
Citation: Zhang, Y.; Ding, M.;

Yuan, Y.; Zhang, J.; Yang, Q.; Shi, G.;

Jiang, F.; Lu, M. Multi-UAV

Cooperative Pursuit of a Fast-Moving

Target UAV Based on the GM-TD3

Algorithm. Drones 2024, 8, 557.

https://doi.org/10.3390/

drones8100557

Academic Editor: Agostino De Marco

Received: 5 September 2024

Revised: 26 September 2024

Accepted: 2 October 2024

Published: 8 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Multi-UAV Cooperative Pursuit of a Fast-Moving Target UAV
Based on the GM-TD3 Algorithm
Yaozhong Zhang 1 , Meiyan Ding 1, Yao Yuan 1, Jiandong Zhang 1 , Qiming Yang 1, Guoqing Shi 1, Frank Jiang 2,*
and Meiqu Lu 3,*

1 School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China;
zhang_y_z@nwpu.edu.cn (Y.Z.); dmy@mail.nwpu.edu.cn (M.D.); yuan_yao@mail.nwpu.edu.cn (Y.Y.);
jdzhang@nwpu.edu.cn (J.Z.); yangqm@nwpu.edu.cn (Q.Y.); shiguoqing@nwpu.edu.cn (G.S.)

2 Faculty of Science Engineering and Built Environment, Deakin University, Melbourne 3125, Australia
3 School of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China
* Correspondence: frank.jiang@deakin.edu.au (F.J.); meiqu.lu@gxmzu.edu.cn (M.L.)

Abstract: Recently, developing multi-UAVs to cooperatively pursue a fast-moving target has become
a research hotspot in the current world. Although deep reinforcement learning (DRL) has made a lot
of achievements in the UAV pursuit game, there are still some problems such as high-dimensional
parameter space, the ease of falling into local optimization, the long training time, and the low
task success rate. To solve the above-mentioned issues, we propose an improved twin delayed
deep deterministic policy gradient algorithm combining the genetic algorithm and maximum mean
discrepancy method (GM-TD3) for multi-UAV cooperative pursuit of high-speed targets. Firstly, this
paper combines GA-based evolutionary strategies with TD3 to generate action networks. Then, in
order to avoid local optimization in the algorithm training process, the maximum mean difference
(MMD) method is used to increase the diversity of the policy population in the updating process of
the population parameters. Finally, by setting the sensitivity weights of the genetic memory buffer
of UAV individuals, the mutation operator is improved to enhance the stability of the algorithm. In
addition, this paper designs a hybrid reward function to accelerate the convergence speed of training.
Through simulation experiments, we have verified that the training efficiency of the improved
algorithm has been greatly improved, which can achieve faster convergence; the successful rate of
the task has reached 95%, and further validated UAVs can better cooperate to complete the pursuit
game task.

Keywords: UAV pursuit game; TD3; genetic algorithm; maximum mean discrepancy; evolutionary
reinforcement learning

1. Introduction

In modern information warfare, UAVs have received more and more attention from
the militaries of various countries [1]. Especially in the Russia–Ukraine war, a large
number of practical applications of UAV technology have achieved remarkable results [2],
fully demonstrating the key role of UAVs in modern warfare. With the development of
unmanned equipment technology, the miniaturization and intelligence of UAVs make it
difficult for traditional air defense systems to respond effectively [3]. It can be said that
UAVs with low costs, miniaturization, and intelligence, especially AI (artificial intelligence)
technology, have shown great war potential in the actual combat environment and have
become the “new darling” on the battlefield.

As a typical differential game problem in air combat [4], the UAV pursuit problem can
be regarded as a multi-agent dynamic game system due to the conflicting objective functions
of both sides [5–7]. The choice of the optimal control strategy for UAVs from both sides
depends on their respective interests [8,9]. Therefore, advanced intelligent decision-making

Drones 2024, 8, 557. https://doi.org/10.3390/drones8100557 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8100557
https://doi.org/10.3390/drones8100557
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-8074-8753
https://orcid.org/0000-0001-5136-016X
https://doi.org/10.3390/drones8100557
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8100557?type=check_update&version=2

Drones 2024, 8, 557 2 of 24

technology is needed to assist the commanders of UAVs in real-time tactical decision-
making and command [10]. These intelligent decision technologies can be implemented
using machine learning, artificial intelligence (AI), and autonomous decision algorithms,
enabling UAV swarms to autonomously perceive the environment, analyze intelligence,
make decisions, and perform tasks. Through AI technologies, commanders can quickly
acquire and analyze vast amounts of perception data and receive real-time intelligence and
recommendations to support them in making efficient and correct decisions.

Reinforcement learning (RL) is an intelligent self-learning method that does not re-
quire expert signals or strict mathematical models. It adopts a trial-and-error mechanism
to interact with the environment and constantly tries different behavioral strategies for
reinforcement and improvement. RL is self-adaptive to the dynamic and unknown en-
vironment; therefore, it is suitable for adaptive optimal control methods with the aim of
solving complex nonlinear systems [11]. Based on these characteristics, RL can realize the
confrontation or cooperative behavior of multiple agents, and provide reasonable, reliable,
and dynamic policy support for multi-agent systems. Therefore, it has good prospects for
application in the field of differential games.

To combine the advantages of game theory and the RL algorithm, some scholars intro-
duce RL into the adversarial game modeling process. For example, the multi-agent deep
deterministic policy gradient (MADDPG) algorithm proposed by LOWE R et al. adopts the
method of decentralized execution of actions and centralized training of strategies [12]; the
algorithm has good stability and solves the problem of excessive gradient variance of the
strategy. It can enable multi-agents to find cooperative strategies under the environment
of both cooperation and competition. The collaborative learning model of the joint action
learner is presented in the literature [13], and the effectiveness of this method is proved by
experiments. In addition, there are many algorithms from different perspectives, such as
the Q algorithm based on correlated equilibrium solutions (CE-Q) [14], the Q algorithm
based on Pareto dominant solutions (Pareto-Q) [15], etc. These algorithms provide different
research ideas for solving multi-agent reinforcement learning problems.

In the context of intelligent decision-making for UAVs, the literature [16] employs
reinforcement learning methods to generate maneuvering strategies aimed at enhancing the
survival rate of UAVs in complex aerial combat scenarios. It proposes a unit state sequence
(USS) based on deep double Q networks (DDQNs) and deep deterministic policy gradient
(DDPG) algorithms, and integrates contextual features from the USS using gated recurrent
units (GRUs) to improve the UAV’s capability for state feature recognition and the conver-
gence of the algorithm in intricate aerial combat environments. Reference [17] focuses on
the modeling and simulation of disturbances such as wind and obstacles along paths in the
context of simulations of the drone swarm environment. The research demonstrates that
the presence of these disturbances can significantly alter the deployment and maneuvering
decisions of drone swarms within simulated scenarios. An improved method [18] based
on the Q-learning algorithm is proposed for the mapping of the paths and obstacle avoid-
ance tasks of unmanned aerial vehicles (UAVs) which is compared with the well-known
reinforcement learning algorithm, state–action–reward–state–action (SARSA). During the
obstacle avoidance control process, a reinforcement learning approach is similarly em-
ployed to conduct training within the AirSim virtual environment, wherein parameters are
adjusted and training outcomes are compared.

Deep reinforcement learning (DRL) has advantages in solving the game-confronting
problem, but it still faces three challenges: the time credit allocation problem caused by
sparse rewards in the long cycle process, the lack of effective exploration ability, and the
brittle convergence characteristic, which is extremely sensitive to hyperparameters. To
solve these problems, some researchers proposed evolutionary algorithms (EAs), which use
fitness indicators to integrate sparse rewards and explore diversity based on populations.
The redundancy performance of populations can effectively improve the robustness and
convergence of algorithms. Shauharda Khadka et al. proposed the framework of evolu-
tionary reinforcement learning (ERL) in combination with EAs [19]. The ERL algorithm

Drones 2024, 8, 557 3 of 24

inherits the ability of the evolutionary algorithm in time credit allocation, its effective
exploration ability in diversified strategies, and its stability based on population training,
and strengthens the gradient utilization ability of DRL through offline strategy, which
improves the utilization efficiency of training samples and improves the learning speed of
the algorithm.

Based on the algorithm framework of EAs and DRL, many scholars have proposed
improvements in different aspects. For example, [20] proposes a different combination
scheme in terms of combinatorial optimization; an improved algorithm is designed using a
simple cross-entropy method (CEM) and twin delayed deep determination policy gradient
(TD3). The proposed algorithm is tested on the classic DRL benchmark test set, and the
performance improvement of the algorithm is verified. The architecture of cooperative
heterogeneous DRL algorithms was proposed in the literature [21]; the ERL method is
extended to improve sample efficiency, using online and offline strategies, population
injection is performed when the actor network to be injected significantly outperforms the
evolutionary agent, and the playback buffer is combined with a smaller local playback
buffer, which stores filtered samples to ensure that the best samples are used for training.
The adaptive covariance matrix based on the gradient tree structure in the literature [22]
uses evolutionary strategies (ESs) to improve the diversity of network parameters and a
combination of ESs and RL to improve the performance of the algorithm. Through an
analysis of the literature, it can be seen that the application of the ERL framework greatly
improves the efficiency and convergence of the algorithm, but there are still some problems:
the exploration ability of high-dimensional parameter space is limited; it is easy to fall into
local optimization; the regeneration mode of the population has a great influence on the
stability of the training effect; most of the algorithm validation is limited to the existing RL
environment; and few are applied to the continuous pursuit and escape control problem.

Based on the ERL architecture and TD3 algorithm, this paper aims to solve the prob-
lem of the Q value being prone to overestimation in the RL algorithm. We choose the
GA algorithm as the evolution operator and adopt the maximum mean difference (MMD)
method to increase the diversity of the updated strategy in the population and improve the
exploration space; at the same time, the GA mutation operator is improved, the perturba-
tion effect of the Gaussian mutation on weight is corrected, and the GM-TD3 algorithm
is proposed. The simulation results show that the training efficiency of the improved
algorithm has been greatly improved, and it can achieve faster convergence, which greatly
improves the task success rate. After training, the UAVs can better complete the pursuit
game task and pursue the enemy UAV.

