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Abstract: Unmanned Aerial Vehicles (UAVs), commonly known as drones, are omnipresent and
have grown in popularity due to their wide potential use in many civilian sectors. Equipped with
sophisticated sensors and communication devices, drones can potentially form a multi-UAV system,
also called an autonomous swarm, in which UAVs work together with little or no operator control.
According to the complexity of the mission and coverage area, swarm operations require important
considerations regarding the intelligence and self-organization of the UAVs. Factors including the
types of drones, the communication protocol and architecture, task planning, consensus control, and
many other swarm mobility considerations must be investigated. While several papers highlight the
use cases for UAV swarms, there is a lack of research that addresses in depth the challenges posed by
deploying an intelligent UAV swarm. Against this backdrop, we propose a computation framework
of a self-organized swarm for autonomous and collaborative missions. The proposed approach is
based on the Leader–Followers paradigm, which involves the distribution of ROS nodes among
follower UAVs, while leaders perform supervision. Additionally, we have integrated background
services that autonomously manage the complexities relating to task coordination, control policy, and
failure management. In comparison with several research efforts, the proposed multi-UAV system
is more autonomous and resilient since it can recover swiftly from system failure. It is also reliable
and has been deployed on real UAVs for outdoor survey missions. This validates the applicability
of the theoretical underpinnings of the proposed swarming concept. Experimental tests carried out
as part of an area coverage mission with 6 quadcopters (2 leaders and 4 followers) reveal that the
proposed swarming concept is very promising and inspiring for aerial vehicle technology. Compared
with the conventional planning approach, the results are highly satisfactory, highlighting a significant
gain in terms of flight time, and enabling missions to be achieved rapidly while optimizing energy
consumption. This gives the advantage of exploring large areas without having to make frequent
downtime to recharge and/or charge the batteries. This manuscript has the potential to be extremely
useful for future research into the application of unmanned swarms for autonomous missions.

Keywords: UAV (unmanned aerial vehicle); RPAS; UAS; drones; multi-UAV systems; autonomous
aerial swarm; unmanned aerial system; collaborative missions; ROS (robot operating system)

1. Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as drones [1], are gaining
popularity in academic and industry research due to advances in sensing and computational
abilities, as well as reductions in size and operational costs. UAVs play an important role
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in industrial sector [2] such as surveys [3], natural disasters [4–7], forestry fire control [8],
agriculture [9,10], transportation [11–13], and the field of geology [14]. For example, they
enable one to carry out missions in dangerous environments or those difficult for humans
to access [15–18]. In the agricultural sector [9], drones are frequently used for spraying
plantations and gathering information that has an impact on crop yield quality and quantity,
thanks to their ability to scan planting zones quickly. They are also used for forest mapping
and soil heterogeneity analysis [10]. This research solely focuses on civilian use and, while
we cannot discard potential indirect use for military purposes, this research is intended to
improve the well-being of humankind.

UAVs offer a wide range of possibilities in the healthcare sector, including the delivery
of medical equipment, blood samples, or laboratory results to isolated or hard-to-reach
areas [19]. They are also used for parcel delivery [13,20,21], road traffic monitoring [12],
and mapping volcanic terrain or seismic activity to predict and elaborate rescue operations
in case of potential eruptions or natural disasters [4–6,14]. Because the first few hours
after a disaster are crucial, it is when there is the best chance of saving people’s lives. In
numerous catastrophe situations, such as earthquakes, avalanches, landslides, and fires,
injured people need to rapidly localize for immediate medical assistance [6,7]. In this
context, all available rescue teams must focus on the search and rescue mission. Rescue
operations must be orchestrated, and the disaster’s impact must be identified as soon as
feasible [5]. Time constraints, a lack of rescue staff, and an urgent need for information are
more than enough reasons to justify the employment of drones that operate independently
to gather as much information as possible and offer communication across the impacted
regions [6].

This growing interest in drones has spawned the emergence of numerous types of
UAVs with diverse designs and components in terms of dimension and form. They are
classified into the following categories, rotor, fixed-wing, and hybrid, and they vary in
size from small and medium to large [11]. Small drones, also known as micro- or nano-
UAVs, refer to lightweight aerial vehicles [2,11] that have extended the limits of their
applications even further. The portability and speed of micro-UAVs provide a plethora
of advantageous applications [22–25]. They are more agile, allowing them to fly through
narrow spaces and reduce potential collateral incidents due to their tiny weight and
dimensions (between 30 and 200 cm2). However, drones also pose a security issue that
must be addressed [26,27]. Intrusions into protected airspace or inhabited areas must be
dealt with in a safe, noninvasive manner to safeguard the area of interest, especially when
public security is at stake. Particularly, Counter-Unmanned Aerial Systems (C-UASs) [28]
might aid in the monitoring of industrial areas, hospitals, airports, and public domains
such as forests or natural reserves [11,29]. Furthermore, the size of UAVs restricts their
capabilities in terms of flight time, onboard sensor and computation energy, and payload,
reducing the jobs that they can accomplish independently. This has led to the emergence of
drone swarms or multi-UAV systems, in which several UAVs work together in hierarchical
groups to overcome the limits of individual UAVs. Multi-UAV systems are a key example
of multiagent systems [30]. They can complete missions that individual drones cannot.
Another benefit of drone swarms is that they can accomplish many distributed tasks at
once [11].

The advancement of technologies like onboard computer vision and autonomous
capabilities [31] can boost the use of aerial swarms in a wider range of applications [13,32].
For example, they can collectively lift a hefty payload, while remaining far nimbler and
more stable than a single larger drone [22,33]. A swarm can investigate unknown regions
in search and rescue missions by traversing in a distributed manner multiple distinct
pathways that, when combined, cover the entire region quickly [6,20,34,35]. They not only
can help to determine the precise location where a portable device’s received signal is
strongest, but they can also map the area and even acquire infrared scans to detect the
body heat of victims otherwise left in the rubble. To perform this, drones must operate as
quickly as possible and in a self-organizing way. The less time we take to assess the damage
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and identify victims, the greater our probability of rescuing individuals [36]. The usage of
aerial swarms to tackle real-world issues has expanded gradually as prices have dropped
and the effectiveness of communications, detection, and computation hardware has gotten
better. The standardization of hardware has reduced the unit costs of components such as
batteries, propellers, motors, radio transmitters, cameras, sensors, and many others. This
has helped to popularize the use of drones, as well as lowering the barriers to their use in
aerial swarm robotics.

UAV swarms are designed as completely distributed systems in which each drone
analyzes the local perception of its environment and collaborates with others to carry out
individual actions that collectively contribute to the achievement of an overall swarm
goal [37]. These collaborative operations may be modeled as an optimization problem
of path cost, i.e., a cost function based on the UAVs’ whereabouts and, eventually, infor-
mation about their surroundings [36]. The design of Unmanned Aerial Systems (UASs)
necessitates the tight integration of several components, such as global and relative localiza-
tion, safe mission planning, and swarm-level synchronization of actions and movements.
The operating principle of swarms is based on a family of algorithms that enable each
swarm unit to communicate and delegate mission duties, plan trajectories, and coordinate
flying to efficiently achieve the swarm’s overall objectives [36]. These algorithms gener-
ally operate in a highly hierarchical architecture, giving the swarm some autonomy at
different levels. As a result, the human operator’s responsibility may be limited to basic
oversight and higher-level engagement without direct action. This architecture depends
on the environment, the complexity of the mission, the control consensus [38–40], energy
consumption [5,23,34,41,42], and the communication topology [11,37]. We address these
challenges in the present contribution. In this manuscript, we focus on the key aspects that
concern the design architecture and deployment of a fully autonomous and hierarchical
swarm for collaborative missions:

• Mission planning: Unlike single-UAV systems, missions performed by multi-UAV
systems are executed in a parallel and distributed manner to be completed faster [1].
This paradigm of computation involves two main challenges. The first challenge
concerns the partition of the exploration environment into subareas. Depending on
the homogeneity of the swarm, each area must be assigned to a UAV with respect
to their local perception. This becomes even more difficult when dealing with a
nonhomogeneous swarm operating in a dynamic environment. The second challenge
relates to the collaborative execution of distributed tasks. Tasks must be allocated
adaptively to allow for a high degree of parallelism if the UAVs are heterogeneous [11].
Alternatively, it will be handled based on the workload and computational capabilities
of each UAV. In addition, the execution of the mission must be based on a consensus
control [38–40] that promotes collaborative decision making in which the tasks carried
out by the UAVs make it possible to converge towards a common goal.

• Mobility: Navigation of the UAVs inside the swarm is organized in a tight
formation [11,31,43,44]. Sometimes the swarm is organized hierarchically, accord-
ing to the type of mission or action performed by each UAV. Issues emerge when the
relative locations and directions of the UAVs vary. The difficulties to be addressed
include avoiding crashes and collisions, obstruction detection, and signal stability
within the swarm [11,45].

• Communication: A single UAV must maintain a constant connection with the ground
control station. A multi-UAV system, on the other hand, may have a unique UAV
(gateway UAV) [11] that communicates with the ground control station and relays
the messages to other UAVs [1]. The communication in the swarm is challenging
because of the high mobility of the UAVs. To ensure a good communication signal,
drones should be close to each other. The multi-UAV systems must guarantee interop-
erability in case the swarm consists of various types of drones independent of their
communication protocols [11]. In an outdoor environment, interferences can disrupt
communication and therefore, hamper the mission [26].
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• Energy consumption: Due to the small size of the drones, they cannot carry a sub-
stantial power supply [34]. Power limitations impact swarm communication, mobility,
and flight time. Therefore, the coverage paths and the collaborative tasks must be
optimized to significantly reduce the energy consumption of the UAV fleet [5,11]. This
task is challenging and involves two major factors: (1) communication energy used for
signal processing, routing protocol, and packet transmission of embedded sensors and
(2) propulsion energy used to ensure drone mobility (speed, acceleration, propulsion
type, altitude, and so on.) depending on load capacity and mission types.

