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Abstract: Navigation spoofing has been widely utilized in unmanned aircraft vehicle (UAV) counter-
measures, due to its advantages of covertness, effectiveness, and dynamic trajectory control ability.
However, existing research faces two primary challenges. Firstly, sudden changes in the target UAV’s
trajectory can result in a significant degradation in the spoofing performance, which may enable the
onboard inertial components to detect and identify the ongoing spoofing attempts. Secondly, gradual
accumulation of control errors over time degenerates the spoofing effect. To address these problems,
we propose a dynamic trajectory spoofing approach for UAVs based on model predictive control
(MPC), which progressively steers the UAVs towards the predetermined trajectory of the spoofer.
Simulation results demonstrate a substantial enhancement in dynamic trajectory control performance
and decrease in accumulation error compared to the existing methods.

Keywords: UAV countermeasures; model predictive control; trajectory spoofing; dynamic control

1. Introduction

The decreasing manufacturing costs, size miniaturization, and enhanced ease of oper-
ation of UAVs have significantly boosted their popularity. This popularity spans various
domains, including aerial photography, flood rescue operations, law enforcement, and
aerial reconnaissance [1–5]. However, the illicit use of UAVs poses substantial threats in
both civilian and military contexts. UAVs are used to target critical civilian infrastructure
such as oil fields, airports and nuclear power plants. In military operations, they are exten-
sively utilized for reconnaissance, targeted strikes, and long-range assaults. Consequently,
the development of counter-UAV technologies has emerged as a critical area of research.

Most UAVs rely on global navigation satellite system (GNSS) signals, which provide
position, velocity, and time information [6–9], to maintain steady and accurate flight control.
However, the signals transmitted from navigation satellites are weak and susceptible to
interference. Moreover, civilian GNSS signals are publicly accessible, making it feasible
to create counterfeit GNSS signals as a means to disrupt UAV flight control. This tactic,
known as navigation spoofing, is the process of intruding into a UAV’s flight control
link by transmitting counterfeit satellite signals, thereby misleading the UAV’s receiver
into providing incorrect location, speed, or time information [10]. Due to the difficulty
in detecting spoofing [11], its capacity to manipulate the dynamics of UAVs, and its high
success rate, it has emerged as a significant countermeasure for UAVs, noteworthy for its
covert nature, effectiveness, and ability to control dynamic trajectories.

Research interest in GNSS spoofing techniques arose in the early 2000s. Warner and
Johnston demonstrated that civilian GPS spoofing attacks can be easily implemented with a
satellite simulator [12]. The same research group proposed seven potential countermeasures
against GPS spoofing [13], including monitoring absolute GPS signal strength, checking
relative GPS signal strength, and conducting time comparisons. Humphreys outlined
the necessary hardware and software components for spoofing and developed a portable
GNSS spoofing jamming device [14]. Shepard et al. [15] conducted the first field test of
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GPS spoofing on a UAV in publicly available literature, successfully hijacking the UAV
by altering its perceived location. The effects of GNSS spoofing on UAVs were measured
through various experimental scenarios in [16] and [17]. Low-cost software-defined radio
(SDR) platforms have been widely employed as spoofing signal generators, and their
feasibility has been verified by field experiments [18,19]. To address the UAV intrusion
problems, He et al. proposed a novel “repulsion” method that involves the deployment of
sensors and spoofing devices to establish a no-fly zone [20]. In contrast to most research
on multi-rotator UAVs, Chae et al. investigated the GNSS spoofing method for fixed-wing
drones, and proposed two flight redirection strategies [21]. Alharasees et al. conducted
a series of studies on human factors in UAV operations, and noted that as autonomy
increases and artificial intelligence is applied to UAV flight control, there is a corresponding
reduction in both operators’ workload and vigilance [22–24]. This vigilance reduction, in
turn, increases the potential for spoofing.