The main innovations of this paper are as follows:

(1) Based on the continuous task scenario of the multi-drone cooperative pursuit–evasion
game, we improved the traditional TD3 algorithm and designed a GM-TD3 algorithm
based on the ERL framework, which effectively improved the success rate of the
pursuit task. Finally, the effectiveness of the algorithm was verified by simulation.

(2) The MMD method was used to calculate the distance between different strategies, and
the direction of updating some individuals in the population is adjusted to maximize
the difference between the current strategy and the elite strategy, effectively ensuring
greater diversity of the offspring strategy and improving the effective exploration
ability of the algorithm.

(3) We designed a stable mutation operator which can calculate the sensitivity of each
gradient dimension of action to the weight perturbation according to the sample data
in the experience buffer; we used the sensitivity to scale the Gaussian perturbation of
each weight, so as to realize the variation update of the policy network and effectively
improve the stability of the strategy update in the population.

2. Task Scenario Model

The task scenario of this paper is set within a fixed battlefield area, where a high-speed
enemy UAV strikes against our base. In response, our side dispatches multiple UAVs to

Drones 2024, 8, 557 4 of 24

pursue and intercept the enemy drone, while simultaneously navigating around terrain
obstacles. This section provides detailed modeling of the task scenario and UAVs involved.

2.1. Task Scenario

In the two-dimensional battlefield environment with dimensions W × H, there is a
Protected Asset (PA) area, n, a no-fly zone (NFZ), N, and our UAVs and one enemy UAV
with a higher speed targeting our PA. The mission of our UAVs is to intercept the enemy
UAV which are attempting to carry out tasks against our PA. We set all UAVs to be at the
same altitude, regardless of height factors. When our UAVs recapture the enemy UAV or
when the enemy breaks through our defense and into the PA area, the pursuit game task is
terminated. The schematic diagram of the task scenario is shown in Figure 1.

Drones 2024, 8, x FOR PEER REVIEW 4 of 25

2. Task Scenario Model
The task scenario of this paper is set within a fixed battlefield area, where a high-

speed enemy UAV strikes against our base. In response, our side dispatches multiple
UAVs to pursue and intercept the enemy drone, while simultaneously navigating around
terrain obstacles. This section provides detailed modeling of the task scenario and UAVs
involved.

2.1. Task Scenario
In the two-dimensional battlefield environment with dimensions 𝑊 × 𝐻, there is a

Protected Asset (PA) area, n , a no-fly zone (NFZ), N , and our UAVs and one enemy
UAV with a higher speed targeting our PA. The mission of our UAVs is to intercept the
enemy UAV which are attempting to carry out tasks against our PA. We set all UAVs to be
at the same altitude, regardless of height factors. When our UAVs recapture the enemy
UAV or when the enemy breaks through our defense and into the PA area, the pursuit
game task is terminated. The schematic diagram of the task scenario is shown in Figure 1.

W

H

Our
UAVs

Enemy
UAV

Motion prediction

No-fly zone

Protected
Asset Area

Ed

Figure 1. A schematic diagram of the cooperative pursuit problem of multi-UAVs.

2.2. UAV Model
2.2.1. UAV Motion Model

In this paper, the UAV adopts a particle mass model, and the motion state of the UAV
is determined by its position and velocity. The linear acceleration 𝑎௩௧௜ and angular accel-
eration 𝑎ఈ௧௜ are used to control the speed and direction of the UAV, achieving agile flight,
as shown in Figure 2.

O X

Y

iU

i
vta

i
taα

iU
(,)i ix y

iα

iv

Figure 2. A schematic diagram of the UAV motion control model.

Figure 1. A schematic diagram of the cooperative pursuit problem of multi-UAVs.

2.2. UAV Model
2.2.1. UAV Motion Model

In this paper, the UAV adopts a particle mass model, and the motion state of the
UAV is determined by its position and velocity. The linear acceleration ai

vt and angular
acceleration ai

αt are used to control the speed and direction of the UAV, achieving agile
flight, as shown in Figure 2.

Drones 2024, 8, x FOR PEER REVIEW 5 of 26

O X

Y

iU

i
vta

i
taα

iU
(,)i ix y

iα

iv

Figure 2. A schematic diagram of the UAV motion control model.

The instantaneous state information 𝑄௧௜ of the UAV 𝑈௜ at the current time 𝑡 can be
represented as follows:

T
, , ,i i i i i

t t t t tQ x y v α =   (1)

where 𝑥௧௜ and 𝑦௧௜ represent the position of 𝑈௜ at time 𝑡, 𝑣௧௜ represents the velocity, 𝛼௧௜
represents the heading angle, 𝑎௩௧௜ represents the linear acceleration, 𝑎ఈ௧௜ represents the
angular acceleration, and 𝑖 represents the serial number of the UAV.

So, the instantaneous state information of 𝑈௜ at time 𝑡 + 1 is as follows:

1

1

1 1 1

1 1 1

cos

sin

i i i
t t vt
i i i
t t t

i i i i
t t t t
i i i i
t t t t

v v a t

a t

x x v t

y y v t

αα α
α
α

+

+

+ + +

+ + +

 = + ⋅ Δ


= + ⋅ Δ


= + ⋅ ⋅ Δ
 = + ⋅ ⋅ Δ

(2)

T
+1 +1 +1 +1 +1, , ,i i i i i
t t t t tQ x y v α =   (3)

where Δ𝑡 represents the simulation time step.

2.2.2. UAV Radar Detection and Communication Model
During the mission, the UAVs acquire information through radar detection and

communication with each other, as shown in Figure 3.

Figure 2. A schematic diagram of the UAV motion control model.

Drones 2024, 8, 557 5 of 24

The instantaneous state information Qi
t of the UAV Ui at the current time t can be

represented as follows:

Qi
t =

[
xi

t, yi
t, vi

t, αi
t

]T
(1)

where xi
t and yi

t represent the position of Ui at time t, vi
t represents the velocity, αi

t repre-
sents the heading angle, ai

vt represents the linear acceleration, ai
αt represents the angular

acceleration, and i represents the serial number of the UAV.
So, the instantaneous state information of Ui at time t + 1 is as follows:

vi
t+1 = vi

t + ai
vt · ∆t

αi
t+1 = αi

t + ai
αt · ∆t

xi
t+1 = xi

t + vi
t+1 · cos αi

t+1 · ∆t

yi
t+1 = yi

t + vi
t+1 · sin αi

t+1 · ∆t

(2)

Qi
t+1 =

[
xi

t+1, yi
t+1, vi

t+1, αi
t+1

]T
(3)

where ∆t represents the simulation time step.

2.2.2. UAV Radar Detection and Communication Model

During the mission, the UAVs acquire information through radar detection and com-
munication with each other, as shown in Figure 3.

Drones 2024, 8, x FOR PEER REVIEW 5 of 25

The instantaneous state information 𝑄௧௜ of the UAV 𝑈௜ at the current time 𝑡 can be
represented as follows:

T
, , ,i i i i i

t t t t tQ x y v α =   (1)

where 𝑥௧௜ and 𝑦௧௜ represent the position of 𝑈௜ at time 𝑡, 𝑣௧௜ represents the velocity, 𝛼௧௜
represents the heading angle, 𝑎௩௧௜ represents the linear acceleration, 𝑎ఈ௧௜ represents the
angular acceleration, and 𝑖 represents the serial number of the UAV.

So, the instantaneous state information of 𝑈௜ at time 𝑡 + 1 is as follows:

1

1

1 1 1

1 1 1

cos

sin

i i i
t t vt
i i i
t t t

i i i i
t t t t
i i i i
t t t t

v v a t

a t

x x v t

y y v t

αα α
α
α

+

+

+ + +

+ + +

 = + ⋅ Δ


= + ⋅ Δ


= + ⋅ ⋅ Δ
 = + ⋅ ⋅ Δ

(2)

T
+1 +1 +1 +1 +1, , ,i i i i i
t t t t tQ x y v α =   (3)

where Δ𝑡 represents the simulation time step.

2.2.2. UAV Radar Detection and Communication Model
During the mission, the UAVs acquire information through radar detection and com-

munication with each other, as shown in Figure 3.

commdsafed

probed

dangerd

probeθ
probeθ

UAV Radar Detection
Model

iU

1U

2U

3U

4U 5U

interactive
communicatio

n

interactive
communicatio

n

Figure 3. Schematic diagram of UAV radar detection and intra-swarm communication model.

The detection area of the UAV radar is the fan-shaped area in front of the nose, the
maximum detection distance is 𝑑௣௥௢௕௘, and the detection angle is 2𝜃௣௥௢௕௘. Considering
the constraints of radar tracking performance, the UAV can stably track up to five detec-
tion targets at the same time. We set the safe distance 𝑑௦௔௙௘ and dangerous distance 𝑑ௗ௔௡௚௘௥ for the UAV. When the distance between the UAV and the detection target is less
than the safe distance, there is a collision risk, and the UAV needs to maneuver as soon as
possible to avoid obstacles. When the distance between the UAV and the detection target
is less than the dangerous distance, the UAV collides and crashes.

Figure 3. Schematic diagram of UAV radar detection and intra-swarm communication model.

The detection area of the UAV radar is the fan-shaped area in front of the nose, the
maximum detection distance is dprobe, and the detection angle is 2θprobe. Considering the
constraints of radar tracking performance, the UAV can stably track up to five detection
targets at the same time. We set the safe distance dsa f e and dangerous distance ddanger for
the UAV. When the distance between the UAV and the detection target is less than the safe
distance, there is a collision risk, and the UAV needs to maneuver as soon as possible to
avoid obstacles. When the distance between the UAV and the detection target is less than
the dangerous distance, the UAV collides and crashes.

Drones 2024, 8, 557 6 of 24

The maximum communication distance between the UAV and its teammates is dcomm;
considering communication node constraints, each UAV in the team can communicate with
up to five teammates at the same time.

2.2.3. Pursuit Model

In the UAV pursuit task, when the target UAV enters our airspace, our UAVs begin to
cooperate to pursue the target UAV. The effect of multi-UAVs cooperative rounding up the
target is shown in Figure 4.