• Resilience: In a single-UAV scenario, if the running instance is stopped because of
software or hardware failure, the mission fails [1]. Multi-UAV systems should avoid
single point of failure (SPOF) because they need high availability and fault tolerance
against running issues and hardware failure. If one UAV of the swarm is stopped, the
mission must continue to operate on another available UAV, assuming downtime. It
is challenging to implement a disaster recovery mechanism that describes how the
swarm can continue to operate when a failure appears in multi-UAV systems. This is
a three-stage process, and a few factors need to be considered, including the following:
(1) Problem identification: This could be a collision, a crash, equipment or sensor
failure, or bugs. (2) Drone selection: In the second step, we determine which drone
will be tasked with continuing the execution of the failed task. (3) Business continuity:
This involves determining the status of the mission to restart where the execution
failed or go to fail-safe procedures (safe termination of the mission).

Contributions: The main objective of this study is to offer a framework for the
conception and implementation of a fully autonomous multi-UAV system based on the
Leader–Followers paradigm [46]. To fulfill the envisioned missions, the proposed system
is distributed and handles several tasks at once allowing the aerial swarm to complete
missions rapidly. Moreover, the communication occurs within a decentralized single-
group architecture that encourages UAV-to-UAV interactions within the swarm, bypassing
conventional centralized communication models that rely on a ground control station
(GCS) [11]. Furthermore, the proposed system supports scalability so that we can add or
remove UAVs from the swarm without network reconfiguration. It is also resilient and can
continue operating in the event of a drone failure or bugs occurring during the execution of
a task, even if there is a crash or collision.

Innovations: By leveraging the most recent breakthroughs in the literature review, this
research bridges gaps in the implementation from scratch of a resilient, fully autonomous
aerial swarm for autonomous and cooperative missions. More particularly, the following
points emphasize the key added value of this work:

• Because the area of autonomous aerial systems is still in its early stages, there is a
scarcity of formal understanding of swarm intelligence. There is a lack of stable,
reliable, and scalable multi-UAV system architecture that supports the collaborative
actions of self-organized swarms. In this regard, our research provides substantial
value by filling the gap in the design of actions performed by an autonomous swarm.

• In most research, multi-UAV systems rely on a centralized communication infras-
tructure at the GCS. In this sense, the added value of our communication model is
that it is based on a decentralized single-group architecture that can be extended to
a multigroup one [11]. Thus, we suggest removing the dependency from the GCS
and promoting UAV-to-UAV communication without operator involvement. This
communication infrastructure is rarely implemented in existing works because of its
susceptibility to failure, which we must address.

• The study of intelligence and collaboration inside an autonomous swarm is challeng-
ing, with relatively few papers that completely investigate the complexities of how
they operate. For example, the problem of the high availability (HA) and resilience
of UAVs is not addressed in most works. Added to this, there is a lack of tracking
and control of the mission being carried out in the swarm. To compensate for these
omissions, we integrate a swarm management policy, and local rules based on consen-
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sus control, resulting in a scientific contribution that brings valuable knowledge to
bear on the question of how to ensure high availability, fault tolerance, and resiliency
when a UAV breaks down or in the event of bugs/collisions. We have proposed a
series of ROS services that run continuously to ensure the proper functioning of a
multi-UAV system.

2. Background and Existing Works

The usage of aerial swarms to tackle real-world issues has expanded gradually as
prices have dropped and the effectiveness of communications, detection, and computation
hardware has gotten better. The standardization of hardware has reduced the unit costs
of components such as batteries, propellers, motors, radio transmitters, cameras, sensors,
and many others. This has helped to popularize the swarming concept, as well as lowering
the barriers to their use in aerial swarm robotics. This idea has been demonstrated to
reduce mission time and increase satisfaction rates, especially for arduous operations.
Although individual UAVs have been extensively researched in the literature and have
found numerous applications, there are limits that may be only addressed by utilizing
aerial swarms [6,20,22,33–36].

2.1. Swarm Intelligence

An intelligent UAV swarm is a fleet of autonomous UAVs working together according
to a rule set for coordination, communication, and collaboration, with the aim of effi-
ciently carrying out a complex mission without human intervention [47]. Unlike a single
UAV system, their management involves challenges linked to the dynamic allocation of
mission tasks but also risks of collision and loss of communication signal. Researchers
have been very interested in this field of study for the past ten years because of the
wide range of industrial [11] and civilian application [11,37] it has, such as emergency
rescue and [6,7,16], investigation [48,49], as well as intelligent [22,25,50], agriculture [9,10]
and delivery services [19,51]. Swarms are distinguished from multiagent UAVs [38,40] by
a set of requirements, such as the existence of a minimum of three agents and a share of
pertinent information like position, velocity, and state, among others [4,30]. Each UAV
needs to be adapted and comply with the same set of defined consensuses that controls the
whole swarm [35,38]. Furthermore, system stability and safety must not be affected when a
drone is faulty or disconnected from the swarm.

In an intelligent swarm, the drones’ behavior is a key concern, as it involves the ac-
tions they perform, their interactions, and their local perceptions of the environment [11,52].
Muhammad et al. [38] characterized the fundamental behaviors of swarm UAVs by indi-
vidual agents obeying local rules based on consensus control, which leads to an evolution
towards global behavior through interactions to perform collective decision making. Collec-
tive decision making allows performing distributed tasks cooperatively in the swarm [11].
In [37], Schranz et al. presented a more detailed taxonomy of swarm behaviors that impact
collective decision making:

• Collective fault detection detects individual UAV flaws with the swarm, allowing the
identification of possible drones that deviate from the swarm’s expected behavior due
to hardware failures or computational issues [47,53].

• Task allocation enables emerging tasks to be distributed dynamically between the
different UAVs in the swarm. Its purpose is to enhance the overall effectiveness of the
swarming system [37,48]. If the swarm is homogeneous, the tasks can be allocated
equitably. When the UAVs have different capabilities, the tasks may be allocated
according to the workload capacity of each UAV [11,37].

• Consensus control enables the UAVs within the swarm to converge and settle toward
a single common decision among multiple choices [37,39,47].

• Collective perception merges the data perceived locally by the swarm’s UAVs into a
complete image of the environment. It enables the swarm to make collective actions,
such as multitarget tracking [31], efficient coverage mission [24], allocating a suitable
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proportion of UAVs to a particular job, or determining the optimal solution to a global
problem [11,37].

• Synchronization aligns the rate and timing of the swarm’s clocks. As a result, the
UAVs acquire a common time, allowing them to conduct harmonized tasks.

Table 1 below presents all aspects involved in collective decision making within an
autonomous drone swarm, considering their challenges, advantages, and weaknesses.

Table 1. Comparative methods of collective decision making and task dependency problem in
autonomous drone swarming.

Aspect Methods Challenges Advantages Weak Points

Fault detection -Redundancy-based monitoring [54]
-AI-based anomaly detection [55]

-Significant supervision and redundancy
of drone actions and status
-Real-time processing of data fusion

-Real-time recognition of
anomalies
-Proactive failure management

-Misdiagnosis of faults or
false positives leading to
complete mission failures

Task allocation
-Centralized allocation [56,57]
-Decentralized allocation [58]
-Dynamic allocation [59,60]

-Resilience to faults
-Communication overheads
-Reassignment of tasks on available resources

-Highly resource efficient
-Adaptive fault response

-Misallocation of tasks leads
to bottlenecks or unbalanced
resources and workloads

Task synchronization -Time-based synchronization [61]
-Event-based synchronization [62,63]

-Reliability of communication network
-Time constraints
-Sharing global timing clocks

-Fine-tuned coordination for
intricate task planning
-Adaptive task allocation

-Synchronization delays or
misaligned tasks cause mission
failure

Consensus control
-Proportional consensus [64]
-Leader–Follower consensus [65]
-Time-delayed consensus [66]

-Time-consuming communication
-Vulnerable to erroneous consensus
-Convergence rapidity

-Uniform behaviors throughout
the swarm
-Convergence to optimal
decision making

-Vulnerability to hardware
failure or loss of communication
-Divergent behavior quickly
affects the drones swarm

Collective perception
-Data fusion [67]
-Voting mechanism [68]
-Distributed perception [69]

-Merging multisource data from
multi-UAV sensors

-Holistic understanding of
the environment
-Coordinated swarm mobility

-Incoherent perceptions
may result in navigation errors
or collisions

2.2. Swarm Mobility

Swarm organization is a typical approach for swarm navigation. It entails flying UAVs
in a close formation to move efficiently around an environment in an organized way [2,11].
Difficulties emerge in the case of highly mobile swarms when UAV positions change relative
to one another. The most common difficulties to handle are collision avoidance and obstacle
detection [45]. The spatial organization of swarms for optimal navigation remains an open
challenge, where the energy consumption or battery life constraint is a variant of this
problem [23,41,42,51]. In addition, legislation on the use of UAVs in various jurisdictions
poses another challenge, as it differs from one country to another [70]. Adoni et al. [11]
discussed the rules and legislation on the implementation of swarms. The authors highlight
a few key factors such as the UAV model, license to operate, field of exploration, and
mission, followed by the most important rules and procedures governing the organization
and navigation of aerial swarms.

Research work conducted in [37,47,71] presents the different formations of the spatial
organization and navigation of a swarms. The spatial organization concerning the spatial
arrangement of the movement of UAVs around an environment consists of four patterns:

1. Object clustering and assembly: The swarm of the UAVs can target spatially dis-
tant items that are geographically separated. These are essential for construction
processes [37].

2. Pattern formation: The swarm is organized into a specific shape [47]. Chain formation
is a specific pattern in which the UAVs form a line, usually to maintain communication
stability across the swarm [11,71].

3. Self-assembly: The UAVs join together to form a predefined structure. They can
be linked physically or remotely via wired or wireless communications [72]. Mor-
phogenesis [73] is a particular scenario in which the swarm grows into a desired
formation.

4. Aggregation: Individual UAVs congregate geographically in a certain area of the
environment. This allows swarm elements to move closer to each other for further
interaction [43,53].