Where there is a spear, there is a shield. Numerous methods and algorithms have
been proposed to detect, identify, and mitigate spoofing attacks on UAVs. These methods
include the use of machine learning algorithms, array antennas, visual odometry, inertial
navigation systems (INS), magnetometer sensors, and barometer sensors [25–33]. As a
cost-effective and reliable solution, an increasing number of newly developed UAVs are
equipped with inertial navigation modules. This equipment improves their navigational
capabilities and enhances their resilience against spoofing attempts. Kerns proposed a
comprehensive model for spoofing UAVs integrated with GNSS/INS components, which
is capable of conducting trajectory spoofing and incorporates a UAV state estimator and
spoofing controller [34]. Guo conducted a mathematical analysis of the trajectory tracking
errors in the model referenced in [34] and designed a position tracking controller [35]. By
selecting suitable control gain matrices, the team optimized the spoofing effect and reduced
state errors. Furthermore, Guo et al. theoretically proved that when the acceleration com-
ponent of the counterfeit GPS signal accounts for the difference between the UAV’s current
acceleration and the spoofing control input, the target UAV can be covertly spoofed [36].
Gao introduced a covert spoofing strategy that enhances spoofing effectiveness and enables
directional control over UAV flight [37]. The proposed approach can swiftly guide tightly-
coupled GNSS/IMU UAVs toward specific directions by employing a directional spoofing
strategy. Geng proposed a directional spoofing method for loosely integrated INS/GNSS
UAVs [38].

The primary objective of spoofing non-cooperative UAVs is to gain control over their
dynamics. Consequently, compared to directional spoofing, dynamic trajectory spoofing
is not only of greater significance in real-world applications but also more challenging. It
is worth noting that the trajectory spoofing methods described in existing the literature,
such as [34] and [36], exhibit an error accumulation phenomenon, whereby the difference
between the actual trajectory of the UAV and the preset one of the spoofer escalates over
time. The escalating discrepancy poses a significant setback for the effectiveness and
efficiency of the spoofing operation. The duration of the spoofing operation remains
uncertain. Additionally, the inertial components of UAVs may identify the difference
between the estimated trajectory and its reference trajectory. This can result in the failure of
the spoofing attempt. Furthermore, the existing method demonstrates a delayed response
when the UAV undergoes sudden acceleration changes, leading to significant spoofing
errors between the actual trajectory and the spoofer’s desired one, which means significant
degradation in the spoofing performance. Consequently, this discrepancy hinders the
consistent alignment of the UAV with the spoofer’s preset path. To address these issues,
we propose a UAV dynamic trajectory spoofing method based on model predictive control.
The main contributions of this paper are as follows.

(1) A novel non-cooperative UAV dynamic trajectory spoofing method is proposed,
which significantly reduces the errors between the actual trajectory of the UAV and
the desired trajectory of the spoofer.
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(2) An MPC algorithm has been employed to optimize the spoofing operation. Control
input of the spoofing model is optimized using predictive information, enabling the
UAV to follow the intended trajectory of the spoofer more precisely.

(3) Extensive simulation experiments have been conducted in various scenarios, demon-
strating that the proposed method significantly enhances the spoofing effect, leading
to a considerable reduction in cumulative errors and a marked improvement in spoof-
ing accuracy.

The remainder of the article is organized as follows. Section 2 presents and analyses
the UAV trajectory control model. Section 3 introduces a novel UAV dynamic spoofing
method based on MPC. Numerical simulations are provided in Section 4, where the results
of the proposed method are compared with existing algorithms. In Section 5, we summarize
the paper, and concluding remarks are stated.

2. UAV Trajectory Control Model

Assume that the UAV’s trajectory dynamics satisfy the double-integrator kinematic
model in a two-dimensional plane:

.
x(k) = Ax(k) + Ba(k), (1)

where x = [rxryvxvy]
T is the state of the UAV, rx and ry are the positions of x and y axis

respectively, vx and vy are the velocities, a = [axay]
T, A =

[
02×2 I2×2
02×2 02×2

]
, B =

[
02×2
I2×2

]
, In×n

and 0m×n stand for identity and
This paper considers UAVs equipped with both GNSS receivers and INS components.