Drones 2024, 8, x FOR PEER REVIEW 6 of 25

The maximum communication distance between the UAV and its teammates is 𝑑௖௢௠௠; considering communication node constraints, each UAV in the team can communi-
cate with up to five teammates at the same time.

2.2.3. Pursuit Model
In the UAV pursuit task, when the target UAV enters our airspace, our UAVs begin

to cooperate to pursue the target UAV. The effect of multi-UAVs cooperative rounding up
the target is shown in Figure 4.

W

H

Our
cluster

target

Surrounding
attack circle

target

Surrounding
attack circle

Our
cluster

H

W

Figure 4. The effect of multi-UAVs cooperatively rounding up the target.

Figure 4 shows the expected results of a cooperative pursuit with three and six UAVs.
Since the maneuverability of the target UAV is better than ours, the basic pursuit strategy
is to make our UAVs evenly distributed around the target UAV, forming an encircling
situation and increasing the success rate of the pursuit task, as shown in Figure 5.

Target x

y

expect_ijθ
expect_jkd

expect_i_tard iU

jU

kU

Figure 5. Diagram of three UAVs completing pursuit task.

As shown in Figure 5, when three UAVs cooperate to perform the pursuit task, the
expected distance 𝑑௘௫௣௘௖௧_௜_௧௔௥ is shown between our UAVs and the enemy UAV, which is
encircled, and our UAVs block the escape path of the target. The angles between the indi-
viduals inside the UAVs are evenly distributed according to the number of individuals;

Figure 4. The effect of multi-UAVs cooperatively rounding up the target.

Figure 4 shows the expected results of a cooperative pursuit with three and six UAVs.
Since the maneuverability of the target UAV is better than ours, the basic pursuit strategy
is to make our UAVs evenly distributed around the target UAV, forming an encircling
situation and increasing the success rate of the pursuit task, as shown in Figure 5.

Drones 2024, 8, x FOR PEER REVIEW 6 of 25

The maximum communication distance between the UAV and its teammates is 𝑑௖௢௠௠; considering communication node constraints, each UAV in the team can communi-
cate with up to five teammates at the same time.

2.2.3. Pursuit Model
In the UAV pursuit task, when the target UAV enters our airspace, our UAVs begin

to cooperate to pursue the target UAV. The effect of multi-UAVs cooperative rounding up
the target is shown in Figure 4.

W

H

Our
cluster

target

Surrounding
attack circle

target

Surrounding
attack circle

Our
cluster

H

W

Figure 4. The effect of multi-UAVs cooperatively rounding up the target.

Figure 4 shows the expected results of a cooperative pursuit with three and six UAVs.
Since the maneuverability of the target UAV is better than ours, the basic pursuit strategy
is to make our UAVs evenly distributed around the target UAV, forming an encircling
situation and increasing the success rate of the pursuit task, as shown in Figure 5.

Target x

y

expect_ijθ
expect_jkd

expect_i_tard iU

jU

kU

Figure 5. Diagram of three UAVs completing pursuit task.

As shown in Figure 5, when three UAVs cooperate to perform the pursuit task, the
expected distance 𝑑௘௫௣௘௖௧_௜_௧௔௥ is shown between our UAVs and the enemy UAV, which is
encircled, and our UAVs block the escape path of the target. The angles between the indi-
viduals inside the UAVs are evenly distributed according to the number of individuals;

Figure 5. Diagram of three UAVs completing pursuit task.

As shown in Figure 5, when three UAVs cooperate to perform the pursuit task, the
expected distance dexpect_i_tar is shown between our UAVs and the enemy UAV, which
is encircled, and our UAVs block the escape path of the target. The angles between the
individuals inside the UAVs are evenly distributed according to the number of individuals;

Drones 2024, 8, 557 7 of 24

so, the expected angle θexpect_ij is 2π/3, ensuring that the UAVs are evenly distributed
around the circle.

3. Design of GM-TD3 Algorithm
3.1. Framework of ERL

ERL combines the population-based approach of EAs to generate diverse experiences,
train RL agents, and periodically transfer RL agents into EA populations to inject gradient
update information into EAs [19]. ERL solves the time credit allocation problem by using
the whole round reward. The selection operator tends to choose the policy network with
a higher round reward in the policy space based on the fitness index, which is a very
effective form of implicit priority ranking for task scenarios with a long time span and
sparse rewards. In addition, ERL inherits the characteristics of population-based EAs and
has the capability to eliminate any redundancy, which makes the convergence process of
the algorithm more stable. ERL takes advantage of a population’s ability to explore in the
parameter space and action space, making it easier to generate diversification policies for
effective exploration. The basic framework of the ERL algorithm is shown in Figure 6.

Drones 2024, 8, x FOR PEER REVIEW 7 of 25

so, the expected angle 𝜃௘௫௣௘௖௧_௜௝ is 2𝜋/3, ensuring that the UAVs are evenly distributed
around the circle.

3. Design of GM-TD3 Algorithm
3.1. Framework of ERL

ERL combines the population-based approach of EAs to generate diverse experi-
ences, train RL agents, and periodically transfer RL agents into EA populations to inject
gradient update information into EAs [19]. ERL solves the time credit allocation problem
by using the whole round reward. The selection operator tends to choose the policy net-
work with a higher round reward in the policy space based on the fitness index, which is
a very effective form of implicit priority ranking for task scenarios with a long time span
and sparse rewards. In addition, ERL inherits the characteristics of population-based EAs
and has the capability to eliminate any redundancy, which makes the convergence process
of the algorithm more stable. ERL takes advantage of a population’s ability to explore in
the parameter space and action space, making it easier to generate diversification policies
for effective exploration. The basic framework of the ERL algorithm is shown in Figure 6.

evaluate

Experience Buffer Pool
（s1,a1,r1,s2)
(s2,a2,r2,s3)

…

(sn−1,an−1,rn−1,sn)

Select
Sort fitness

Crossover

Environment Individual

interact

RL Algorithm

Actor network

Critic network

Empirical
sample

Update
population

Periodic injection into the
population

Actor1

...

Population

Actor n−1

Actor n

Mutate

Substitute

Figure 6. Diagram of ERL basic framework.

3.2. Genetic Algorithm
In the ERL framework, we choose the genetic algorithm (GA) as the EA. The GA was

designed to search for complex solution spaces where an exhaustive search is not feasible
and other search methods do not perform well. When used as a function optimizer, the
GA tries to maximize the fitness associated with the optimization goal. The GA has been
applied to the design and optimization of various problems and has achieved many suc-
cessful applications [23].

The initial population of the GA is a set of randomly selected valid candidate solu-
tions. The fitness function is used to calculate each individual candidate to obtain the fit-
ness value of the initial population. After the genetic operators of selection, crossover, and

Figure 6. Diagram of ERL basic framework.

3.2. Genetic Algorithm

In the ERL framework, we choose the genetic algorithm (GA) as the EA. The GA
was designed to search for complex solution spaces where an exhaustive search is not
feasible and other search methods do not perform well. When used as a function optimizer,
the GA tries to maximize the fitness associated with the optimization goal. The GA has
been applied to the design and optimization of various problems and has achieved many
successful applications [23].

The initial population of the GA is a set of randomly selected valid candidate solutions.
The fitness function is used to calculate each individual candidate to obtain the fitness value
of the initial population. After the genetic operators of selection, crossover, and mutation
are applied, the new generation of individuals is re-evaluated [24,25]. The basic flow of the
GA is shown in Figure 7.

Drones 2024, 8, 557 8 of 24

Drones 2024, 8, x FOR PEER REVIEW 8 of 25

mutation are applied, the new generation of individuals is re-evaluated [24,25]. The basic
flow of the GA is shown in Figure 7.

Start

Random initialization of
the population

Calculate the fitness of each
individual in the population

select

crossover

mutate

Calculate the fitness of each
individual in the population

Satisfy termination conditions

Output the solution with
maximum fitness

End

No

Yes

Figure 7. Diagram of basic flow of GA.

3.3. TD3 Algorithm
In value-based RL algorithms, such as deep Q learning, function approximation er-

rors are known to lead to overestimation and suboptimal strategies, and this problem has
been shown to persist in the context of actor–critic algorithm models. The TD3 algorithm
is based on double Q learning; by selecting the smaller value of the two estimation func-
tions, it limits the overestimation of the Q value and uses the double-delay update policy
to reduce the error of each update, further improving the performance of the algorithm.

The TD3 algorithm consists of six neural networks, namely the “actor_eval” policy
estimation network, the “actor_target” policy reality network, the “critic_eval_1” and
“critic_eval_2” value estimation networks, and the “critic_target_1” and “critic_target_2”
value reality networks. The framework of the TD3 algorithm is shown in Figure 8. In the
algorithm, two sets of critic networks are used to evaluate the value of the actor network,
and then, the small Q value is selected to update the parameters of the actor network,
which can effectively alleviate the problem of overestimation of the Q value. Such im-
provement may lead to some underestimation, but low estimation will only affect the
learning efficiency of training and will not affect the final learning strategy.

Figure 7. Diagram of basic flow of GA.

3.3. TD3 Algorithm

In value-based RL algorithms, such as deep Q learning, function approximation errors
are known to lead to overestimation and suboptimal strategies, and this problem has been
shown to persist in the context of actor–critic algorithm models. The TD3 algorithm is
based on double Q learning; by selecting the smaller value of the two estimation functions,
it limits the overestimation of the Q value and uses the double-delay update policy to
reduce the error of each update, further improving the performance of the algorithm.

The TD3 algorithm consists of six neural networks, namely the “actor_eval” pol-
icy estimation network, the “actor_target” policy reality network, the “critic_eval_1” and
“critic_eval_2” value estimation networks, and the “critic_target_1” and “critic_target_2”
value reality networks. The framework of the TD3 algorithm is shown in Figure 8. In the al-
gorithm, two sets of critic networks are used to evaluate the value of the actor network, and
then, the small Q value is selected to update the parameters of the actor network, which can
effectively alleviate the problem of overestimation of the Q value. Such improvement may
lead to some underestimation, but low estimation will only affect the learning efficiency of
training and will not affect the final learning strategy.