When the swarm’s number of drones seems big, mobility difficulties arise. In [11], the
authors suggested using the technique of divide-and-conquer [74]. It entails splitting the
swarm into many subswarms. Each subswarm is given a formation that has a well-defined
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structure. The most common difficulties when dealing with the size of the swarm are
collision avoidance and intracommunication stability [45].

Recent works conducted in [37,44,47,75,76] proposed approaches of cooperative navi-
gation for flexible mobility relative to each neighbor UAVs in terms of their movement and
position. These approaches are classified into four categories:

1. Collective exploration is a cooperative movement of a swarm of UAVs across an area
to investigate. It may be used to acquire an overview of the surroundings to monitor
the terrain or to set up a UAV-to-UAV communication network [75,76].

2. Coordinated motion shifts the vehicles in a well-defined formation such as line,
triangle, or polygon shapes [11,47].

3. Collective transport allows the collective movement of the swarm to carry heavy
objects for individual drones [47].

4. Collective localization allows the swarm’s UAVs to determine their relative position
as well as orientation with regard to each other by establishing a system of local
coordinates across the swarm [37].

2.3. Swarm Application

The capability of aerial vehicles to reach inaccessible regions is an important benefit for
exploratory missions, particularly in aquatic as well as terrestrial environments [9,10]. In the
recent decade, there has also been a surge in the interest of UAVs in both academic research
and industry uses due to advances in remote sensing and computing capabilities, as well as
reductions in size factor and cost. Although single drones have been extensively explored
in the scientific community and have several industrial applications, as highlighted in the
introduction, there are limits that may be solved by utilizing an aerial swarm, which are
covered in this subsection.

2.3.1. Environmental Exploration

There are potential benefits to deploying UAV swarms in environmental monitoring
applications. For example, Abdelkader et al. [35] used a swarm of UAVs for real-time flood
surveillance, which is often a difficult task to complete using a single UAV. Each UAV is
equipped with a disposable sensor that may be transported by flood streams. To evaluate
the flood direction and velocity, they introduced a fast numerical technique for swiftly
calculating each swarm UAV’s trajectory to optimize the accuracy of model parameter
estimates across a time window.

Other research work conducted in [8,32] demonstrates the use of aerial swarms for
tracking air pollution levels and forestry ecosystem assessments. Marco et al. [32] proposed
a multi-UAV system composed of a wheeled rover and a set of UAVs working together
to map the progression of air pollution. When one drone of the swarm evaluates the
atmospheric pollutant level, it sends the information to the wheeled rover. In this way,
they can gather data over a wide area from the atmospheric data collected by individual
UAVs. Following the same concept, Bjurling et al. [8] proposed a connected swarm model
for drones’ deployment in forest environment analysis. The model is based on a dynamic
network topology that maintains the scalability, communicability, and connectivity of the
swarm. These features are required to obtain a high-quality forest mapping through the
data collected by the swarm.

Alberto et al. [77] proposed a deep reinforcement model on a swarm to better grasp
the environment’s exploration policy. Each drone is characterized as an intelligent agent
that interacts with its surroundings through various rewarded actions (bonus or malus).
Following the same approach, Singh et al. [78] introduced a prelearning Gaussian process
to the previous work. This allows each UAV to optimize its trajectory when exploring a
broad and dynamic environment.

Furthermore, in [79], the authors presented an intelligent swarm-based decentralized
multiagent to facilitate unsupervised coordination of the UAV swarm. Using the environ-
ment’s hyper-parameters the UAVs avoid collisions. Similarly, authors in [49] integrated a
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greedy decentralized strategy to control the coordination among the swarm, allowing each
UAV to move and survey an unexplored environment without exceeding its limits.

2.3.2. Reconnaissance and Surveillance

Since the scalability of drones in a swarm promotes the coverage of vast areas in
less time, the swarms are adapted to reconnaissance and surveillance missions. Works
conducted in this field are varied [22,25,50,80]. Kartik et al. [80] showed the design
architecture of a swarm of quadrotors capable of responding autonomously to emergency
situations or safety issues when the situation is identified. Due to multiple constraints
that must be met in outdoor environments, Martin et al. [25] suggested employing an
evolutionary-based optimization approach. This guarantees that the swarm can cover the
area of interest by onboard surveillance cameras while remaining within the mobility and
relative localization limits.

In the same scope, authors in [22] presented a coverage search optimization task using
multiple UAVs. Each UAV executes a Rapidly Random Tree (RRT) algorithm for this search
mission. To avoid collisions in the swarm, an onboard localization camera is used so that
each UAV remains in another’s perception range.

In another work, Daniel et al. [81] presented a decentralized multi-UAV system
allowing the distribution of surveillance tasks across the swarm. The perception of each
UAV is displayed as a 3D visualization in real time. This allows the operator to build a
realistic mapping of the environment.

2.4. Industrial Applications

Aerial swarm application fields are diverse and practically ubiquitous. Aside from
the work stated, other use cases remain to be investigated [11]. Although deploying UAV
swarms for collaborative transportation [13,20,21] and environmental monitoring is now the
most prominent use, the development of flying cellular networks [7] is gaining popularity.
On the one hand, each UAV within the swarm may be outfitted with cellular connection
modules to increase their operational range and hence considerably improve their service.
This represents an interesting opportunity for the roll-out of hovering mobile base stations
whose placement can be dynamically adjusted to improve network coverage [82]. Another
relevant use of swarm is road traffic monitoring. In [12,26], the authors demonstrated
that a swarm synchronized with a vehicular ad hoc network improves traffic control and
decreases the number of accidents caused by reckless driving. They introduced a multi-
UAV system that is built on two layers. The first layer controls the vehicles from the
ground while the second layer promotes interaction between swarm UAVs for collaborative
vehicle tracking.

In transport and logistics, drone swarming refers to the use of a coordinated group
of drones to accomplish specified jobs more rapidly and efficiently. These swarm drones
can transport multiple parcels or heavy payloads at once. Due to the size and energy
limits, individual UAVs can only transport small and light payloads. As a result, heavy
or heavy payloads necessitate heavy-duty UAVs, which are difficult to deploy awing to
security as well as the rules and procedures related to the use of UAVs over a given weight
(usually, 25 kg but it varies depending on national regulations) [11,70]. Heavy payloads, on
the other hand, may be conveyed utilizing a swarm of tiny UAVs as proved in numerous
research [11].

An early paper [20] described techniques for controlling a swarm of quadrotors to
grip and convey a securely fastened payload of known weight to a given destination. The
consensus control stated for each UAV utilizes position as well as orientation with respect
to the payload body and provides instructions for the hovering position and intended path.
Even though the controllers are decentralized, the estimation of the position and velocity of
UAVs is centrally performed using a motion-capturing system. For payloads with a flexible
structure rigidly attached to the swarm, Robin et al. [21] used a linear-quadratic regulator
to predict payload deformation and stabilize it in a dynamic environment.
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The bulk of research in this field gives experimental tests that take advantage of
motion-capture systems. These systems are often appropriate for indoor settings. In
outdoor conditions, estimating the state of interactions in the swarm becomes more difficult,
as the modeling requires more degrees of freedom [22]. To face this challenge, authors
in [13] formulated the problem as an optimization problem with constraints related to the
environment, the UAVs, and the payload structure. The experimental tests were performed
with a quadrotor swarm that was controlled by a visual–inertial navigation system.

3. Materials and Methods

For ease of understanding and greater clarity in the presentation of this paper, all
notations used in this section are summarized in Appendix A.

3.1. Swarming Concept

Scheduling a mission in a swarm is a scheduling problem that involves organiz-
ing the execution of Robot Operating System (ROS) (https://www.ros.org/ (accessed on
1 August 2024)) nodes in a parallel (multicore) and distributed (multi-UAVs) manner. As
seen in Figure 1, adopting a multi-UAV system to enable collaboration missions entails
three stages. The first stage concerns the assessment of the environment. It consists of
partitioning the exploration environment into subregions. In accordance with the work-
load balancing constraint, each UAV is assigned to a subarea. This gives every UAV a
local perception. Depending on the homogeneity of the swarm, the partitioning may be
performed using the shape-based partition approach if the UAVs are homogeneous [76].
Shape-based partitioning splits exploration areas into preset shapes, like grids, cells, and
regular or irregular geometric boundaries. Partitioning relies on the structure or geom-
etry of the space itself, and the resulting divisions often adhere to rigid, often artificial
borders. The well-known, common methods are grid partitioning, Voronoi partitioning,
and geometric clustering [83,84]. In the opposite case, the density-based partition method
is the most suitable [11]. Density-based partitioning divides exploration regions according
to the density of waypoints, the types of UAVs involved, or the complexity of mission
tasks. Rather than focusing on predefined geometric boundaries, this approach is tailored
to identify dense subregions, concentrating on high-density zones and reducing partitions
in sparse regions. Common methods such as DBSCAN, Mean Shift, and k-Means with
Density-Based Refinement are suitable for this purpose [85,86]. Then, in the second stage,
mission jobs are processed in priority order. Each job is executed in a distributed manner
throughout the swarm depending on the number of core processes available per drone. The
last stage concerns the coordination of the tasks running for the mission achievement. Syn-
chronization of tasks is carried out via message-passing [87] and consensus definition [38],
which, respectively, facilitate communication and control of swarm actions.