The INS can be utilized to identify potential GNSS spoofing attempts, while GNSS is
leveraged to correct the accumulated errors in the INS output. The integrated navigation
module enhances both navigation precision and anti-spoofing capabilities. For UAVs
equipped with INS, its measured acceleration features a zero bias, indicating that the
acceleration output by the INS can be described as

am(k) = a(k)− b(k), (2)

where b = [bxby]
T is the zero bias, a is the actual acceleration of the UAV, and am is the

measurement output of the onboard inertial component.
Most UAVs use the Kalman filtering techniques [37–42] to integrate the state infor-

mation measured by INS with that outputted by the GNSS receivers. In each localization
process, the UAV obtains its current state from the GNSS receiver as x∗ = [r∗xr∗yv∗xv∗y ]

T. The
integration procedure can be described by[ .

x̂(k)
.
b̂(k)

]
=

[
A B
0 0

][
x̂(k)
b̂(k)

]
+ L(x∗(k)− x̂(k)) +

[
B
0

]
am(k), (3)

where x̂ is the UAV’s estimation of its own state, and b̂ is estimation of the zero bias of the
measurements of inertial devices. L is the steady state gain matrix of the Kalman filter for
the UAV, which can be determined by the following two steps.

Step 1: By solving the algebraic Riccati equation

AeP + PAT
e + Q − PCTR−1CP = 0, (4)

the UAV estimation error covariance P can be obtained, where Ae =

[
A B
0 0

]
, and C =[

I 0
]

is measured matrix. Q is the system noise matrix, which takes the following form:
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Q =

03×3 03×3 03×3
03×3 Q1 03×3
03×3 03×3 Q2

. (5)

Here

Q1 =

σ2
a,x 0 0
0 σ2

a,y 0
0 0 σ2

a,z

, Q2 =

σ2
b,x 0 0
0 σ2

b,y 0
0 0 σ2

b,z

, (6)

σ2
a,x, σ2

a,y, σ2
a,z are acceleration noise errors of X, Y, Z axes, and σ2

b,x, σ2
b,y, σ2

b,z are zero-bias
instability of accelerometers of X, Y, Z axes.

In Equation (4), R is the measurement noise matrix, which the takes following form:

R =

[
R1 03×3

03×3 R2

]
, (7)

with

R1 =

σ2
r,x 0 0
0 σ2

r,y 0
0 0 σ2

r,z

, R2 =

σ2
v,x 0 0
0 σ2

v,y 0
0 0 σ2

v,z

, (8)

where σ2
r,x, σ2

r,y, σ2
r,z are position errors of X, Y, Z axes, and σ2

v,x, σ2
v,y, σ2

v,z are velocity errors
of X, Y, Z axes.

Step 2: Using the obtained UAV estimation error covariance P, the steady state gain
matrix L of the Kalman filter for the UAV can be calculated with

L = PCTR−1. (9)

Without loss of generality, we assume that the UAV to be spoofed has a preset reference
flight trajectory, and the reference trajectory also satisfies the double-integrator kinematics
as follows: .

x(k) = Ax(k) + Ba(k), (10)

where x =
[
rx ry vx vy

]T is the state of the UAV’s preset reference trajectory, and a is
the corresponding acceleration with composition structure similar to a.

Most trajectory trackers are designed using a proportional (P) control strategy

a(k) = −K(x̂(k)− x(k)), (11)

where K is the controller gain. The actual trajectory of the UAV can be obtained by taking
a(k) into Equation (1).

3. UAV Dynamic Trajectory Spoofing

Dynamic trajectory spoofing refers to moment-by-moment spoofing of UAVs, which
steers the UAV’s movement in a point-by-point manner and adapts in real time to the
movement of the target. As the target moves, the spoofer calculates and sends new,
misleading signals that mimic a believable path. Successful spoofing operations depend on
the use of continuous spoofing GNSS signals. These signals steer the target UAV towards
the desired trajectory. Meanwhile, they create the illusion that the UAV is following the
preset reference path. The difference between the desired trajectory of the spoofer and
the reference path of the UAV can be significant. Additionally, changes in the reference
trajectory may occur abruptly. As a result, conducting the spoofing operation in a covert
manner is quite challenging. This difficulty lies in avoiding the activation of the UAV’s
protection mechanism. In the following subsection, the methodology of dynamic trajectory
spoofing and MPC-based spoofing method are introduced in detail.
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3.1. The Methodology of Dynamic Trajectory Spoofing

