position
relationship between the enemy UAV and the PA.

The collision reward function and the out-of-bounds reward function of the enemy
UAV are the same as those of our UAVs.

5. Simulation Verification
5.1. Training Process

The hardware environment of the simulation platform is as follows: The CPU utilized
is the Intel i7-10870H, while the GPU employed is the RTX 3060 manufactured by NVIDIA
in Taiwan area, this accelerates the neural network training process. The graphics memory
is 6 GB, and the system memory is 32 GB.

The TD3 algorithm and the GM-TD3 algorithm were used for the enemy UAV and our
UAVs, respectively, to train the UAVs in the pursuit task scenario, and the initial situation
was randomly generated in the task area in each round of algorithm training.

The major parameter settings are shown in Table 1.

Table 1. Training parameters for multi-UAV pursuit task.

Parameter Value

Width of battlefield (m) W = 500
Length of battlefield (m) H = 500

Number of our UAVs rand(3,6)
Number of enemy UAVs 1

Number of NFZs 6
Velocity range of our UAVs (m/s) vi

t ∈ [1, 2.5]
Velocity range of enemy UAVs (m/s) vj

t ∈ [2, 3.5]
UAV linear acceleration range (m/s2) ai

vt ∈ [−1, 1]
UAV angular acceleration range (rad/s2) ai

αt ∈ [−π/6, π/6]
Learning rate of actor network αp = 0.0005
Learning rate of critic network αq = 0.001

Reward discount factor γ = 0.98
Sample size batch_size = 64

Training rounds T = 3000

In the training process of the two algorithms, the mean value and variance of the
weight parameters in the “actor_eval” neural network change with the training rounds, as
shown in Figure 12.
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As can be seen in figure, during the training process of our UAVs using the GM-TD3
algorithm, because the GA is used to optimize the population of the policy network and
the MMD method is used to increase the exploration space of the policy, the fluctuation
in the update of the neural network parameters is more stable during training, and the
convergence speed of the algorithm is significantly accelerated. With the increase in training
rounds, the parameters of the neural networks can converge to the stationary state faster.
The convergence and stability of our UAVs are obviously better than that of the enemy
UAVs, and the trained policy network can better complete the pursuit task.

We record the individual reward value of both the enemy and our UAVs under each
training round in the algorithm training process, as shown in Figure 13.
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It can be seen from the reward curve that as the training epochs increase, the reward
values of both sides gradually rise. At about 900 epochs, the reward value of both sides
levels off and our UAVs gradually achieve the encirclement pursuit task of the enemy UAV.
This shows that the improved algorithm is effective in the UAV pursuit task.
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5.2. Verification Process

We use the trained GM-TD3 and TD3 algorithm models for simulation verification to
test the effectiveness of the algorithm. In the simulation task scenario, the PA is represented
by a green circular area, the red circular areas are the NFZs, our UAVs are shown in blue,
and the enemy UAV is shown in red. The snapshot of the simulation effect for the 3vs1
pursuit game task is shown in Figure 14. The red areas indicate no-fly zones (NFZ), while
the blue areas represent protected asset areas.

Drones 2024, 8, x FOR PEER REVIEW 19 of 25 
 

 
Figure 13. Reward curve during algorithm training. 

5.2. Verification Process 
We use the trained GM-TD3 and TD3 algorithm models for simulation verification to 

test the effectiveness of the algorithm. In the simulation task scenario, the PA is repre-
sented by a green circular area, the red circular areas are the NFZs, our UAVs are shown 
in blue, and the enemy UAV is shown in red. The snapshot of the simulation effect for the 
3vs1 pursuit game task is shown in Figure 14. The red areas indicate no-fly zones (NFZ), 
while the blue areas represent protected asset areas, 

 

 

Figure 14. Snapshot of simulation effects for 3vs1 pursuit game task with NFZs. Figure 14. Snapshot of simulation effects for 3vs1 pursuit game task with NFZs.