The topic covered in this work is a cooperative variant of a multiagent system (MAS),
called Model-reflex agent [30], as shown in Figure 2. The agents in this MAS form a fleet of
drones {UAV1, UAV2, · · · , UAVk} composed of one leader and followers. The swarm is
homogeneous if ∀i, j ∈ J1..kK, such as i ̸= j, and we have UAVi = UAVj. This means that
the UAVi and UAVj share the same hardware and software properties and communication
infrastructures [76]. Otherwise, it is considered heterogeneous if the UAVs of Sk have
different characteristics. The exploration environment defined as a set of waypoints covers
a finite three-dimensional area A → R3×N+

such as A ̸= ∅ [11]. In addition, from a given
altitude ai, each UAVi provides a sensing capability pi = {(xi, yi)} of its environment Ai

according to the perception function defined as pi : Ai → R2×N+
, where Ai ⊂ A, |Ai| ̸= 0,

0 < ai ≤ zi.
The mission M to be planned in the swarm is defined as an ordered set of m jobs

{j1, j2, ..., jm} such ∀i ̸= j ∈ J1..mK, ji ̸= jj. Depending on the field of application, the
mission’s jobs are processed successively or simultaneously. For parallelism reasons, each
job is chunked as a smaller and more manageable set of tasks {t1

i , t2
i , · · · , tk

i }, such as tk
i

being a unit process or thread of job ji that runs on the kth drone. Let p ∈ N+ be the number

https://www.ros.org/
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of core processors of each UAV. A given UAVi ∈ Sk can perform a parallel execution of a
set of different tasks {ti

1, ti
2, · · · , ti

p}, such as ti
k ̸= ti

l . Each UAVi interacts with the others
via messages mi. Furthermore, every action performed has an impact on the drone’s
state qi.

Figure 1. Proposed swarming workflow. It consists of three main stages: (1) space partitioning stage,
(2) mission planning stage, and (3) communication and consensus control stage.

The complexity of the problem stems not only from the number of UAVs and their
respective duties but also from the requirement for UAV collaboration [48]. The following
are some intriguing complexity metrics for the problem assessment: (1) the number of
core processors (parallelism complexity), (2) the time needed to accomplish the mission
(time complexity), and (3) the amount of messages exchanges during the mission execution
(communication complexity).
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Figure 2. Autonomous UAV-based model-reflex agent.

3.1.1. Stage 1: Area Partition

Initially, for a fixed number k of UAVs after the environment assessment, the first
challenge consists of partitioning the exploration area A under k local areas Ai ⊂ A so that
each UAVi ∈ Sk is assigned to one local area Ai. We consider that Pk = {A1, A2, · · · , Ak} is
a k-partition of the exploration space if [11]:

• ∀i ∈ J1..kK, we have that Ai ̸= 0 =⇒ Ai is a nonempty space.
• ∀i ∈ J1..kK, we have that Ai ∩ Aj = ∅ =⇒ Ai and Aj are disjoint two by two.

•
k⋃

i=1

Ai = A.

For k ≥ 2, this problem becomes NP-Complete [88] since there is no polynomial-time
method that allows one to have optimal results. In this work, we focus on the shape-based
partition method [11] assuming that the UAVs are homogeneous, as shown in Figure 3. It
consists of generating numerous local areas Ai ⊢ Pk that are symmetrical in terms of size
and weight so that ∀Ai, Aj ⊂ A, |Ai| = |Aj|. Thus, if |Ai| > |Aj|, this means that the ith

area is wider than the area Aj. Consequently, the workload balancing will be unevenly
distributed across the swarm Sk, as UAVi will work more than UAVj. The partition Pk must
highlight the fundamental properties of workload balancing of the swarm Sk. Let wi ∈ R+

be the workload of the UAVi and wavg be the average workload of the swarm, such as

∀k ≥ 2, wavg =
∑k

i=1 wi

k
(1)

Figure 3. Illustration of the shape-based partition of A for k-drone swarm [11].
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Let ϵ be the acceptance of the deviation error of the partition of region A into a set
of local areas A1, A2, · · · , Ak such that the workload wi of each UAVi does not exceed
the average workload (1 + ϵ)× wavg, we use the DHPV algorithm proposed in [89]. The
workload balancing ws of the swarm Sk to perform the swarming mission depends on the
partition Pk. It is taken from [90] and is stated as:

ws =

√√√√∑k
i=1

(
wi

wavg
− 1

)2

k
∈]0, 1] (2)

This workload is balanced if the constraint ws ≤ 1 + ϵ is met, which means that the
workload wi of each UAVi ∈ Sk is equitably correlated to the average workload wavg [11].

Lemma (Dispersion of the workloads wi) Given a k-partition Sk of the exploration
region A, the constraint of workload balancing ws is not respected if for all UAVj ∈ Sk with
respective workloads wj ∈ R+, there is a UAVi whose workload wi causes the imbalance of
ws such as ∀i, j ∈ J1..kK, we have :

wi > wavg

(√
k(1 + ϵ) + k

)
−

k

∑
j=1,j ̸=i

wj (3)

The coverage of a subarea Ai depends on the targeted altitude ai ∈ R+ of the UAVi. By
flying at a higher altitude, the drone perceives a larger area in a single instance. This means
a greater chance of gathering more information of the area but with a spatial sampling
distance penalty. When switching to multiple UAVs, altitude ai variation impacts not only
the UAVi’s local perception pi, but also its workload and therefore the flight time of the
swarm. In this work, to keep things simple, we assume that the UAVs fly at the same
altitude, so that ∀ UAVi, UAVj ∈ Sk such as i ̸= j, we have ai = aj.

3.1.2. Stage 2: Mission Planning

The second stage concerns the mission planning strategy for swarming. For high-
performance computing involving distributed and parallel computation, mission jobs are
distributed throughout the swarm Sk and executed in parallel [48]. Figure 4 shows the
computation model of the planning strategy M = {j1, j2, · · · , jm}, it consists of three steps.
First, the set of jobs {j1, j2, · · · , jm} of the mission submitted by the operator is split into
a set of ROS nodes [91] {tj

i} such as j ∈ J1..kK, i ∈ J1..mK. Each node tj
i ∈ ji assigned to a

UAVj contributes to the achievement of its intermediate mission in its local region Aj ⊢ A.
Then in the second step, the chunked jobs are sent to the follower UAVs having enough
available resources (CPU, memory, and disk). Assuming we allocate one processor core
per drone for each node, each follower UAV will be able to execute multiple ROS nodes to
compute the mission tasks simultaneously and concurrently [91]. We consider O(jl) as the
time needed to execute all mission’s jobs of the swarm. If we assume that the drones are
homogeneous, the time spent by such a scheduled job jl to run across the swarm is equal
to [11,90]:

O(jl) = max
1≤i≤k

{O(ti
l)} ≈ ∑k

i=1 O(ti
l)

k
(4)

We define O(M) as the time complexity of the mission M when a sufficiently number
of processor cores p is available. It depends on the complexity of the tasks as well as the
number of processor cores available on each UAVi ∈ Sk and imposes certain precedence
constraints on the priory order that these tasks are to be performed. To completely deter-
mine a swarming mission, we have to specify which processor core performs what task tk

l
of what job jl at what time. Let us assume that we have available a pool of p processors
and each processor can perform any one of the desired jobs. For any job i (i ∈ J1..mK),
let {c1

i , · · · , ck
i } be, respectively, the small CPU of the drones {UAV1, UAV2, · · · , UAVk}

tasked with performing the corresponding operation. Also, we let ti be a positive integer
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variable specifying the time that the operation corresponding to job ji is completed. We
initially assign no processor to any mission jobs, and we use the convention ti = 0 for every
submitted job i. There are two constraints that must be imposed:

• A core processor can perform at most one ROS node at a time. Thus, if i ̸= j, and
ti ̸= tj, then tk

i ̸= tk
j for UAVk.

• If tj > ti+1, this requirement reflects the fact that the node corresponding to job jj can
only start after the node corresponding to job ji has been completed.

Figure 4. Swarm configuration for high-level mission parallelism.

Once ck
i , ji and ti have been fixed for UAVk, subject to the above constraints, the mission

M can be scheduled for parallel operation across the entire swarm Sk. So, we call the set
{ck

i , ji, ti} a schedule. The above-described setup could correspond to a variety of actual
implementations. For example, a processor ck

i could store the result xi of its task tk
i in a

shared memory from where it can be retrieved by other processors. Alternatively, in a
message-passing implementation [87], processor ck

i sends a message mi to any processor
ck

j that needs this value. In practice, memory access or the transmission of a message may
require some time, and this has been neglected in our early discussion. If the transmission
of a message requires exactly θ time units, then the constraint tj ≥ ti+1 should be modified
to [92]:

tj ≥ ti+1, if intra-process (5)

and
tj ≥ ti+1 + θ, if inter-process (6)

In fact, even this requirement is rather crude because the message delay θ may depend
on location of the processors in that interconnection network. In case that the processors
ck

i and ck
j are inside the same UAV (intraprocess communication), the message delay is

assumed to be negligible. Otherwise (inter-process communication), there is a delay θ. In
the next stage, we address this aspect in detail.

3.1.3. Stage 3: Message Passing

The last stage concerns the setting up of the message-passing paradigm, in which
UAVs communicate by publishing and subscribing to ROS messages over bus topics. Each
topic provides a bidirectional communication between two UAVs [11,87].

More formally, the communication system is defined as a set of pairs {(UAVi, mi)}
corresponding to the messages exchanged between the UAVs in the swarm. Each UAVi ∈ Sk
is theoretically modeled as a finite-state automaton with state qi. Each state of the UAVi
allows two types of message access, publisher and subscriber [76]:
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• Publisheri[mi]: holds message mi that UAVi has sent to the other {UAVj|j ̸= i}.
• Subscriberi[m1, · · · , mk]: holds messages {m1, · · · , mk} that have been received by

UAVi.

The behavior of the swarm over time depends on the specific type of system being
modeled. We classify this behavior as either publisher (qi = p), subscriber (qi = s) and
wait (qi = w), as shown in Figure 5. The publisher state is an instance in which the UAVi
can only send a message mi, unlike the subscriber state, where it only receives messages. In
some cases, the UAV switches between the two states to send and receive messages at the
same time. The last state q = w is when the UAVi is waiting. This waiting time depends on
the time delay θ defined by the operator. During this delay, the UAVi can neither send nor
receive a message.

Figure 5. Communication topology: (a) Synchronous communication. (b) Asynchronous communication.