As illustrated in Figure 1, without loss of generality, we assume that at time instance k,
the target UAV is located at position r, and its reference trajectory position at time instance
k + 1 is r. Meanwhile, the position of the spoofing trajectory set by the spoofer at time
instance k + 1 is rs. At time instance k, the position of the false GNSS signal is r*, which
causes the UAV to perceive that it is near position r*. Since the UAV’s own flight control
mechanism is designed to track the preset reference trajectory, the control loop will compel
the UAV to fly towards position r. As a result, the UAV will fly towards position rs without
noticing that it is being spoofed.
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Figure 1. Schematic diagram of the spoofing principle.

The spoofer generates spoofing signals continuously and cumulatively, allowing for
real-time control of the UAV’s movement, which means progressively steering the non-
cooperative UAVs towards the predetermined trajectory of the spoofer. By manipulating
the UAV’s dynamics at each moment, the trajectory can be effectively altered. It is essen-
tial to note that the spoofer has prior knowledge of the reference trajectory information
of the target UAV to execute the spoofing operation. This prerequisite is the common
assumption in the literature concerning dynamic trajectory spoofing for UAVs [34–37].
While this may seem challenging in some scenarios, it is feasible through an analysis of the
UAV’s dynamics. Additionally, the spoofing operation usually involves a trial-and-error
procedure. Reference trajectory information may be unavailable at the beginning of the
spoofing operation. However, it is possible to retrieve the complete reference trajectory by
progressively analyzing the responses of non-cooperative targets.

3.2. MPC-Based Dynamic Trajectory Spoofing Method

MPC is an advanced control strategy that uses a mathematical model of a dynamic
system to predict its future behavior over a specified time horizon. It optimizes the control
inputs at each time step by solving a constrained optimization problem, thereby allowing
for ratified control actions that achieve desired performance while adhering to system
constraints [43–46]. By deriving optimal control inputs based on these predictions, MPC
facilitates optimal system control. Widely utilized in industrial automation, robotics control,
and intelligent transportation, MPC provides a structured approach to control methodology
that can be integrated into the steps of spoofing. The detailed framework of the proposed
dynamic trajectory spoofing method is illustrated in Figure 2. It can be noticed that the
framework is composed of two primary components: the prediction model and the MPC
control model. The mutual composition of these two components is the UAV’s trajectory
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tracking control model, which plays a crucial role in the method. The inputs of the method
include several key components. First, there is the predetermined reference trajectory of
the UAV. This trajectory serves as the target path for the UAV. Second, the preset spoofing
trajectory is generated by the spoofer. This trajectory is intended to mislead the UAV’s
navigation system. Finally, the initial state x(0) of the UAV is also included as an input.
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The procedure of the method can be summarized as follows. The spoofer uses the
UAV state information acquired from external sensors, and the current UAV state x(k)
to estimate the current state quantity x̂s(k) and acceleration âs(k) of the UAV. Then, the
spoofer calculates the possible control input using proportional, integral and differential
state information. Based on the aforementioned steps, the MPC control loop calculates the
control effects of the possible control input and determines the optimal one by minimizing
the objective function. The optimal u′(k) is used to obtain the acceleration quantity a∗

n(k),
corresponding to the new false satellite signal to the UAV trajectory tracking model.

For a linear system of general form{ .
x = Amx + Bmu
y = Cmx

, (12)
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where x is system state vector, Am is state matrix, Bm is input matrix, u is system input, y is
system output, and Cm is output matrix.

To fit with the UAV spoofing model, Equation (12) is discretized to obtain{
x(k + 1) = Adx(k) + Bdu(k)

y(k) = Cdx(k)
, (13)

where d indicates that the coefficient matrices are corresponding to those of Equation (12)
in the discrete state.

With the UAV spoofing control model, we can predict the value of the future state of
the UAV, denoted as

x(k + i|k) , i = 1, . . . , Np. (14)

Substituting Equation (14) into Equation (13) yields the prediction output as
y(k + 1|k )
y(k + 2|k )

...
y(k + Np|k )

 =


Cd 0 · · · 0
0 Cd · · · 0
...

...
. . .