Drones 2024, 8, 557 9 of 24Drones 2024, 8, x FOR PEER REVIEW 9 of 25

environment

optimizer

actor_eval

actor_target

optimizer

critic_eval_1

critic_target_1

optimizer

critic_eval_2

critic_target_2

critic networkPolicy Network

min Qgradient Q gradient

soft
update

soft
update

soft
update

OU
noise

Experience
replay unit

Sampling strategy

sample

store

Random
noise

ta

()tsμ

()1, ,t t ts r s +

()ta sμ=

()1' tsμ +

()1, , ,t t t ts a r s +

()1, , ,t t t tN s a r s +∗

1
iy 2

iy

1criticθ

1'criticθ 2'criticθ

2criticθactorθ

Figure 8. Diagram of TD3 algorithm framework.

The actor networks take the mean value output of the critic network as the loss func-
tion:

_ (Q(, ;))actor eval criticLoss mean s a θ= − (4)

Here, 𝑄(𝑠, 𝑎; 𝜃௖௥௜௧௜௖) is the value assessment of the action behavior output by the
critic network for the actor network under the current state, and the minimum value of
the two critic networks is used for the calculation.

Critic networks update the network parameters in the value-based mode, and the
loss function is as follows:

_

2
1 1[(,) (, ;) (, ;)]

critic eval critic_target critic_eval

i i i
t t t t t tLoss r s a Q s a Q s aγ θ θ+ +′= + ⋅ −

 (5)

Here, 𝑖 = 1,2 represents the two critic networks, 𝑟(𝑠௧, 𝑎௧) is the reward that the
agent receives after taking action 𝑎௧ and interacting with the environment in state 𝑠௧ , 𝑄(𝑠௧, 𝑎௧; 𝜃௖௥௜௧௜௖_௘௩௔௟௜) is the evaluation of action 𝑎௧ in state 𝑠௧ that is output by the
“critic_eval_i” network, and 𝑄ᇱ(𝑠௧ାଵ, 𝑎௧ାଵ; 𝜃௖௥௜௧௜௖_௧ ௔௥௚ ௘௧௜) is the evaluation of action 𝑎௧ାଵ in
state 𝑠௧ାଵ that is output by the “critic_ target_i” network.

 The network parameters are updated by minimizing the loss functions of the
critic_eval and actor_eval networks during training. The network parameters of the
critic_target_1, critic_target_2, and actor_target are updated with soft update mode.

3.4. Maximum Mean Discrepancy
As the traditional EA is prone to local optimization, we introduce the MMD method

to calculate the difference between the current policy and the elite policy in the population
and increase the diversity of policies by gradient updating, thus greatly improving the
solution space exploration ability of the algorithm.

Assuming that the elite policy in the current population is 𝜋ఎ, the gradient update of
the network parameter 𝜑 of the actor network is in the direction of maximizing the dif-
ference between the current policy and 𝜋ఎ, while maximizing the cumulative return. The
difference is calculated by using the square of the MMD.

Figure 8. Diagram of TD3 algorithm framework.

The actor networks take the mean value output of the critic network as the loss function:

Lossactor_eval = −mean(Q(s, a; θcritic)) (4)

Here, Q(s, a; θcritic) is the value assessment of the action behavior output by the critic
network for the actor network under the current state, and the minimum value of the two
critic networks is used for the calculation.

Critic networks update the network parameters in the value-based mode, and the loss
function is as follows:

Lossi
critic_eval = [r(st, at) + γ ·Q′(st+1, at+1; θi

critic_target)−Q(st, at; θi
critic_eval)]

2
(5)

Here, i = 1, 2 represents the two critic networks, r(st, at) is the reward that the
agent receives after taking action at and interacting with the environment in state st,
Q
(

st, at; θi
critic_eval

)
is the evaluation of action at in state st that is output by the “critic_eval_i”

network, and Q′
(

st+1, at+1; θi
critic_target

)
is the evaluation of action at+1 in state st+1 that is

output by the “critic_target_i” network.
The network parameters are updated by minimizing the loss functions of the critic_eval

and actor_eval networks during training. The network parameters of the critic_target_1,
critic_target_2, and actor_target are updated with soft update mode.

3.4. Maximum Mean Discrepancy

As the traditional EA is prone to local optimization, we introduce the MMD method
to calculate the difference between the current policy and the elite policy in the population
and increase the diversity of policies by gradient updating, thus greatly improving the
solution space exploration ability of the algorithm.

Assuming that the elite policy in the current population is πη , the gradient update
of the network parameter φ of the actor network is in the direction of maximizing the
difference between the current policy and πη , while maximizing the cumulative return.
The difference is calculated by using the square of the MMD.

Drones 2024, 8, 557 10 of 24

Let us say that given samples x1, . . . , xn ∼ P and y1, . . . , ym ∼ G, since the square of
the MMD can only be estimated from the sample of a given distribution, then the square of
the MMD between distributions P and G is calculated as follows:

MMD2({x1, . . . , xn}, {y1, . . . , ym})
= 1

n2 ∑i,j′ . . . k(xi, xi′)− 2
nm ∑i,j . . . k(xi, yj) +

1
m2 ∑j,j′ k(yj, yj′)

(6)

Here, k(·, ·) is the Gaussian kernel function, as shown below:

k(xi, xi′) = exp(−∥xi − xi′∥2

2σ2), σ > 0 (7)

In the above equation, σ is the standard deviation.
The square of the MMD between the elite policy πη and the policy πφ is denoted as

DMMD
(
πη , πφ

)
and calculated as follows:

DMMD(πµ, πϕ) = MMD2(πµ(·|s), πϕ(·|s))s ∼ D (8)

Here, D represents the experience sample buffer.
The objective function of the actor network considering the maximization of cumula-

tive returns is as follows:
Jπ(ϕ) = Es,a∼πϕ [QθQ

1
(s, a)] (9)

When DMMD
(
πη , πφ

)
satisfies the gradient update, the objective function of the actor

network is calculated as follows:

JMMD(ϕ) = Es,a∼πϕ |QAQ(s, a)|+ βEs

[
MMD2(π∗(·|s), πϕ(·|s))

]
(10)

Here, β is the weight factor used for regulation.

3.5. Stable Mutation Operator

To improve the stability of the algorithm, a separate individual sample buffer is set for
each member of the population and the RL agent, which contains the recent experience of
the individual, and depending on its capacity K, the buffer can also contain the experience
of its parent [26]. Since the buffer can span multiple generations, the individual sample
buffer of each agent is referred to as genetic memory.

Even for gradient descent methods, the stability of policy updates is an issue, as
inappropriate step sizes can have unpredictable consequences in terms of performance.
In this paper, a stable mutation operator is proposed, which first samples a batch of NM
empirical samples from the genetic memory, then calculates the gradient of each dimension
of the sample output action, and finally calculates the sensitivity s of the samples’ action to
the network weight perturbation as follows:

s =

√√√√Σ|A|k (
NM

∑
i
∇θµθ(si)k)

2 (11)

Then, the following formula is used to adjust the network parameters to form a stable
mutation operator:

θ = θ + x/s (12)

where x ∼ N(0; σ), and σ is the variance of the perturbation, such that the behavior of
the policy network generated by the variation in the offspring sample does not mutate
significantly from that of its parent.

3.6. GM-TD3 Algorithm

The framework design of the GM-TD3 algorithm is shown in Figure 9.

Drones 2024, 8, 557 11 of 24

Figure 9. Framework of GM-TD3 algorithm.

The execution steps of the GM-TD3 algorithm are as follows:

(1) Randomly initialize K policy networks as the initial population; randomly initialize
the actor networks and critic networks of the TD3 algorithm; randomly initialize the
GA algorithm;

(2) Initialize the task scenario, interact the policy network with the environment, and
obtain the sample data and store them in the replay buffer R;

(3) Train the TD3 algorithm networks with the sample data;
(4) Interact with the environment to evaluate the strategic populations;
(5) Calculate the fitness values of the individuals in the population and organize the

policy network; select the individuals with the highest fitness as the elite strategy πµ;
(6) Order the individuals in the population based on their fitness values from high to low,

and perform cross-mutation on the top K/2 individuals in the sorted population to
achieve updates;

(7) Combine the elite strategy and the MMD method to train and update the remaining
policy network in the population and generate a new population;

(8) Calculate the fitness of the policy network in the TD3 algorithm and compare it with
the worst individual with the lowest fitness in the population; if the policy network
of the TD3 algorithm is better than the worst individual in the population, the worst
individual will be replaced periodically;

(9) If the algorithm converges or the maximum number of iterations is reached, output
the optimal policy network; otherwise, go to (2).

The flowchart of the GM-TD3 algorithm is depicted in Figure 10 and Algorithm 1.

Drones 2024, 8, 557 12 of 24

Drones 2024, 8, x FOR PEER REVIEW 12 of 25

The flowchart of the GM-TD3 algorithm is depicted in Figure 10 and Algorithm 1.

Initialize population, TD3
algorithm and replay buffer

Reset the task scenario

Interact the population and TD3 policy
network with the environment and store

sample data in the replay buffer

Evaluate strategic
populations and sort

Train TD3 algorithm
networks with sample data

The individual fitness value
is within the top k/2 individuals ?

Perform cross-mutation for
update

Combine the elite strategy and
the MMD method to update

Generate new populations

Inject the TD3 policy network
periodically into the population

If the termination condition
is reached

Output optimal policy network

Yes

No

Yes

No

Figure 10. Flowchart of GM-TD3 algorithm.

The pseudo-code of the GM-TD3 algorithm is as follows:

Figure 10. Flowchart of GM-TD3 algorithm.