The message-passing technique for invoking the behavior of the drones during commu-
nication with no failures depends on the time models: synchronous or asynchronous [87].
In the synchronous model, UAVs execute tasks in lockstep. The communication is parti-
tioned into rounds, and in each round, each UAVi ∈ Sk can publish its message mi and
subscribe to messages {m1, · · · , mk} published by the other (k − 1) UAVs of the swarm.
On the other hand, the asynchronous model is a communication model based on both the
time delay ti and the transition state qi of the UAVi. During the time delay θ, UAVi will
oversee communication depending on its transition state:

• qi = p, ∀i ̸= j, qj = s for all UAVj ∈ Sk \ {UAVi}. This means that UAVi publishes
messages mi throughout the swarm.

• qi = s, ∃ UAVj ∈ Sk \ {UAVi} such as qj = p. This means that UAVi subscribes to the
published messages mj of the UAVj.

• qi = w, ∀ti ∈ R+, qi ̸= s and qi ̸= p. This means that UAVi is on standby.

3.2. System Architecture

In this subsection, we present the architecture and design operation of the proposed
multi-UAV system. Figure 6 depicts the architecture’s components. It is multilayers
and based on both ardupilot (https://ardupilot.org/ardupilot/index.html (accessed on
3 October 2024)) and ROS framework [91] as they are open source and established as
industry standards. It is a trustworthy, flexible, and portable system that can control several
types of aerial vehicles: single-rotor, helicopters, multirotor, fixed-wing aircraft, and VTOL
airplanes [11]. The design of the architecture relies on two main layers: application and
computation layers. They are fully connected so that the output of the previous application
layer is the input of the computation layer. Moreover, the interactions within the multi-
UAV system are based on the MAVLink protocol (https://mavlink.io/en/ (accessed on
20 September 2024)), which guarantees interoperability with different types of UAVs and
between onboard drone components.

https://ardupilot.org/ardupilot/index.html
https://mavlink.io/en/
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Figure 6. Architecture design of our multi-UAV system.

3.2.1. Application Tier

The application tier is a well-established layer that organizes mission planning and
swarm control of the system into two independent components: virtualization and logic.
The virtualization tier is also known as the simulation component for preflight mission
planning without physical infrastructure. It is built on top-level of open-source software
such as MAVProxy (https://ardupilot.org/mavproxy/ (accessed on 20 September 2024)),
Gazebo (https://gazebosim.org/home (accessed on 22 June 2024)), SITL (https://ardupilot.
org/dev/docs/sitl-simulator-software-in-the-loop.html (accessed on 5 October 2024)), and
RViz (http://wiki.ros.org/rviz (accessed on 6 May 2023)). MAVProxy is a lightweight ground
station software that controls the UAVs through a powerful command-line architecture. It
provides real-time telemetry data and manages the performance metrics of the UAVs. It is a
conventional ground control station, similar to QGroundControl (http://qgroundcontrol.com/
(accessed on 2 October 2024)) or MissionPlanner (https://ardupilot.org/planner/ (accessed on
3 October 2024)), allowing to accomplish simple tasks like launch missions, monitor telemetry
data, drone performance metrics, control flight modes, and gather flight logs. The Software In
The Loop (SITL) simulator combined with Gazebo enables autopilot capability to simulate
autonomous flights in a realistic world without any hardware (rotors, sensors, copters, and
so on). It is built on top of C++ APIs allowing one to compile and launch executable robust
and complex flight programs without hardware dependency. In contrast to Gazebo, which
depicts the simulated world’s realism, Rviz shows the perception that UAVs have of their
environment, whether real or virtual.

The logic tier or abstraction layer is the heart of the multi-UAV system. It allows one
to call and implement the control commands, consensus, and rules associated with each
of the tasks assigned to the swarm UAVs by concealing the implementation details. Since
the programming paradigm of the UAVs is based on the ROS framework, it provides an
API that supports higher-level functionality in both C+++ (roscpp) and python (rospy)
libraries [91]. It is designed so that the built program can run both on virtual as well as real
swarms. Eventually, the swarm communication is abstracted by the mavros [93] package
that enables MAVLink extendable communication from one to many UAVs running ROS
nodes. Commands and services provide application programming interfaces that enable
two or more nodes to communicate with each other. They contain all the specifications
required to call commands and services for the high parallelism of ROS nodes running on all
the drones in the swarm. The mission component is dedicated to complex missions such as
massive object detection, large unknown space exploration, and mapping activities [11,76].

https://ardupilot.org/mavproxy/
https://gazebosim.org/home
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
http://wiki.ros.org/rviz
http://qgroundcontrol.com/
https://ardupilot.org/planner/
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3.2.2. Computation Layer

The computation layer is responsible for distributing the missions across the swarm
regardless of the Leader–Followers paradigm [46]. The computation layer of the swarm
is decentralized and involves two types of UAVs which establishes a dyadic relationship
between leader UAVs and follower UAVs. It evolves over time in three phases: role
assignment, role affectation, and role routing [94]. Role assignment is the initial phase
in which the leader UAV assigns roles to followers UAVi ⊢ Sk and assesses their states
from feedback controls. Because leader UAVs are unfamiliar with followers in the initial
phases of the interaction, they may appraise their availability based on their current states
and the consensus error from the goal state [40]. Convergences toward the goal state
will increase mutual attraction and trust between leader and follower drones, leading
to a decrease in consensus error [40]. In the role affectation phase, leaders assign roles
to followers if they consider those UAVs to be in good condition and satisfy mission
expectations. Simultaneously, follower UAVs will wait until they satisfy current roles
before the acceptance of new role assignments. Finally, in the role routing phase, the
relationship between leader UAVs and follower UAVs improves iteratively over time as
they converge to a common state [46].

The communication between the application layer and the swarm is achieved through
the leader UAV. The swarm is fully connected and uses UDP-based protocols for inter-UAV
communications. It also receives the list of mission jobs and shares it with all the follower
UAVs according to the swarm topology (ring, star, or meshed) [11]. Furthermore, the leader
UAV serves as a gateway to relay the information between the GCS and the rest of the
swarm. It is also responsible for swarm control and monitoring mission jobs throughout the
swarm. When the operator submits a job, the leader UAV first requests for list of available
processor cores on each follower UAV. Then, it sends the jobs as a task to be executed to
the available drones. For fault tolerance, a secondary leader UAV also called “Standby
Leader” provides fail-safe capabilities in case of leader UAV failure. It performs regular
health checks on the leader and ensures mission continuity in case of problems. Leader
UAV continuously sends a heartbeat to notify its availability, followed by a set of health
status information. If, after a while, the standby leader UAV receives no information from
the leader UAV, it automatically switches from standby to active state. This state occurs
when the standby leader detects a negative event from the leader UAV. This may be due to
a crash or hardware and software malfunctions.

On the other hand, the follower UAVs simultaneously execute the tasks assigned by
the leader and periodically report back mission status. It is important to note that the total
time to complete all mission jobs M = {j1, j2, · · · , jm} depends on the number of drones k
and processors p. When one UAVj finishes running its task tj

i ∈ ji, it waits for the other
drones to finish their tasks. This principle allows one to reduce the time complexity of the
mission M by the number (k − 1) of follower UAVs.

The mission M to be performed with swarm Sk is fully distributed and satisfied if the
following hold [11]:

• ∀j ∈ J1..kK, i ∈ J1..mK, O(tj
i) ̸= 0, and all ROS nodes run.

• For a given UAVj, the running nodes tj
i , tj

l are different two by two, tj
i ∩ tj

l = ∅.

• Once all the nodes tj
i have been completed, we obtain

m⋃
i=1

k⋃
j=1

tj
i = M.

For good parallelism, the right number of ROS nodes n required to complete a mission
job is calculated as follows [76,95]:

n =

{
0.95 × k × p, if homogeneous swarm
1.75 × k × p, if heterogeneous swarm

(7)

With 0.95, we assume that the swarm is homogeneous, this means that UAVs share
the same hardware components (rotors, captors, batteries, and so on) and computational
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capabilities (RAM, Chipset, and CPU). While with 1.75, the swarm consists of different
kinds of UAVs. The most efficient drones carry out a greater number of tasks and launch a
new wave of tasks immediately when they have finished. Messages and services shared
across the swarm are managed by ROS topics and services. During the computation,
the topics are asynchronously published and subscribed by the UAVs allowing them to
synchronize the called ROS services as client or server [91].

3.2.3. Service Thread Pool

Collaborative mission achievement in a swarm involves numerous synchronous
follower-to-follower and asynchronous leader-to-follower services as shown in Figure 7.
Access to the service is based on the first in–first out (FIFO) queuing mechanism [96], and
each UAV accesses them via ROS (https://www.ros.org/ (accessed on 1 August 2024))
topic buses that transfer data between components inside a drone or between drones [91].
Their handling is tricky because the services run in a distributed, parallel, and concurrent
manner. In this context, a thread pool is a good fit for service access management. A service
thread pool is a collection of threads available that operate a queue of services. It is used
to boost speed when executing a wide range of synchronous and asynchronous services
by lowering the invocation load per task and providing a mechanism of bounding and
controlling the resources used when running a set of tasks [97,98]. To serve a single request,
two threads are utilized by default: one for processing the request (service) and one for
getting the response (client). When a service is called by a UAV, if it does not exist in the
thread pool, then an instance of this service is created. Otherwise, it uses an instance of the
available service for request/response.

The first UAVi to call for service is the first to be processed. The next UAVi+1 waits
until the first finishes and so on. If the number of services is greater than or equal to the
capacity of the thread, the idle services are automatically stopped and removed from the
thread pool. This enables to free up CPU and RAM resources for running other services in
the queue. It is also important to mention that the maximum number of sj

i services running
by UAVi cannot be greater than its maximum number of core p. So, the total number s of
services that can run simultaneously in the swarm Sk is calculated as follows:

s =
k

∑
i=1

p

∑
j=1

sj
i ⩽ p × k (8)

Figure 7. Service thread pool management of the swarm. Two threads are allocated for each service.
Follower-to-follower services are performed in a synchronous manner. While leader-to-leader services
are asynchronous.

https://www.ros.org/
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3.2.4. Communication Scheme

The communication design of the swarm is based on a single-group architecture. It is a
decentralized scheme that fosters drone-to-drone communication, hence removing reliance
on the GCS [11], as shown in Figure 8. The GCS communicates with the swarm via the
leader drone, which acts as a “Gateway UAV”. It supervises and relays data between the
GCS and all UAVs using MAVLINK protocol. Each follower UAV in the ad hoc network is
equipped with a wireless point-to-point communication device allowing them to operate as
a single access point. Meanwhile, the leader on-board communication module provides a
point-to-multipoint link to the followers and the GCS. To maintain the swarm’s scalability,
we use the ring topology, which means that all bidirectional interactions between two UAVs
must take place via the leader drone. Since the communication infrastructure is supported
by MAVLink protocol, the swarm is scalable up to 255 UAVs or sensors [93].