...
0 0 · · · Cd




x(k + 1|k )
x(k + 2|k )

...
x(k + Np|k )

. (15)

To enhance the effectiveness of spoofing by utilizing future state information, the
objective function is formulated as follows:

J(k) =
Np

∑
i=1

∥y(k + i|k )− y(k + i)∥TQ∥y(k + i|k )− y(k + i)∥+
NC−1

∑
i=0

∥u( k + i|k)∥TR∥u( k + i|k)∥, (16)

where Q is the error weighting matrix, and R is the control incremental weighting matrix.
The optimal control input u′(k) for the spoofing control model is the one that minimizes
the objective function.

The prediction model used in MPC encompasses the complete UAV spoofing control
model, which integrates both the UAV spoofing control model and the trajectory control
model. Furthermore, the trajectory spoofing control model adheres to the double-integrator
kinematics equation, with its initial state aligned with the UAV’s predetermined path:

.
x

s
(k) = Axs(k) + Bas(k), (17)

where xs is the state of the spoofing trajectory at time instance k, and as(k) is the acceleration
of the spoofing trajectory.

In order to measure the actual state of the target UAV, external devices such as elec-
trooptic sensors or radar can be employed to acquire the state x̂s(k) and acceleration âs(k)
information. The target UAV is non-cooperative, and the sensor measurements are in-
fluenced by various factors. These factors include device resolution and environmental
uncertainties. As a result, the acquired data may contain noise. Therefore, these data cannot
be used directly. Hence, a linear estimator is employed to model the UAV state estimation
process using the information obtained from external sensors, as outlined below:[ .

x̂
s
(k)

.
â

s
(k)

]
=

[
A B
0 0

][
x̂s(k)
âs(k)

]
+ Ls(x(k − 1)− x̂s(k)), (18)

where the composition of Ls resembles that of L.
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The acceleration of the spoofing signal is derived by comparing the spoofer’s desired
UAV state with the state estimated by the spoofer:

a∗(k) = âs(k) + Ks(x̂s(k)− xs(k))
−Ks

d((x̂
s(k)− xs(k))− (x̂s(k − 1)− xs(k − 1)))

+Ks
i

k
∑

k=0
(x̂s(k)− xs(k)),

(19)

where Ks, Ks
d, Ks

i signify the spoofing controller parameters. The input is then substituted
with u′(k) which minimizes the objective function.

a∗(k) = âs(k)− u′(k) (20)

The acceleration, velocity, and position features of the spoofing signals also conform
to the double-integrator kinematic model:

.
x∗(k) = Ax∗(k) + Ba∗(k). (21)

It can be noticed that a∗(k) is designed as a PID controller. The procedure for calculat-
ing the optimal spoofing control input is as follows:

(1) Estimate the system state x(k) at time instance k;
(2) Use the input u(k), u(k + 1), · · · , u(k + NC − 1) to calculate the system output y(k),

y(k + 1), · · · , y(k + Np) based on the spoofing model and the objective function (16).
Here NC is the control horizon and Np is the prediction horizon;

(3) Substitute the input and output into the objective function to determine the optimal
input, and use the optimal input as the current time instance input in the spoof-
ing model;

(4) Return to step (2) and continue the calculations from the subsequent time instance,
and apply the aforementioned steps repeatedly until the end of the spoofing operation.

Thus, by generating a spoofing signal with dynamics depicted a∗(k), and replacing
the real satellite signal in the UAV trajectory tracking control model with such spoofing
signal, the dynamic trajectory of the UAV can be manipulated in a covert manner. As for
the spoofing signal generation, literature such as [18,19] already provided some suitable
SDR platforms. It is worth noting that the requirements for dynamic trajectory spoofing
are much stricter than those for point spoofing or time spoofing, since the spoofing signal
featuring dynamics is changing more frequently and needs timely adjustment based on
the closed-loop responses of the UAV target throughout the entire spoofing operation. The
state information of non-cooperative UAVs must be fed into the control loop in real time
from external sensors. Additionally, the optimal model control input and the corresponding
parameters for spoofing signal generation must be calculated within the control intervals
to avoid unnecessary control delays.