The pseudo-code of the GM-TD3 algorithm is as follows:

Drones 2024, 8, 557 13 of 24

Algorithm 1: GM-TD3

Randomly initialize K policy networks to generate population popπ , initialize the replay buffer R,
initialize the maximum number of iterations G, evaluation of round episode M;
Initialize the actor network parameters θµ and their target network parameters θµ′, and critic1,
critic2 network parameters θQ

1 , θQ
2 and their target network parameters θQ′

1 , θQ′
2 of the TD3

algorithm;
Initialize GA parameters;
Construct a noise generator and a random number generator, and define control probability w;
While number of iterations n is less than G:

For policy network πiϵpopπ :
For evaluation rounds episode = 1 · · ·M:

For steps n = 1 · · ·N:
Reset environment and initial state s0;
Select an action based on the current policy network at = π(st|θπ) + noiset;
Execute action at, obtain reward rt, update to status st+1;
Store (st, at, rt, st+1) in R;
Calculate reward rtotal = rtotal + rt;
Set st ← st+1 ;

End for
End for
Calculate the fitness of the current policy network: fi = rtotal/episode;

End for
Random sample (st, a, r, st+1) from R for training;
Update the critic_eval network parameters to minimize losses:

at+1 = πθ(st)

y = r + γ·mini=1,2Q
θQ

i
(st+1, at+1)

θQ
i ← argmin

θQ
i

N−1∑
(

y−Q
θQ

i
(st+1, at)

)2

Calculate the loss function and obtain the gradient:
Loss = −mean(v(s, a))

Update actor_eval network parameters by gradient descent method:
∇ϕ J(ϕ) = N−1∑∇aQ

θQ
1
(s, a)|a=πϕ(s)∇ϕπϕ(s)

If reach the “target” network update period:
Update target network parameters using soft update mode;

End if
Rank the policy network according to the fitness assessed, and select the policy network with the

highest fitness as the elite policy π*;
For policy network πiϵpopπ :

For i = 1 to K/2:
The strategy population was cross-mutated to generate progeny and renew the population.

End for
For i = K/2 + 1 to K1:

Samples are extracted from R to train actor networks and update population;
Network parameters are updated by gradient descent method:

Jπ(ϕ) = Es,a∼πϕ

[
Q

θQ
1
(s, a)

]
End for
For i = K/2 + 1 to K1:

Samples are extracted from R for training actor networks and update population;
Network parameters are updated by gradient descent method:

JMMD(ϕ) = Es,a∼πϕ

[
Q

θQ
1
(s, a)

]
+ βEs

[
MMD2(π*(·|s

)
, πϕ(·|s))

]
End for

End for
A new policy population popπ′ was formed and added to the training process;
For policy network πiϵpopπ′:

For evaluation rounds episode = 1 · · ·M:
For steps n = 1 · · ·N:

Reset environment and initial state s0;

Drones 2024, 8, 557 14 of 24

Algorithm 1: Cont.

Select an action based on the current policy network at = π(st|θπ) + noiset;
Execute action at, obtain reward rt, update to status st+1;
Store (st, at, rt, st+1) into R;
Calculate reward rtotal = rtotal + rt;
Set st ← st+1 ;

End for
End for
Calculate the fitness of the current policy network: f ′i = rtotal/episode;

End for
Calculate the fitness of the policy network in TD3 algorithm fTD3;
If the policy network of TD3 algorithm outperforms the worst individual in the population:

If the number of iterations has reached the update cycle:
Replace the worst individual in the population with the policy network in TD3 algorithm;

End if
End if

End while

4. UAV Pursuit and Escape Game Strategy Based on GM-TD3 Algorithm
4.1. Design of State Space and Action Space

In the multi-UAV cooperative pursuit task, the actions of both sides are trained by the
RL method, and the corresponding state space and action space design are shown below.

4.1.1. State Space and Action Space of Our UAVs

The state space Si of our UAV Ui includes instantaneous state information Ii
uav, target

relative position information Ii
tar, and detection information Ii

detect:

Si = [Ii
uav, Ii

tar, Ii
detect] (13)

The instantaneous state information Ii
uav includes the UAV’s position (xi, yi), speed vi,

and heading angle αi, as shown below:

Ii
uav = [xi, yi, vi, αi] (14)

As shown in Figure 11, the distance and azimuth angle of Ui relative to the enemy
UAV are taken as the target relative position information Ii

tar.

Ii
tar = [di, βi] (15)

βi = αi − ϕi (16)

Here, di is the distance between Ui and the expected rendezvous point, ϕi is the
azimuth angle of the line between Ui and the expected rendezvous point, and βi is the
azimuth angle of the expected rendezvous point relative to the course of Ui.

To ensure the internal stability and obstacle avoidance ability of the UAVs, five targets’
information which can be stably tracked by the radar of Ui is added into the state space as
detection information:

Ii
detect = [di

1, βi
1, di

2, βi
2, di

3, βi
3, di

4, βi
4, di

5, βi
5] (17)

Here, di
1, di

2, di
3, di

4, and di
5 are the distance of Ui relative to the detected targets, and

βi
1, βi

2, βi
3, βi

4, and βi
5 are the azimuth angle of the detected targets relative to Ui. If less

than five targets are detected, the corresponding information is set to 0.

Drones 2024, 8, 557 15 of 24

Linear acceleration and angular acceleration are used to control the motion of the UAV;
so, the action space of Ui is as follows:

Ai = [ai
v, ai

α] (18)

Drones 2024, 8, x FOR PEER REVIEW 16 of 26

Here, 𝑑𝑑𝑖𝑖 is the distance between 𝑈𝑈𝑖𝑖 and the expected rendezvous point, 𝜙𝜙𝑖𝑖 is the
azimuth angle of the line between 𝑈𝑈𝑖𝑖 and the expected rendezvous point, and 𝛽𝛽𝑖𝑖 is the
azimuth angle of the expected rendezvous point relative to the course of 𝑈𝑈𝑖𝑖.

O X

Y

iv

(,)i ix y

(,)tar tarx y

id

iβ

iα
iφ

iU

Figure 11. Relationship between relative positions between UAVs.

To ensure the internal stability and obstacle avoidance ability of the UAVs, five
targets’ information which can be stably tracked by the radar of 𝑈𝑈𝑖𝑖 is added into the state
space as detection information:

1 1 2 2 3 3 4 4 5 5[, , , , , , , , ,]i i i i i i i
det

i i
t

i
e

i
cI d d d d dβ β β β β= (17)

Here, 𝑑𝑑1𝑖𝑖 , 𝑑𝑑2𝑖𝑖 , 𝑑𝑑3𝑖𝑖 , 𝑑𝑑4𝑖𝑖 , and 𝑑𝑑5𝑖𝑖 are the distance of 𝑈𝑈𝑖𝑖 relative to the detected targets,
and 𝛽𝛽1𝑖𝑖 , 𝛽𝛽2𝑖𝑖 , 𝛽𝛽3𝑖𝑖 , 𝛽𝛽4𝑖𝑖 , and 𝛽𝛽5𝑖𝑖 are the azimuth angle of the detected targets relative to 𝑈𝑈𝑖𝑖.
If less than five targets are detected, the corresponding information is set to 0.

Linear acceleration and angular acceleration are used to control the motion of the
UAV; so, the action space of 𝑈𝑈𝑖𝑖 is as follows:

[,]i i i
vA a aα= (18)

4.1.2. State Space and Action Space of Enemy UAV
The state space 𝑆𝑆 of the enemy UAV includes instantaneous state information 𝐼𝐼𝑢𝑢𝑢𝑢𝑢𝑢,

task information 𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and detection information 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑:

det[, ,]uav task ectS I I I=
 (19)

The instantaneous state information 𝐼𝐼𝑢𝑢𝑢𝑢𝑢𝑢 is the same as that of our UAVs.
The objective of the enemy UAV is to avoid the NFZs, evade capture by our UAVs,

and complete the attack task on the PA as soon as possible; so, the distance and azimuth
angle of the PA relative to the enemy UAV are added to its state space as task information.

[,]task PA PAI d β= (20)

PA PA PAβ α φ= − (21)

Here, 𝑑𝑑𝑃𝑃𝑃𝑃 and 𝜙𝜙𝑃𝑃𝑃𝑃 are the distance and azimuth angle between the enemy UAV
and the PA; 𝛽𝛽𝑃𝑃𝑃𝑃 is the azimuth angle of PA relative to the course of enemy UAV.

Similarly, the five targets’ information stably tracked by the radar of the enemy UAV
is input into the state space as detection information:

det 1 1 2 2 3 3 4 4 5 5[, , , , , , , , ,]ectI d d d d dβ β β β β= (22)

Figure 11. Relationship between relative positions between UAVs.

4.1.2. State Space and Action Space of Enemy UAV

The state space S of the enemy UAV includes instantaneous state information Iuav,
task information Itask, and detection information Idetect:

S = [Iuav, Itask, Idetect] (19)

The instantaneous state information Iuav is the same as that of our UAVs.
The objective of the enemy UAV is to avoid the NFZs, evade capture by our UAVs,

and complete the attack task on the PA as soon as possible; so, the distance and azimuth
angle of the PA relative to the enemy UAV are added to its state space as task information.

Itask = [dPA, βPA] (20)

βPA = αPA − ϕPA (21)

Here, dPA and ϕPA are the distance and azimuth angle between the enemy UAV and
the PA; βPA is the azimuth angle of PA relative to the course of enemy UAV.

Similarly, the five targets’ information stably tracked by the radar of the enemy UAV
is input into the state space as detection information:

Idetect = [d1, β1, d2, β2, d3, β3, d4, β4, d5, β5] (22)

Here, d1, d2, d3, d4, and d5 are the distance of the enemy UAV relative to the detected
target, and β1, β2, β3, β4, and β5 are the azimuth angle of the detected target relative to the
enemy UAV. If less than five targets are detected, the corresponding information is set to 0.

In the same way, linear acceleration and angular acceleration are used to control the
motion of the enemy UAV; so, the action space is as follows:

A = [av, aa] (23)

4.2. Design of Neural Network Structure

In the GM-TD3 algorithm framework, there are two types of neural networks in
which the “actor” networks are used to select the actions of the UAVs and output the
linear acceleration and angular acceleration of the UAVs to control the motion. The “critic”

Drones 2024, 8, 557 16 of 24

networks are used to evaluate the value of the actions selected by the “actor” networks and
guide the “actor” networks to learn and optimize the policies.

The two types of neural networks are both set as five-layer network structures, and the
number of neurons in each layer according to the gradient forward propagation direction is
as follows: “actor” networks (64, 128, 256, 128, 2) and “critic” networks (64, 128, 258, 128, 1).
In addition to the output layer, the other layers of the neural networks are activated by
the ReLU activation function. Considering the requirements of the UAV action space, the
output layer is activated by the tanh activation function.