A UAV is integrated into the swarm’s wireless network via a bridge communication
utilizing a UDP/Wi-Fi connection. When the connection is established, an end-to-end path
is created in the routing table. This routing table serves as data transmission rules for each
drone. The same process is repeated until k drones of the swarm are integrated. To ensure
optimal message broadcasting and avoid packet collisions, each drone is recognized across
the wireless network using unique identifiers, which ensures that each UAV is distinct:

• SYS ID: System identifier assigned to each drone. Its value varies from 1 to 255.
• IP: The IP address used to identify the drone on the wireless network.
• PORT: The listening port used by the GCS and drones to send/receive packets and

commands.
• CHANNEL: Communication channel used by the GCS to transmit telemetry data to the

fly control unit of each drone.
• BAUDRATE: Speed at which each drone transmits and receives data.

Figure 8. Communication model of the swarm based on single-group architecture.

As shown in Figure 9, communication within the swarm is based on MAVLink
message-oriented protocols, where messages are sent with a built-in priority order on
different topics or channels. They occur in the (1) application layer, which defines the
structure of messages exchanged throughout the swarm, and (2) transport layer, which
ensures reliable message routing. Each message is encoded in a packet structure that
guarantees transport-level reliability. Message structures consist of a header, payload, and
footer. The header holds identity and verification information, the payload stores the data
itself, and the footer contains information about the integrity and security of the message.
Payload semantics depend on message types (control messages or data messages), which
are highly context-dependent:

• Heartbeat signal is a periodic message sent at a lower frequency by each drone to
indicate that it is alive and operating normally.
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• Telemetry data provide feedback (waypoints, altitude, position, roll/pitch/yaw, speed,
IMU, and diagnostics) concerning the drone’s mobility.

• Mission control messages contain instructions (such as take-off, landing, set mode,
rtl, etc.) used to send mission control commands with higher priority and frequency.

• Sensor information contains raw data from onboard sensors (e.g., GPS, GNSS) or
cameras (e.g., thermal, spectral, or hyperspectral camera).

• Parameter set contains standard definitions (e.g., HEARTBEAT, SYS STATUS, or
PARAM VALUE) used for the management of the multi-UAV system.

Each UAV uses a separate channel to broadcast these messages concurrently over the
same communication link. To distinguish itself in multi-UAV scenarios, each drone uses
its own SYS ID and COMPONENT ID. All messages are concentrated and controlled on
the leader UAV, which acts as a broker or concentrative point, and data separation is not
achieved by physical channels but through message IDs and types.

Figure 9. Message passing interface for swarm communication via MAVLink.

3.3. Self-Organization
3.3.1. Consensus Control and Policy

Policy control, often known as policy management, is a technology that allows to define
and apply operational rules and security regulations in the swarm intelligence [38–40]. It is
static and local for each UAV and depends on its function (leader or follower). As shown in
Figure 10, the swarm control policy consists of three main control services: SwarmManager,
Standby SwarmManager, and DroneManager. The three ROS services communicate via an
asynchronous message-passing interface in which the publisher can send a topic without
waiting for the subscriber to be ready. The topic is buffered and retrieved by the subscriber
as soon as it is available. This nonblocking communication approach provides greater
flexibility, which is required for large-scale swarm management. It is also adapted to
support GCS-to-leader and leader-to-follower communications.

The SwarmManager is located on the leader UAV, and it consists of MissionPlanner
and MissionManager components. It receives the missions submitted from the ground
control station by the operator and processes them using the MissionPlanner component.
On this basis, the leader decides the way missions are prioritized and how followers are
allocated to the missions using FIFO scheduling policies [96]. After that, the MissionMan-
ager talks to the DroneManager(s) located on the follower UAVs via a message-passing
interface (MPI) [87]. Based on the negotiations made with the DroneManagers of the swarm,
SwarmManager successfully finds a follower UAV having enough resources (processor,
RAM, power, sensors, autonomy, etc.) to create a ROSContainer, and then launches the
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ROS nodes, respectively, for a set of tasks. The number of ROS nodes running concurrently
in the container is defined by the operator and cannot exceed the number of core-CPUs
per drone. By default, two nodes are instantiated: the first instance for the autopilot and
the second for the swarm control policy. In the meantime, the TaskManager monitors
locally the nodes running in that follower UAV. Once all ROS nodes finish running, the
TaskManager notifies the end of the mission to the SwarmManager.

Figure 10. Execution workflow of the swarm services based on leader–followers hierarchy.

The SwarmManager is the heart of the multi-UAV system, and it manages the swarm
as well as being responsible for resource allocation. When it receives a job request from
the operator, it splits tasks and forwards them to the appropriate followers, on which
the actual execution occurs. It optimizes the swarm utilization (e.g., keeping all drones
active) while considering different constraints such as autonomy, flying mode, maximum
altitude, payload capability, etc. It is made up of two components: MissionPlanner and
MissionManager.

1. MissionPlanner autonomously manages the assignment of the mission tasks on the
whole swarm. The tasks are assigned to only active UAVs within the limitations of
resource capacities, queues, and so on. It is referred to as a pure mission planner,
which means that it does not track the status of the mission. Upon mission or UAV
failures, the MissionPlanner reschedules the failed tasks to other active UAVs.

2. MissionManager is responsible for monitoring and tracking the status of the missions
running in the swarm. It continuously receives information about the status of the
drones and the mission in progress. It handles the execution of the TaskManagers in
the swarm and commands the DroneManagers to restart the ROS nodes in case of
failure.

The DroneManager is located on the follower UAVs, and it is responsible for moni-
toring the ROS node utilization and reporting to the SwarmManager. The health of the
follower UAV on which the tasks are running is tracked by the DroneManager. If it receives
an instruction from the SwarmManager, it may also stop or shut down the ROS nodes. It
consists of two components: TaskMaster and ROSContainer.

1. TaskMaster is the component that negotiates the allocation of resource usage (CPU,
memory, and disk) for executing the tasks on the ROS nodes. Its main role is to
coordinate the execution of the mission tasks and handle faults. It reports the status
and progress of the running tasks to the SwarmManager. Once launched, it transmits
frequent heartbeats, as well as the diagnosis of onboard sensors to the SwarmManager
to assert its health status.



Drones 2024, 8, 575 21 of 36

2. ROSContainer is a collection of ROS nodes used to perform the computation of the
tasks. For each ROS node, hardware CPU, ram, and disk resources are allocated to
the follower UAV for the running of the assigned task.

3.3.2. Fault Tolerance and Failover

Since the communication architecture of the swarm is based on a single-group ar-
chitecture [1,11,15,37], it would not allow to ensure a fault-tolerance. Therefore, the high
availability of the swarm relies on the SwarmManager. In case of failure or crash, the whole
multi-UAV system would stop. In this context, we introduce the Standby SwarmManager
hosted in a separate leader UAV to remove the problem of a single point of swarm failure. If
the SwarmManager fails, the Standby SwarmManager takes over automatically. Figure 11
shows the state transition diagram of the Standby SwarmManager. Initially, it issues di-
agnostic requests on the status of the batteries, rotors, and heartbeats of the active leader
UAV. If it detects any anomaly, it automatically switches to an active state and notifies the
follower UAVs that it has taken control of the swarm.

Figure 11. State transition diagram of the standby leader UAV. The standby UAV passes to active
mode when one of the three events is detected.

During the execution cycle of the mission (see Figure 12), the active leader regularly
sends heartbeats to the standby leader as well as his health diagnosis. At the same time, it
performs regular checks on the state of the swarm and the missions being executed. This
information is stored in a shared file accessible to the standby leader which can use it for
the continuity of activities in case of failure of the active leader.

During the execution of the jobs by the UAV followers, it is possible that in some
situations the execution fails due to computational capacity problems. In this case, the
remaining jobs are reassigned to the available follower UAVs that have completed their
tasks. This reassignment is performed in a way that respects the workload balancing
constraint (Equation (3)) of the swarm so that each follower UAVi has almost the same
workload wi as the others.

Figure 12. Cooperative execution workflow of leader UAVs for fault-tolerance policy management.
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Figure 13 depicts the process of rescheduling failed tasks. The tasks are first classified
according to queuing priority and then reassigned according to the FIFO principle [96].
The first failed task is reassigned to the first available follower UAV and so on. We have
three types of operator-defined priorities: (1) highest priorities, which are the tasks coming
from the required jobs and on which the other jobs depend; (2) middle priorities, which
are complementary jobs that support the highest priority tasks such as exploratory tasks,
monitoring, etc.; and finally, (3) lower priorities, which are optional jobs. According to the
classification made, the SwarmManager chooses the available follower UAVs and assigns
the tasks according to the FIFO principle [96].

Figure 13. Illustration of task failure management for the followers UAV2 and UAV3. The SwarmMan-
ager reschedules the failed jobs on UAV1 and UAV4 according to the FIFO and priority order queue.