A block diagram of the MPC-based UAV dynamic trajectory spoofing controller is
shown in Figure 3. The method consists of two parts: the prediction model and the objective
function. The prediction model includes the UAV state estimator of the spoofer, trajectory
tracking controller and navigation state estimator of the UAV. The dynamic trajectory
spoofing algorithm procedure is shown in Algorithm 1.
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Algorithm 1. MPC-based UAV dynamic trajectory spoofing algorithm procedure

Input: Reference trajectory, spoofing trajectory
1: Initialization: x = 0
2: for k = 1 until meeting terminal condition
3: Use state estimator of spoofer to get UAV state x̂s(k)
4: Acquire as(k) with x̂s(k) and spoofing trajectory
5: Calculate a∗(k) with Equation (19)
6: Substitute a∗(k) into the double-integrator kinematic model to get x∗(k)
7: Use state estimator of UAV to get x̂(k)
8: Calculate UAV actual state x(k) with Equations (1) and (11)
9: Calculate the output y(k) with x(k)
10: Substitute input and output to objective function
11: if as

n(k) minimizes objective function
12: Update input as(k) with as

n(k)
13: Substitute as

n(k) to step 5 to 9
14: end if
15: Update: Set k = k + 1
16: end for
Output: x(k)

4. Simulation Verification and Discussion

To quantitatively evaluate the spoofing effectiveness of the proposed method, two
distinct dynamic reference trajectory scenarios, a triangular trajectory and a square one,
have been considered, respectively.

• Experiment 1: Triangular Reference Trajectory (see Figure 4).

The first side and fourth side of the trajectory are set as

ax =


0.1, 0 ≤ t < 20, 270 ≤ t < 290
0, 20 ≤ t < 70, 290 ≤ t < 340

−0.1, 70 ≤ t < 90, 340 ≤ t < 360
,

ay =


0.1, 0 ≤ t < 20, 270 ≤ t < 290
0, 20 ≤ t < 70, 290 ≤ t < 340

−0.1, 70 ≤ t < 90, 340 ≤ t < 360
.
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The second side and fifth side are set as

ax =


0.1, 90 ≤ t < 110, 360 ≤ t < 380
0, 110 ≤ t < 160, 380 ≤ t < 430

−0.1, 160 ≤ t < 180, 430 ≤ t < 450
,

ay =


−0.1, 90 ≤ t < 110, 360 ≤ t < 380

0, 110 ≤ t < 160, 380 ≤ t < 430
−0.1, 160 ≤ t < 180, 430 ≤ t < 450

.

The third side and sixth side are set as

ax =


−0.2, 180 ≤ t < 200, 450 ≤ t < 470

0, 200 ≤ t < 250, 470 ≤ t < 520
0.2, 250 ≤ t < 270, 520 ≤ t < 540

,

ay = 0, 180 ≤ t < 270, 450 ≤ t < 540.

The spoofing target trajectory is a straight line,

as
x = 0.002, as

y = −0.002.

To compare the performance of the proposed method with that of the existing one, the
control parameters are set the same with those in [36]:

K =

[
1 1 2 2

0.1 1 1 2

]
,

Ks =

[
0.01 0 0.1 0

0 0.01 0 0.1

]
.

The control gains for the derivative and integral components are set as

Ks
d =

[
0.2 0 0.2 0
0 0.2 0 0.2

]
,

Ks
i =

[
0.01 0 0.003 0

0 0.01 0 0.003

]
.

The gain matrices can be obtained by solving the Riccati Equation (4) as

L =



0.1322 0 0.5270 0
0 0.1322 0 0.5270

0.0119 0 0.1470 0
0 0.0119 0 0.1470

0.0293 × 10−4 0 0.3642 × 10−4 0
0 0.0293 × 10−4 0 0.3642 × 10−4

,

Ls =



0.1500 0 0.9885 0
0 0.1500 0 0.9885

0.0222 0 1.8197 0
0 0.0222 0 1.8197

0.0029 0 1.6666 0
0 0.0029 0 1.6666

.