4.3. Design of Reward Function

In the multi-UAV cooperative pursuit task, we set up the mixed-reward function to
guide the UAVs to complete their respective tasks according to the task objectives of both
sides, as shown below.

4.3.1. Design of Reward Function for Our UAVs

The mixed-reward function of our UAV Ui in the cooperative pursuit task is as follows:

ri = c1rsingle + c2rall + c3rdanger + c4rbound (24)

Here, rsingle is the individual reward for the UAV, rall is the global reward for the UAV,
rdanger is the UAV’s collision reward, rbound is an out-of-bounds reward for the UAV, and
c1, c2, c3, c4 are the weight factors.

The individual reward function of the UAV is set as follows:

rsingle = β1
∣∣dij − dexpect_ij

∣∣+ β2
∣∣di_tar − dexpect_i_tar

∣∣ (25)

Here, β1 and β2 are the weight factors, dij is the distance between two adjacent UAVs
Ui and U j, dexpect_ij is the expected distance between two adjacent UAVs Ui and U j, di_tar is
the distance between UAV Ui and the enemy UAV, and dexpect_i_tar is the expected distance
between UAV Ui and the enemy UAV. The individual reward is mainly to reward or punish
the trapping situation between the UAV and the target.

The global reward function of the UAV is set as follows:

rall = βall
(
dtar − d′tar

)
(26)

Here, βall represents the weight coefficient, while dtar and d′tar represent the distance
between the UAV and the enemy UAV at time t and t + 1, respectively. The global reward
function mainly evaluates the action of the UAV according to the change in the relative
position relationship between our UAV and the enemy UAV.

The collision reward function of the UAV is set as follows:

rdanger =


−30 i f dij ≤ ddanger

βdanger

(
dsa f e − dij

)
i f ddanger < dij ≤ dsa f e

0 others
(27)

Here, βdanger is the weight coefficient, dsa f e is the safe distance between adjacent UAVs,
and dij is the current distance between the adjacent UAVs Ui and U j. The collision reward
mainly rewards or punishes the UAV depending on whether it is at a safe distance from
the other UAVs.

The out-of-bounds reward of the UAV is set as follows:

rbound =

{
−100 i f xi < 0 or xi > W or yi < 0 or yi > H

0 others
(28)

Drones 2024, 8, 557 17 of 24

Here, xi and yi are the positions of UAV Ui; W and H are the length and width of the
battlefield. The out-of-bounds reward function mainly rewards or punishes the UAV for
flying out of the boundary or not.

4.3.2. Design of Reward Function for Enemy UAV

The mixed-reward function of the enemy UAV in the cooperative pursuit task is as follows:

r = b1r′all + b2r′danger + b3r′bound (29)

Here, r′all is the global reward function, r′danger is the collision reward function, r′bound
is an out-of-bounds reward, and b1, b2, b3 are the weight factors.

The global reward function for the enemy UAV is set as follows:

rall = βall
(
dPA − d′PA

)
(30)

Here, βall represents the weight coefficient, and dPA and d′PA are the distance between
the enemy UAV and the PA at time t and t + 1, respectively. The global reward function
mainly evaluates the action of the enemy UAV based on the change in the relative position
relationship between the enemy UAV and the PA.

The collision reward function and the out-of-bounds reward function of the enemy
UAV are the same as those of our UAVs.

5. Simulation Verification
5.1. Training Process

The hardware environment of the simulation platform is as follows: The CPU utilized
is the Intel i7-10870H, while the GPU employed is the RTX 3060 manufactured by NVIDIA
in Taiwan area, this accelerates the neural network training process. The graphics memory
is 6 GB, and the system memory is 32 GB.

The TD3 algorithm and the GM-TD3 algorithm were used for the enemy UAV and our
UAVs, respectively, to train the UAVs in the pursuit task scenario, and the initial situation
was randomly generated in the task area in each round of algorithm training.

The major parameter settings are shown in Table 1.

Table 1. Training parameters for multi-UAV pursuit task.

Parameter Value

Width of battlefield (m) W = 500
Length of battlefield (m) H = 500

Number of our UAVs rand(3,6)
Number of enemy UAVs 1

Number of NFZs 6
Velocity range of our UAVs (m/s) vi

t ∈ [1, 2.5]
Velocity range of enemy UAVs (m/s) vj

t ∈ [2, 3.5]
UAV linear acceleration range (m/s2) ai

vt ∈ [−1, 1]
UAV angular acceleration range (rad/s2) ai

αt ∈ [−π/6, π/6]
Learning rate of actor network αp = 0.0005
Learning rate of critic network αq = 0.001

Reward discount factor γ = 0.98
Sample size batch_size = 64

Training rounds T = 3000

In the training process of the two algorithms, the mean value and variance of the
weight parameters in the “actor_eval” neural network change with the training rounds, as
shown in Figure 12.

Drones 2024, 8, 557 18 of 24

Drones 2024, 8, x FOR PEER REVIEW 18 of 25

Velocity range of our UAVs (m/s) [1,2.5]i
tv ∈

Velocity range of enemy UAVs (m/s) [2,3.5]j
tv ∈

UAV linear acceleration range (m/s2) [1,1]i
vta ∈ −

UAV angular acceleration range (rad/s2) [6, 6]i
taα π π∈ −

Learning rate of actor network p 0.0005α =

Learning rate of critic network q 0.001α =

Reward discount factor 0.98γ =
Sample size _ 64batch size =

Training rounds 3000T=

In the training process of the two algorithms, the mean value and variance of the
weight parameters in the “actor_eval” neural network change with the training rounds, as
shown in Figure 12.

Figure 12. Mean and variance change curve of actor_eval neural network parameters during training.

As can be seen in figure, during the training process of our UAVs using the GM-TD3
algorithm, because the GA is used to optimize the population of the policy network and
the MMD method is used to increase the exploration space of the policy, the fluctuation
in the update of the neural network parameters is more stable during training, and the
convergence speed of the algorithm is significantly accelerated. With the increase in train-
ing rounds, the parameters of the neural networks can converge to the stationary state
faster. The convergence and stability of our UAVs are obviously better than that of the
enemy UAVs, and the trained policy network can better complete the pursuit task.

We record the individual reward value of both the enemy and our UAVs under each
training round in the algorithm training process, as shown in Figure 13.

It can be seen from the reward curve that as the training epochs increase, the reward
values of both sides gradually rise. At about 900 epochs, the reward value of both sides
levels off and our UAVs gradually achieve the encirclement pursuit task of the enemy
UAV. This shows that the improved algorithm is effective in the UAV pursuit task.

Figure 12. Mean and variance change curve of actor_eval neural network parameters during training.

As can be seen in figure, during the training process of our UAVs using the GM-TD3
algorithm, because the GA is used to optimize the population of the policy network and
the MMD method is used to increase the exploration space of the policy, the fluctuation
in the update of the neural network parameters is more stable during training, and the
convergence speed of the algorithm is significantly accelerated. With the increase in training
rounds, the parameters of the neural networks can converge to the stationary state faster.
The convergence and stability of our UAVs are obviously better than that of the enemy
UAVs, and the trained policy network can better complete the pursuit task.

We record the individual reward value of both the enemy and our UAVs under each
training round in the algorithm training process, as shown in Figure 13.

Drones 2024, 8, x FOR PEER REVIEW 19 of 25

Figure 13. Reward curve during algorithm training.

5.2. Verification Process
We use the trained GM-TD3 and TD3 algorithm models for simulation verification to

test the effectiveness of the algorithm. In the simulation task scenario, the PA is repre-
sented by a green circular area, the red circular areas are the NFZs, our UAVs are shown
in blue, and the enemy UAV is shown in red. The snapshot of the simulation effect for the
3vs1 pursuit game task is shown in Figure 14. The red areas indicate no-fly zones (NFZ),
while the blue areas represent protected asset areas,

Figure 14. Snapshot of simulation effects for 3vs1 pursuit game task with NFZs.

Figure 13. Reward curve during algorithm training.

It can be seen from the reward curve that as the training epochs increase, the reward
values of both sides gradually rise. At about 900 epochs, the reward value of both sides
levels off and our UAVs gradually achieve the encirclement pursuit task of the enemy UAV.
This shows that the improved algorithm is effective in the UAV pursuit task.

Drones 2024, 8, 557 19 of 24

5.2. Verification Process

We use the trained GM-TD3 and TD3 algorithm models for simulation verification to
test the effectiveness of the algorithm. In the simulation task scenario, the PA is represented
by a green circular area, the red circular areas are the NFZs, our UAVs are shown in blue,
and the enemy UAV is shown in red. The snapshot of the simulation effect for the 3vs1
pursuit game task is shown in Figure 14. The red areas indicate no-fly zones (NFZ), while
the blue areas represent protected asset areas.

Drones 2024, 8, x FOR PEER REVIEW 19 of 25

Figure 13. Reward curve during algorithm training.

5.2. Verification Process
We use the trained GM-TD3 and TD3 algorithm models for simulation verification to

test the effectiveness of the algorithm. In the simulation task scenario, the PA is repre-
sented by a green circular area, the red circular areas are the NFZs, our UAVs are shown
in blue, and the enemy UAV is shown in red. The snapshot of the simulation effect for the
3vs1 pursuit game task is shown in Figure 14. The red areas indicate no-fly zones (NFZ),
while the blue areas represent protected asset areas,

Figure 14. Snapshot of simulation effects for 3vs1 pursuit game task with NFZs. Figure 14. Snapshot of simulation effects for 3vs1 pursuit game task with NFZs.

In the simulation, our three UAVs successfully evaded the NFZs and coordinated
to round up the enemy UAV. The enemy UAV carried out avoidance maneuvers while
evading the NFZs and finally were surrounded by our UAVs and failed to reach the PA.
Our UAVs successfully completed the pursuit task.

In order to validate the simulation performance and generalization capability of the
algorithm under various conditions, we varied the number of our UAVs and no-fly zones,
randomly generated the initial states of the drones, and carried out simulation verification
in the 4vs1 and 6vs1 task scenarios; our UAVs were able to successfully complete the
pursuit task. The snapshot of the simulation effects is shown in Figures 15 and 16.