4. Experimental Results and Validation

We assessed the performance of our multi-UAV system in this section. Reliability tests
were carried out on a real swarm composed of two homogeneous quadrotors based on
pixhawk/ardupilot architecture. Each drone is equipped with a Raspberry PI 2-based ARM
Cortex-A7 architecture operating on 1 GB of RAM and 4-core CPU running at 900 MHz
with a soldered 802.11 bgn wireless 2.4 GHz radio frequency, allowing a short-range com-
munication of 250 m, as illustrated in Figure 14a. Our two drones typically use 4200 mAh
(4.2 Ah) in a 3-cell configuration, each with a voltage of 3.6 V. The voltage when the battery
is full is 12.6 V and when it is empty is 9 V, which gives a total average of 12 V × 4.2 Ah for
a maximum flight time of 18 min per drone. The navigation module used is based on an
M10Q micro-GPS with a compass equipped with an arm-based flight controller.

On the other hand, simulations were carried out in Gazebo 11 with a virtual swarm
comprising six IRIS quadcopters configured in a homogeneous manner, including one
leader, one standby leader, and four follower UAVs, as shown in Figure 14b. Each UAV is
equipped with 2 × 12.59 V × 3.1 Ah batteries. We used QGroundControl 3.2 with MAVLink
2.0 for the full flight control of the swarm from the ground station. Each drone flies at an
altitude of 5 m with a speed of 1 m/s and a local perception of 2 m2. We also set the local
navigation tolerance at 10%. The implemented program is based on the ROS distributions
versioned to the latest Noetic and Humble Hawksbill running on Linux Ubuntu 20.04 for
workspace. The experimental results discussed in this paper concern coverage area A,
number of drones k, flight time O(M), power consumption, and latency θ (See Appendix B).
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Figure 14. UAV Swarm used for the experimental tests: (a) Real swarm used for reliability and
deployment testing. It consists of two homogeneous quadrotors and based on ardupilot architecture.
(b) virtual swarm used for the simulation. It consists of two leaders and four follower UAVs.

4.1. Proof of Concept: Rapid Coverage Mission

To highlight the effectiveness and reliability and validate our proof of concept, we
carried out simulation tests with the Localization with a Mobile Anchor node based on
Trilateration (LMAT) coverage mission [99]. It has been used to cover areas of interest
ranging from 400 m2 to 3.2 km2. In terms of complexity, the LMAT algorithm consumes
quite a lot of energy due to the frequent acceleration and deceleration maneuvers during
UAV navigation. In addition, for a large exploration area, the flying time jumps to an
exponential complexity with respect to the size [100].

Figure 15 validates the proof of concept during a coverage mission in an outdoor
test. It demonstrates the operational aspects of the swarm, from environmental assessment
to overall area coverage. The mission tasks consist of three ROS nodes, each assigned
to a single-core CPU. Two higher-priority nodes are used, respectively, for the execu-
tion of the LMAT coverage path and the messaging/swarm control policy, whereas the
third, middle-priority task is used for collision avoidance (https://wiki.ros.org/teb_local_
planner/Tutorials/Obstacle%20Avoidance%20and%20Robot%20Footprint%20Model (ac-
cessed on 5 July 2024)). During the operation, the black and green UAVs operate simulta-
neously as workers. Each UAV takes off, carries out its mission in its assigned area, and
lands when its local coverage is complete. Compared with the current state of the art, ours
is more convincing and validated from simulation to reality.

Figure 16 shows the coverage mission using the 4-UAV swarm. The coverage zone is
divided into four subregions. Each subregion size is approximately equal to 100 m2 and is
assigned to one UAV of the swarm. Each subregion is bounded by a series of frontier points
so that two adjacent UAVs share their intermediate waypoints. Blue markers are the points
that delimit the area shape. While green map markers represent the waypoints to visit. Red
straight lines are the intermediate paths to cover the whole environment. From its point of
origin (the take-off point), each UAV flies towards these waypoints until it covers it local
region. The coverage mission is carried out in a distributed way across the 4-UAV swarm.
We obtained four intermediate coverage paths, each of which represents a partial path.
Then, the complete coverage is obtained by merging the partial paths of the UAVs in such a
way that the ending waypoint (landing point) of the UAVi becomes the starting waypoint

https://wiki.ros.org/teb_local_planner/Tutorials/Obstacle%20Avoidance%20and%20Robot%20Footprint%20Model
https://wiki.ros.org/teb_local_planner/Tutorials/Obstacle%20Avoidance%20and%20Robot%20Footprint%20Model


Drones 2024, 8, 575 24 of 36

(take-off point) of the UAVi+1 and so on until the concatenation of the last intermediate
coverage path.

Figure 15. LMAT coverage operation with the 2-UAV swarm in outdoor environment. The green
UAV operates on the left side while the black one on the right.

Figure 16. Swarming version of the coverage mission with a 4-UAV swarm. The mission is performed
simultaneously across the four follower UAVs.
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4.2. Flight Time vs. Number of UAVs

The first topic of interest concerns the analysis of the impact of the number k of UAVs on
flight time. We conducted experiments on spaces ranging from small to large dimensions and
by varying the swarm from 1 to 4 follower UAVs. Figure 17 highlights how increasing the
number of follower UAVs affects the flying time. We observed that as the swarm is extended
from 1 to 4 follower UAVs, the flight time is considerably improved. Up until the linearity time
is attained, the scalability of the swarm reduces the exponential time complexity to linear time.
For an area of 3.2 km2, the coverage time decreases from 2 h 36 min (156 min) to 1 h 32 min
(92 min) with a 2-UAV swarm, a saving of 1 h 04 min. This time is further improved from
32 min to 22 min with, respectively, three- and four-UAV swarms.

We also note that for small areas (400 and 800 m2), adding more than two UAVs does
not speed up the flying time. This means that the tasks performed by UAV3 and UAV4 can
be assigned to those of UAV1 and UAV2, respectively, for an almost identical coverage time.
This led us to deduce that the swarming concept is dedicated to large exploration areas.

Figure 17. Time complexity O(M) of the LMAT coverage algorithm with varying number of follower
UAVs k = J1..4K.

4.3. Energy Consumption vs. Number of UAVs

The second topic of interest is the average power consumption of each UAVs. Figure 18
depicts the result of energy consumption per follower UAV relative to swarm scalability.
Firstly, we note that the swarming approach considerably reduces the average energy
expended by UAVs to achieve coverage missions.

For an area of 400 m2, with the conventional approach, the full 200% (62 A) battery
level is consumed for the mission. However, with the swarming concept, each UAV uses
one battery and consumes an average of 78%, 49%, and 48% energy, respectively, for a
swarm of two, three, and four follower UAVs. This represents energy savings of 22%
(2.77 V), 51% (6.43 V), and 52% (6.55 V), respectively. On the other hand, for large areas
(as shown in Figure 18a,b , the results are remarkable. With the conventional approach
(single-UAV), the 200% energy is completely used up without the missions being completed.
Our approach, on the other hand, makes optimum use of energy, enabling long-distance
flights.

For example, for a 1.2 km2 coverage (Figure 18a) with a two-UAV swarm, the coverage
mission is barely completed by exhausting the entire 200% energy charge available in the
two batteries of each follower UAV. With a three-UAV swarm, each UAV uses on average
2/3 of its energy consumption (140%) to complete the mission simultaneously. When
the swarm is increased to four-UAV, energy optimization improves considerably. Each



Drones 2024, 8, 575 26 of 36

UAV uses almost half (90%, i.e., 11.34 V of 200%, i.e., 25.2 V) of its energy capacity. This
represents an energy gain of 110% (13.85 V) per UAV.

The proposed approach shows good performance in terms of energy consumption
over large areas. Unlike the conventional approach, it avoids downtime for recharging or
replacing batteries, which has a major impact on mission duration.

Figure 18. Swarm energy consumption from small to large areas (|A| ∈ {0.4; 0.8; 1.2}). Small area is
covered by (a), while (b,c) show the results for large areas.
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4.4. Network Bandwidth and Latency

The third topic of interest concerns the network bandwidth and latency. Figure 19
shows the network packets per UAV transferred over the swarm. The first thing we remark
is that the increasing number of follower UAVs reduces the published and subscribed
packets of each UAV. This significantly reduces network bandwidth consumption and
avoids network bottlenecks. If the communication architecture is decentralized single-
group, it takes the strain off intra-UAV communication by spreading processed packets
over the entire swarm.

Figure 19. Network bandwidth (pkts) of the swarm based on the number of UAV k = J1..4K.

In addition, the network latency that presents the delay in network communication
presents good performances as shown in Table 2. This latency also known as ping rate
represents the time it takes for data to undergo propagation throughout the swarm network.
The lower the latency, the better the performance. A latency of less than 100 ms is deemed
acceptable, however for outstanding performance, or delay of 30 to 40 milliseconds is
desired. As seen in Table 2, it varies from 40 to 48 milliseconds, and the mean time delay is
44.39 milliseconds. This means that the swarm’s communication latency is acceptable and
very close to the desirability threshold performance. Furthermore, we also observe that
response time is not affected by swarm scalability.

Table 2. Network latency of the swarm with varying number of drones k = J1..4K.

Time Delay θ (ms)

pkts k = 1 k = 2 k = 3 k = 4

5 × 103 40.54 45.28 41.92 46.84
10 × 103 45.50 41.18 49.48 46.20
15 × 103 44.28 43.16 45.82 42.32
20 × 103 49.07 44.24 42.82 42.84
25 × 103 42.76 45.98 46.94 43.96
30 × 103 43.34 43.66 45.09 47.24

Average time (ms) 44.24 43.41 45.01 44.9

Mean latency (ms) 44.39

4.5. High Availability

The swarm’s high availability is based on access to topics and services among all UAVs.
Figure 20 shows the ROS communication graph for the entire swarm. Overall, we remark
that the graph is connected, meaning that each UAV can access all the resources (topics
and services) of another UAV. In addition, the graph is made up of six subgraphs, each
corresponding to a UAV. Each subgraph is characterized by a complete graph, emphasizing
the high availability of resources inside each UAV in the swarm and their distribution
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throughout the whole swarm. So, in the event of a failure, the mission will continue without
interruption, thanks to the availability of resources on the other UAVs.