In the simulation, our three UAVs successfully evaded the NFZs and coordinated
to round up the enemy UAV. The enemy UAV carried out avoidance maneuvers while
evading the NFZs and finally were surrounded by our UAVs and failed to reach the PA.
Our UAVs successfully completed the pursuit task.

In order to validate the simulation performance and generalization capability of the
algorithm under various conditions, we varied the number of our UAVs and no-fly zones,
randomly generated the initial states of the drones, and carried out simulation verification
in the 4vs1 and 6vs1 task scenarios; our UAVs were able to successfully complete the
pursuit task. The snapshot of the simulation effects is shown in Figures 15 and 16.

In order to further verify the generalization ability of the GM-TD3 algorithm, we
conducted a simulation of the task scenario without NFZs. The simulation effect for the
3vs1 task scenario is shown in Figure 17. Our UAVs successfully completed the pursuit
task. As can be seen from the simulation effect, in the task scenario without NFZs, the
enemy UAV is less restricted, so it is easier to exert its maneuvering ability advantage and
pose a greater threat to our PA.
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5.3. Algorithm Comparison and Analysis

We used the TD3, GA-TD3 (TD3 algorithm combining ERL with GA, GA-TD3), and
GM-TD3 algorithms to train our UAVs and the TD3 algorithm to train the enemy UAV to
compare the performance advantages of the algorithms.

In the training process of 3000 rounds, the individual reward curve of our UAV is
shown in Figure 18. It can be seen that the overall convergence trend of the three algorithms
is roughly the same, but the convergence speed of the GM-TD3 algorithm is faster; it can
obtain higher global rewards, and it has obvious performance advantages.
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The task success rates of the three algorithms in different training rounds are shown
in Figure 19.
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It can be seen that the task success rate of the GA-TD3 and GM-TD3 algorithms has
significantly improved after 1000 rounds of training and basically reached stability after
2000 rounds of training. Through a large number of simulations, the task success rate of the
GM-TD3 algorithm is stable at about 95% and that of the GA-TD3 algorithm is about 85%.
However, the success rate of the TD3 algorithm has been maintained at a low level, and
it is difficult to achieve the pursuit task against an enemy UAV with a speed advantage.
Therefore, the task success rate and the convergence rate of the GM-TD3 algorithm are
better than those of the GA-TD3 and TD3 algorithms, which shows the superiority of the
improved algorithm.

To verify the effect of the speed advantage of enemy UAVs on the performance of the
GM-TD3 algorithm, the task success rates of the TD3, GA-TD3, and GM-TD3 algorithms
were simulated under different maximum UAV speed ratio constraints. The simulation
results are shown in Figure 20; in the figure, the horizontal coordinate N represents the
ratio of the maximum speed of the enemy UAV to our UAV, and the vertical coordinate
represents the task success rate.
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6. Conclusions

This paper focuses on the task of multi-UAV cooperative pursuit of a high-speed enemy
UAV. We improve the traditional TD3 algorithm, combine the algorithm with the GA-based
ERL framework, and introduce the MMD method to expand the space for algorithm policy
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exploration. The improved algorithm can effectively improve the exploration efficiency
of the policy space and the training efficiency of the algorithm. Through a large number
of simulation experiments, we verify that the performance of the improved GM-TD3
algorithm has been greatly improved and it can achieve faster convergence compared with
the GA-TD3 and TD3 algorithms. With an enemy UAV four times as fast as ours, the task
success rate can still reach 75%; however, the task success rate of the GA-TD3 and TD3
algorithms under the same conditions is lower than 35%, which indicates that the improved
GM-TD3 algorithm has better ability to execute cooperative pursuit tasks, especially for
high-speed enemy UAVs.

Future research directions will primarily focus on the limitations of the algorithm
proposed in this paper when applied to other scenarios, particularly in the context of
multi-target evasion. This involves designing pursuit–evasion game scenarios that include
multiple hostile escaping drones and multiple friendly drones. Further improvements will
be made to the GM-TD3 algorithm introduced in this paper, with particular attention paid
to the dynamic allocation of targets during the pursuit process, as well as enhancing the
intelligence, generalizability, and realism of the scenarios, extending the improvements to a
3D environment.
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