In order to further verify the generalization ability of the GM-TD3 algorithm, we
conducted a simulation of the task scenario without NFZs. The simulation effect for the
3vs1 task scenario is shown in Figure 17. Our UAVs successfully completed the pursuit
task. As can be seen from the simulation effect, in the task scenario without NFZs, the
enemy UAV is less restricted, so it is easier to exert its maneuvering ability advantage and
pose a greater threat to our PA.

Drones 2024, 8, 557 20 of 24

Drones 2024, 8, x FOR PEER REVIEW 20 of 25

In the simulation, our three UAVs successfully evaded the NFZs and coordinated to
round up the enemy UAV. The enemy UAV carried out avoidance maneuvers while evad-
ing the NFZs and finally were surrounded by our UAVs and failed to reach the PA. Our
UAVs successfully completed the pursuit task.

In order to validate the simulation performance and generalization capability of the
algorithm under various conditions, we varied the number of our UAVs and no-fly zones,
randomly generated the initial states of the drones, and carried out simulation verification
in the 4vs1 and 6vs1 task scenarios; our UAVs were able to successfully complete the pur-
suit task. The snapshot of the simulation effects is shown in Figures 15 and 16.

Figure 15. Snapshot of simulation effects for 4vs1 pursuit game task with 10 NFZs.

Figure 15. Snapshot of simulation effects for 4vs1 pursuit game task with 10 NFZs.

Drones 2024, 8, x FOR PEER REVIEW 20 of 25

In the simulation, our three UAVs successfully evaded the NFZs and coordinated to
round up the enemy UAV. The enemy UAV carried out avoidance maneuvers while evad-
ing the NFZs and finally were surrounded by our UAVs and failed to reach the PA. Our
UAVs successfully completed the pursuit task.

In order to validate the simulation performance and generalization capability of the
algorithm under various conditions, we varied the number of our UAVs and no-fly zones,
randomly generated the initial states of the drones, and carried out simulation verification
in the 4vs1 and 6vs1 task scenarios; our UAVs were able to successfully complete the pur-
suit task. The snapshot of the simulation effects is shown in Figures 15 and 16.

Figure 15. Snapshot of simulation effects for 4vs1 pursuit game task with 10 NFZs.

Drones 2024, 8, x FOR PEER REVIEW 21 of 25

Figure 16. Snapshot of simulation effects for 6vs1 pursuit game task with 10 NFZs.

In order to further verify the generalization ability of the GM-TD3 algorithm, we con-
ducted a simulation of the task scenario without NFZs. The simulation effect for the 3vs1
task scenario is shown in Figure 17. Our UAVs successfully completed the pursuit task.
As can be seen from the simulation effect, in the task scenario without NFZs, the enemy
UAV is less restricted, so it is easier to exert its maneuvering ability advantage and pose a
greater threat to our PA.

Figure 17. Snapshot of simulation effects for 3vs1 pursuit game task without NFZs.

Figure 16. Snapshot of simulation effects for 6vs1 pursuit game task with 10 NFZs.

Drones 2024, 8, 557 21 of 24

Drones 2024, 8, x FOR PEER REVIEW 21 of 25

Figure 16. Snapshot of simulation effects for 6vs1 pursuit game task with 10 NFZs.

In order to further verify the generalization ability of the GM-TD3 algorithm, we con-
ducted a simulation of the task scenario without NFZs. The simulation effect for the 3vs1
task scenario is shown in Figure 17. Our UAVs successfully completed the pursuit task.
As can be seen from the simulation effect, in the task scenario without NFZs, the enemy
UAV is less restricted, so it is easier to exert its maneuvering ability advantage and pose a
greater threat to our PA.

Figure 17. Snapshot of simulation effects for 3vs1 pursuit game task without NFZs.

Figure 17. Snapshot of simulation effects for 3vs1 pursuit game task without NFZs.

5.3. Algorithm Comparison and Analysis

We used the TD3, GA-TD3 (TD3 algorithm combining ERL with GA, GA-TD3), and
GM-TD3 algorithms to train our UAVs and the TD3 algorithm to train the enemy UAV to
compare the performance advantages of the algorithms.

In the training process of 3000 rounds, the individual reward curve of our UAV is
shown in Figure 18. It can be seen that the overall convergence trend of the three algorithms
is roughly the same, but the convergence speed of the GM-TD3 algorithm is faster; it can
obtain higher global rewards, and it has obvious performance advantages.

Drones 2024, 8, x FOR PEER REVIEW 22 of 25

5.3. Algorithm Comparison and Analysis
We used the TD3, GA-TD3 (TD3 algorithm combining ERL with GA, GA-TD3), and

GM-TD3 algorithms to train our UAVs and the TD3 algorithm to train the enemy UAV to
compare the performance advantages of the algorithms.

In the training process of 3000 rounds, the individual reward curve of our UAV is
shown in Figure 18. It can be seen that the overall convergence trend of the three algo-
rithms is roughly the same, but the convergence speed of the GM-TD3 algorithm is faster;
it can obtain higher global rewards, and it has obvious performance advantages.

Figure 18. The global reward curve of the three algorithms.

The task success rates of the three algorithms in different training rounds are shown
in Figure 19.

Figure 19. The task success rates of the three algorithms.

It can be seen that the task success rate of the GA-TD3 and GM-TD3 algorithms has
significantly improved after 1000 rounds of training and basically reached stability after
2000 rounds of training. Through a large number of simulations, the task success rate of
the GM-TD3 algorithm is stable at about 95% and that of the GA-TD3 algorithm is about
85%. However, the success rate of the TD3 algorithm has been maintained at a low level,
and it is difficult to achieve the pursuit task against an enemy UAV with a speed ad-
vantage. Therefore, the task success rate and the convergence rate of the GM-TD3

Figure 18. The global reward curve of the three algorithms.

Drones 2024, 8, 557 22 of 24

The task success rates of the three algorithms in different training rounds are shown
in Figure 19.

Drones 2024, 8, x FOR PEER REVIEW 22 of 25

5.3. Algorithm Comparison and Analysis
We used the TD3, GA-TD3 (TD3 algorithm combining ERL with GA, GA-TD3), and

GM-TD3 algorithms to train our UAVs and the TD3 algorithm to train the enemy UAV to
compare the performance advantages of the algorithms.

In the training process of 3000 rounds, the individual reward curve of our UAV is
shown in Figure 18. It can be seen that the overall convergence trend of the three algo-
rithms is roughly the same, but the convergence speed of the GM-TD3 algorithm is faster;
it can obtain higher global rewards, and it has obvious performance advantages.

Figure 18. The global reward curve of the three algorithms.

The task success rates of the three algorithms in different training rounds are shown
in Figure 19.

Figure 19. The task success rates of the three algorithms.

It can be seen that the task success rate of the GA-TD3 and GM-TD3 algorithms has
significantly improved after 1000 rounds of training and basically reached stability after
2000 rounds of training. Through a large number of simulations, the task success rate of
the GM-TD3 algorithm is stable at about 95% and that of the GA-TD3 algorithm is about
85%. However, the success rate of the TD3 algorithm has been maintained at a low level,
and it is difficult to achieve the pursuit task against an enemy UAV with a speed ad-
vantage. Therefore, the task success rate and the convergence rate of the GM-TD3

Figure 19. The task success rates of the three algorithms.

It can be seen that the task success rate of the GA-TD3 and GM-TD3 algorithms has
significantly improved after 1000 rounds of training and basically reached stability after
2000 rounds of training. Through a large number of simulations, the task success rate of the
GM-TD3 algorithm is stable at about 95% and that of the GA-TD3 algorithm is about 85%.
However, the success rate of the TD3 algorithm has been maintained at a low level, and
it is difficult to achieve the pursuit task against an enemy UAV with a speed advantage.
Therefore, the task success rate and the convergence rate of the GM-TD3 algorithm are
better than those of the GA-TD3 and TD3 algorithms, which shows the superiority of the
improved algorithm.

To verify the effect of the speed advantage of enemy UAVs on the performance of the
GM-TD3 algorithm, the task success rates of the TD3, GA-TD3, and GM-TD3 algorithms
were simulated under different maximum UAV speed ratio constraints. The simulation
results are shown in Figure 20; in the figure, the horizontal coordinate N represents the
ratio of the maximum speed of the enemy UAV to our UAV, and the vertical coordinate
represents the task success rate.

Drones 2024, 8, x FOR PEER REVIEW 23 of 25

algorithm are better than those of the GA-TD3 and TD3 algorithms, which shows the su-
periority of the improved algorithm.

To verify the effect of the speed advantage of enemy UAVs on the performance of the
GM-TD3 algorithm, the task success rates of the TD3, GA-TD3, and GM-TD3 algorithms
were simulated under different maximum UAV speed ratio constraints. The simulation
results are shown in Figure 20; in the figure, the horizontal coordinate 𝑁 represents the
ratio of the maximum speed of the enemy UAV to our UAV, and the vertical coordinate
represents the task success rate.

Figure 20. Task success rate under different UAV maximum speed ratios.

6. Conclusions
This paper focuses on the task of multi-UAV cooperative pursuit of a high-speed en-

emy UAV. We improve the traditional TD3 algorithm, combine the algorithm with the
GA-based ERL framework, and introduce the MMD method to expand the space for al-
gorithm policy exploration. The improved algorithm can effectively improve the explora-
tion efficiency of the policy space and the training efficiency of the algorithm. Through a
large number of simulation experiments, we verify that the performance of the improved
GM-TD3 algorithm has been greatly improved and it can achieve faster convergence com-
pared with the GA-TD3 and TD3 algorithms. With an enemy UAV four times as fast as
ours, the task success rate can still reach 75%; however, the task success rate of the GA-
TD3 and TD3 algorithms under the same conditions is lower than 35%, which indicates
that the improved GM-TD3 algorithm has better ability to execute cooperative pursuit
tasks, especially for high-speed enemy UAVs.

Future research directions will primarily focus on the limitations of the algorithm
proposed in this paper when applied to other scenarios, particularly in the context of
multi-target evasion. This involves designing pursuit–evasion game scenarios that include
multiple hostile escaping drones and multiple friendly drones. Further improvements will
be made to the GM-TD3 algorithm introduced in this paper, with particular attention paid
to the dynamic allocation of targets during the pursuit process, as well as enhancing the
intelligence, generalizability, and realism of the scenarios, extending the improvements to
a 3D environment.