Figure 20. ROS communication graph of the six-UAV swarm. Each block represents a communication
subgraph of each UAV. The nodes and arcs within each block represent the services/topics and
their interactions.
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4.6. Comparative Study

In this subsection, we discuss the advantages and limitations of the proposed multi-
UAV system.

Table 3 presents an evaluation of our system in relation to recent works proposed
in [97,98,101]. The investigation criteria are defined in the column “Features”. Compared
with [97,98], decentralized communication architecture as a single group offers greater
flexibility. This gives the advantage of seamless migration to more resilient multigroup or
multilevel architectures [11]. Since it is scalable, it could be used to gather large volumes
of streaming data to be remotely integrated and processed in a big data infrastructure.
Another advantage is that it eliminates dependency on the GCS and favors the Air2Air
communication mode. In terms of onboard intelligence, our system is more autonomous
than those proposed in [97,98,101]. It is the only one to offer a failover and continuity
system in the event of one of the drones breaking down. It is self-organized according to the
leader–followers hierarchical model and performs collaborative tasks based on a control
consensus that regulates the actions of the drones in such a way as to promote convergence
towards the desired goal.

Although the tests carried out show that our system is reliable, trustworthy, and
consistently performs well, there are some limitations regarding the main features. The
fact that the communication scheme is based on single-group architecture restricts the
swarm’s mobility to limited areas, as the UAV leader acting as a relay must not move
away from the GCS at the risk of losing the communication signal. What’s more, the
communication mode is insecure and remains closed essentially to MAVLINK protocols,
making it non-inter-operable with other connected objects. Added to this is the problem
of coordinating UAV mobility, since our system does not offer a particular capability of
collision avoidance for swarm flying. This obviously involves collecting data via various
embedded sensors as well as data from external sources and calculating the most efficient
maneuvers (roll/pitch/yaw) for the UAV to catty out to avoid colliding with its nearby
neighbors. To deal with this problem, we need to think about integrating a collective
navigation model (UAVs flying in tight formation) for obstacle and collision avoidance [11].
Complications emerge when the relative positions of the UAVs shift from one to another in
a vast and highly dynamic swarm.

Table 3. Comparative key features of our multi-UAV system versus work carried out in [97,98,101].

Features Our System Sial [101] Rune [97] João [98]

Programming
framework

ROS1 ✓ é ✓ ✓
ROS2 ✓ é ✓ é

Network
architecture

Centralized é é ✓ ✓
Decentralized ✓ ✓ é é

Communication
mode

Air2Ground ✓ ✓ ✓ ✓
Air2Air ✓ ✓ é é
Air2Cloud é é ✓ ✓
Secure é é ✓ ✓

Swarm
intelligence

Collaborative ✓ ✓ ✓ ✓
Consensus control ✓ ✓ é é
Resilience ✓ é é é
Self-organized ✓ ✓ é é
Failover system ✓ é é é
Collision avoidance é é ✓ é

Proofs of
concept

Simulation ✓ ✓ ✓ ✓
Real-world ✓ é ✓ ✓
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4.7. Key Problems and Limitations

In our test bed, we observed that the reliability and robustness of the proposed multi-
UAV system is affected by the following limitations:

• Asynchronous message passing interface: As this communication model does not
implement instantaneous acknowledgment, it is therefore unreliable due to the risk of
lost packets, data inconsistency, or out-of-time delivery. This can hamper the smooth
running of the mission and optimal control of the swarm by the leader. In addition, the
retry mechanisms of these buffered messages can lead to communication bottlenecks.

• Network stability: A number of external factors, such as noise, wind, trees, hills, and
the effect of highly urbanized areas, can alter network stability and cause communica-
tion delays due to degraded signal quality. In such situations, signal power can vary
from extremely low to very high, with a greater probability of being close to zero.

• Swarm mobility: The drones have a short communication range, which limits the
swarm’s mobility in restricted areas. They must therefore always remain within the
GCS transmission range. As a result, the drones will be close to each other. This can
lead to collisions and signal interference. In practice, the proximity of one drone to
another causes interference. This occurs when the signal from one drone’s receiver
interferes with that of another drone. As a result, network stability is often disrupted,
affecting not only latency but also the delivery of transmitted raw data and telemetry.

• Energy constraints: Battery life has a direct impact on swarm performance. A drone
with a low battery takes longer to react to cooperative actions and coordinate these
movements with the others. This can hamper the convergence of consensus control
and, in the worst case, lead to paralysis of the multi-UAV system when it comes to the
leader drone.

• Security: Our multi-UAV system is not secure, as the proposed communication scheme
does not incorporate a security layer to protect data and the swarm. This vulnerability
can be exploited by an attacker to initiate routing, jamming, and denial-of-service
(DoS), Sybil, or Byzantine-type fault tolerance attacks.

5. Conclusions and Future Work

Autonomous aerial swarms are of tremendous interest to both industry and the
scientific community since they provide a wide variety of potential. Setting them up is
a matter that involves a couple of important challenges: communication, coordination,
collaboration, and intelligence. The swarm needs to be fully equipped with a decentralized,
scalable network infrastructure, enabling new UAVs to be easily added and/or removed.
Maintaining the quality of the communication signal is another challenge arising from the
swarm’s mobility. As a result, the UAVs must navigate in tight formation to avoid losing
the signal, which is not often the case due to collisions. We also need to define a rule set
based on a rigorous control consensus that regulates collective decision making, detects
failures, and ensures the system’s reliability.

Although a variety of scientific works have already explored and investigated so-
lutions to these problems, specific topics, such as mathematical formulation of swarm
intelligence, self-organization, mission planning in a distributed manner, consensus control,
and collective fault detection considerations, remain unaddressed. With growing interest in
aerial swarms, these questions cannot be overlooked. That is why this paper is intended as
a springboard and a solid cornerstone for any research work aimed at implementing a multi-
UAV system whatever the field of application. This manuscript offers a thorough review of
multi-UAV systems, with reference to the intelligence, applicability, and self-organization
of aerial swarms. A collaborative swarming concept associated with autonomous swarm
control in a distributed environment has been presented. This contribution deals with
the complexity of environment assessment, distributed mission planning, communication
paradigm, and finally, the consensus control problem to regulate the actions carried out by
the drone fleet. The multi-UAV system presented in this paper is based on a decentralized
single-group architecture that could be extended to other more robust types as a perspective.
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Compared with the current literature review, our swarming concept is more autonomous
and resilient. Experimental tests have shown very conclusive results in terms of flight time
reduction, energy consumption optimization, and area coverage during missions. It is
true that the principles of flying in close formation are not covered in this work, but this
paper could be extremely instructive for research into the use of autonomous swarms for
collaborative missions.

The proposed swarming concept is freely accessible; the source code, demonstration
videos, and documentation are accessible on github via this link: https://github.com/
adoni91/autotarget.git (accessed on 20 September 2024).
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
GCS Ground Control Station
VTOL Vertical Take-Off and Landing
ROS Robot Operating System
SIL Software-In-The Loop
LMAT Localization with a Mobile Anchor node based on Trilateration
MAS MultiAgent System
UDP User Datagram Protocol
FIFO First In–First Out
CPU Central Processing Unit
C-UAS Counter-Unmanned Aerial System
RAM Random Access Memory
SPOF Single Point Of Failure
RRT Rapidly Random Tree

Appendix A

The following notations are used in this manuscript:
A Area
Ai ith Subarea of A
Pk k-partition of the area
UAVi Drone i
qi State of UAVi
ai Altitude of UAVi
pi Perception capability of UAVi
Sk Swarm composed of k UAVs
M Mission
k Number of UAVs
m Number of jobs associated to M

https://github.com/adoni91/autotarget.git
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p Number of processor cores per UAV
ji ith job of M
cj

i jth core of UAVj
ti Execution time of job i
tj
i ith task (ROS node) of UAVj

wi Workload of UAVi
ws Workload balancing of the swarm
wavg Average workload

Appendix B

Tables A1–A3 summarize the results for flight time O(M), power consumption, and
swarm latency θ with respect to coverage area A and k number of UAVs.

Table A1. Experimental results by varying the coverage area A from 400 m2 to 1.2 km2.

A = 400 m2 A = 800 m2 A = 1.2 km2

k Time
(min)

Energy
Used
per UAV (V)

Latency
(ms)

Time
(min)

Energy
Used
per UAV (V)

Latency
(ms)

Time
(min)

Energy
Used
per UAV (V)

Latency
(ms)

1 13.42 25.20 44.28 29.05 25.02 43.85 39.08 25.20 45.12
2 5.56 11.08 43.66 10.36 21.02 45.42 17.45 25.20 44.31
3 3.47 6.55 42.78 8.51 15.98 42.76 11.25 18.65 44.55
4 3.45 6.42 44.70 6.32 8.39 46.07 9.11 10.37 44.90

Table A2. Experimental results by varying the coverage area A from 1.6 km2 to 2.4 km2.

A = 1.6 km2 A = 2 km2 A = 2.4 km2

k Time
(min)

Energy
Used
Per UAV (V)

Latency
(ms)

Time
(min)

Energy
Used
Per UAV (V)

Latency
(ms)

Time
(min)

Energy
Used
Per UAV (V)

Latency
(ms)

1 48.07 30.99 44.28 70.23 45.28 43.55 92.33 59.53 44.32
2 21.41 30.91 43.66 28.16 40.66 44.52 37 53.43 45.51
3 15.09 25.01 42.78 19.35 32.07 42.54 22.39 37.11 44.95
4 11.1 12.63 44.96 13.52 15.39 46.16 17.16 19.53 44.81

Table A3. Experimental results by varying the coverage area A from 2.8 km2 to 3.2 km2.

A = 2.8 km2 A = 3.2 km2

k Time
(min)

Energy Used
Per UAV (V)

Latency
(ms)

Time
(min)

Energy Used
Per UAV (V)

Latency
(ms)

1 123 79.31 45.28 156 100.59 43.88
2 58.27 84.14 43.86 92.17 133.09 44.96
3 27.09 44.90 44.85 32.10 53.04 43.68
4 19.28 21.94 45.78 22.25 25.32 44.72
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