Author Contributions: Conceptualization, Y.Z.; methodology, M.D.; software, Y.Y.; validation, M.D.,
Y.Y. and J.Z.; formal analysis, Q.Y.; investigation, G.S.; resources, F.J.; data curation, M.D. and M.L.;
writing—original draft preparation, Y.Z.; writing—review and editing, J.Z., Q.Y., G.S., F.J. and M.L.;
visualization, M.D. and Y.Y.; supervision, Y.Z.; project administration, J.Z., F.J. and M.L.; funding ac-
quisition, Y.Z. and M.L. All authors have read and agreed to the published version of the manuscript.

Figure 20. Task success rate under different UAV maximum speed ratios.

6. Conclusions

This paper focuses on the task of multi-UAV cooperative pursuit of a high-speed enemy
UAV. We improve the traditional TD3 algorithm, combine the algorithm with the GA-based
ERL framework, and introduce the MMD method to expand the space for algorithm policy

Drones 2024, 8, 557 23 of 24

exploration. The improved algorithm can effectively improve the exploration efficiency
of the policy space and the training efficiency of the algorithm. Through a large number
of simulation experiments, we verify that the performance of the improved GM-TD3
algorithm has been greatly improved and it can achieve faster convergence compared with
the GA-TD3 and TD3 algorithms. With an enemy UAV four times as fast as ours, the task
success rate can still reach 75%; however, the task success rate of the GA-TD3 and TD3
algorithms under the same conditions is lower than 35%, which indicates that the improved
GM-TD3 algorithm has better ability to execute cooperative pursuit tasks, especially for
high-speed enemy UAVs.

Future research directions will primarily focus on the limitations of the algorithm
proposed in this paper when applied to other scenarios, particularly in the context of
multi-target evasion. This involves designing pursuit–evasion game scenarios that include
multiple hostile escaping drones and multiple friendly drones. Further improvements will
be made to the GM-TD3 algorithm introduced in this paper, with particular attention paid
to the dynamic allocation of targets during the pursuit process, as well as enhancing the
intelligence, generalizability, and realism of the scenarios, extending the improvements to a
3D environment.

Author Contributions: Conceptualization, Y.Z.; methodology, M.D.; software, Y.Y.; validation, M.D.,
Y.Y. and J.Z.; formal analysis, Q.Y.; investigation, G.S.; resources, F.J.; data curation, M.D. and
M.L.; writing—original draft preparation, Y.Z.; writing—review and editing, J.Z., Q.Y., G.S., F.J.
and M.L.; visualization, M.D. and Y.Y.; supervision, Y.Z.; project administration, J.Z., F.J. and M.L.;
funding acquisition, Y.Z. and M.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Aeronautical Science Foundation of China under the grant
number 20220013053005 and in part by the Basic Scientific Research Ability Improvement Project for
Middle-young Teachers under the grant number 2024KY0173.

Data Availability Statement: Dataset available on request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, D.; Zhai, J.; Wei, L.; Guo, M.; Lin, S.; Huang, P.; Wang, X. UAV Cluster Task Planning and Collaborative System Architecture.

Acta Armamentarii 2024. [CrossRef]
2. Bi, W.H.; Zhang, M.Q.; Gao, F.; Yang, M.; Zhang, A. Review on UAV swarm task allocation technology. Syst. Eng. Electron. 2024,

46, 922–934.
3. Li, J.; Chen, S.C. Review of Key Technologies for Drone Bee Colony Development. Acta Armamentarii 2023, 44, 2533–2545.
4. Gong, Y.Q.; Zhang, Y.P.; Ma, W.P.; Xue, X. The mechanism of swarm intelligence emergence in drone swarms. Acta Armamentarii

2023, 44, 2661–2671.
5. He, F.; Yao, Y. Maneuver decision-making on air-to-air combat via hybrid control. In Proceedings of the IEEE Aerospace

Conference, Big Sky, MT, USA, 6–13 March 2010; pp. 1–6.
6. Liu, X.Y.; Guo, R.H.; Ren, C.C.; Yan, C.; Chang, Y.; Zhou, H.; Xiang, X.J. Distributed target allocation method for UAV swarms

based on identity-based Hungarian algorithm. Acta Armamentarii 2023, 44, 2824–2835.
7. Zhao, L.; Cong, L.; Guo, X. Research of cooperative relief strategy between government and enterprise based on differential game.

Syst. Eng. Theory Pract. 2018, 38, 885–899.
8. Fu, L.; Wang, X.G. Research on differential game modeling for close range air combat of unmanned aerial vehicles. Acta

Armamentarii 2012, 33, 1210–1216.
9. Li, Y.L.; Li, J.; Liu, C.; Li, J. Research on the Application of Differential Games in the Attack and Defense of Drone Clusters.

Unmanned Syst. Technol. 2022, 5, 39–50.
10. Huang, H.Q.; Bai, J.Q.; Zhou, H.; Cheng, H.Y.; Chang, X.F. The Development Status and Key Technologies of Unmanned

Collaborative Warfare under Intelligent Air Warfare System. Navig. Control 2019, 18, 10–18.
11. Wen, Y.M.; Li, B.Y.; Zhang, N.N.; Li, X.J.; Xiong, C.Y.; Liu, J.X. Multi agent formation collaborative control based on deep

reinforcement learning. Command. Inf. Syst. Technol. 2023, 14, 75–79.
12. Lowe, R.; Wu, Y.I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive

Environments. arXiv 2018, arXiv:1706.02275v3.
13. Hao, J.; Huang, D.; Cai, Y.; Leung, H.F. The dynamics of reinforcement social learning in networked cooperative multiagent

systems. Eng. Appl. Artif. Intell. 2017, 58, 111–122. [CrossRef]

https://doi.org/10.12382/bgxb.2023.0822
https://doi.org/10.1016/j.engappai.2016.11.008

Drones 2024, 8, 557 24 of 24

14. Fang, M.; Groen, F.C.A. Collaborative multi-agent reinforcement learning based on experience propagation. J. Syst. Eng. Electron.
2013, 24, 683–689. [CrossRef]

15. Van Moffaert, K.; Nowé, A. Multi-objective reinforcement learning using sets of pareto dominating policies. J. Mach. Learn. Res.
2014, 15, 3483–3512.

16. Wu, F.G.; Tao, W.; Li, H.; Zhang, J.W.; Zheng, C.C. Intelligent Obstacle Avoidance Decision-Making for Drones Based on Deep
Reinforcement Learning Algorithms. Syst. Eng. Electron. 2023, 45, 1702–1711.

17. Phadke, A.; Medrano, F.A.; Chu, T.; Sekharan, C.N.; Starek, M.J. Modeling Wind and Obstacle Disturbances for Effective
Performance Observations and Analysis of Resilience in UAV Swarms. Aerospace 2024, 11, 237. [CrossRef]

18. Tu, G.T.; Juang, J.G. UAV path planning and obstacle avoidance based on reinforcement learning in 3d environments. Actuators
2023, 12, 57. [CrossRef]

19. Khadka, S.; Tumer, K. Evolution-guided policy gradient in reinforcement learning. In Proceedings of the Advances in Neural
Information Processing Systems, Vancouver, BC, Canada, 3–8 December 2018; Volume 31.

20. Pourchot, A.; Sigaud, O. CEM-RL: Combining evolutionary and gradient-based methods for policy search. arXiv 2018. [CrossRef]
21. Zheng, H.; Wei, P.; Jiang, J.; Long, G.; Lu, Q.; Zhang, C. Cooperative heterogeneous deep reinforcement learning. In Proceedings

of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 6–12 December 2020; pp. 17455–17465.
22. Tjanaka, B.; Fontaine, M.C.; Togelius, J.; Nikolaidis, S. Approximating gradients for differentiable quality diversity in rein-

forcement learning. In Proceedings of the Genetic and Evolutionary Computation Conference, Boston, MA, USA, 9–13 July
2022; pp. 1102–1111.

23. Wei, T.; Long, C. Path planning of mobile robots based on improved genetic algorithm. J. Beijing Univ. Aeronaut. Astronaut. 2020,
46, 703–711. [CrossRef]

24. Dankwa, S.; Zheng, W. Twin-delayed ddpg: A deep reinforcement learning technique to model a continuous movement of an
intelligent robot agent. In Proceedings of the 3rd International Conference on Vision, Image and Signal Processing, Vancouver,
BC, Canada, 26–28 August 2019; pp. 1–5.

25. Jiang, F.Q.; Chen, Z.L.; Gao, X.J.; Zhang, Y. Research on Drone Area Reconnaissance Based on an Improved TD3 Algorithm.
Informatiz. Res. 2023, 49, 36–42.

26. Zhao, C.; Liu, Y.G.; Chen, L.; Li, F.Z.; Man, Y.C. Current situation and prospect of multi-UAV path planning for metaheuristic
algorithms. Control. Decis. 2022, 37, 1102–1115.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JSEE.2013.00079
https://doi.org/10.3390/aerospace11030237
https://doi.org/10.3390/act12020057
https://doi.org/10.48550/arXiv.1810.01222
https://doi.org/10.1088/1742-6596/2365/1/012053

	Introduction
	Task Scenario Model
	Task Scenario
	UAV Model
	UAV Motion Model
	UAV Radar Detection and Communication Model
	Pursuit Model

	Design of GM-TD3 Algorithm
	Framework of ERL
	Genetic Algorithm
	TD3 Algorithm
	Maximum Mean Discrepancy
	Stable Mutation Operator
	GM-TD3 Algorithm

	UAV Pursuit and Escape Game Strategy Based on GM-TD3 Algorithm
	Design of State Space and Action Space
	State Space and Action Space of Our UAVs
	State Space and Action Space of Enemy UAV

	Design of Neural Network Structure
	Design of Reward Function
	Design of Reward Function for Our UAVs
	Design of Reward Function for Enemy UAV

	Simulation Verification
	Training Process
	Verification Process
	Algorithm Comparison and Analysis

	Conclusions
	References