The value of Am varies over time, and Am at each moment can be calculated by solving
the entire MPC-based UAV spoofing control model. The output matrix is set as the identity
matrix for simplicity:
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Cd =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

Figure 3 shows the dynamic trajectory spoofing effect of the UAV. It can be seen
that the reference trajectory is represented as a triangle (the black line), and the spoofing
trajectory set by the spoofer is a straight line (the yellow line). The actual trajectory of
the UAV (the blue line) follows the spoofing trajectory. The black arrow represents the
direction of movement of the UAV. The two trajectories do not coincide exactly due to
control errors. By providing the UAV with false spoofing signals with kinematics calculated
by the spoofer’s model, we can lead the UAV’s state estimator to believe that its trajectory
closely resembles the reference trajectory, despite the fact that it does not. The estimated
trajectory by the UAV is shown in the figure as the red dashed line.

The experiment settings in this study differ slightly from those described in [36] in
terms of the spoofing operation durations. Specifically, the duration employed in this
research is twice that reported in the literature, allowing for a more intuitive demonstration
of the spoofing control effect. In order to analyze the effects of spoofing quantitatively, the
root mean square errors (RMSEs) of position and velocity between the reference trajectory
and the actual trajectory of the UAV are utilized as the evaluation metrics:

RMSEr =

√
(rx − rs

x)
2 +

(
ry − rs

y

)2
,

RMSEv =

√
(vx − vs

x)
2 +

(
vy − vs

y

)2
.

Drones 2024, 8, x FOR PEER REVIEW 12 of 18 
 

 
Figure 4. Dynamic trajectory spoofing effect with triangular reference trajectory. 

As illustrated in Figure 5, there is a notable trajectory spoofing effect enhancement 
compared to the spoofing method referenced in [36], especially during time intervals such 
as 70~120 s and 170~210 s. A review of the predefined trajectory configuration indicates 
that these intervals coincide with abrupt changes in acceleration and sudden changes in 
the target UAV’s trajectory. Existing methods such as the one presented in [36] exhibit fast 
rising spoofing control errors. In contrast, the method proposed in this paper demon-
strates a considerable error reduction. This improvement can be attributed to the utiliza-
tion of a differential approach, enhancing the tracking speed of the spoofer’s trajectory. 
Furthermore, the MPC algorithm anticipates future changes and adjusts control inputs in 
response to significant errors, thereby contributing to the observed spoofing performance 
enhancement. 

 

Figure 5. RMSEr of [36] and the proposed method with triangular reference trajectory. 

Figure 6 shows the velocity tracking RMSE of the two spoofing methods. It can be 
noticed that there is a significant increase in spoofing errors over time with the method 
presented by [36], indicating a substantial cumulative effect. In contrast, the method 

0 50 100 150 200 250 300 350 400 450 500
t(s)

0

5

10

15

20

25

30
Guo 2019
Proposed

Figure 4. Dynamic trajectory spoofing effect with triangular reference trajectory.

As illustrated in Figure 5, there is a notable trajectory spoofing effect enhancement
compared to the spoofing method referenced in [36], especially during time intervals such
as 70~120 s and 170~210 s. A review of the predefined trajectory configuration indicates
that these intervals coincide with abrupt changes in acceleration and sudden changes in
the target UAV’s trajectory. Existing methods such as the one presented in [36] exhibit fast
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rising spoofing control errors. In contrast, the method proposed in this paper demonstrates
a considerable error reduction. This improvement can be attributed to the utilization of a
differential approach, enhancing the tracking speed of the spoofer’s trajectory. Furthermore,
the MPC algorithm anticipates future changes and adjusts control inputs in response to
significant errors, thereby contributing to the observed spoofing performance enhancement.
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Figure 5. RMSEr of [36] and the proposed method with triangular reference trajectory.

Figure 6 shows the velocity tracking RMSE of the two spoofing methods. It can be
noticed that there is a significant increase in spoofing errors over time with the method
presented by [36], indicating a substantial cumulative effect. In contrast, the method
introduced in this paper effectively mitigates the cumulative errors, which makes the
spoofing more accurate and covert. This enhancement is attributed to calculating the
optimal control input based on the error integration information and the preceding time
instances control effect.
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Figure 6. RMSEv of [36] and the proposed method with triangular reference trajectory.

To conduct a comprehensive assessment of the proposed method, we calculated and
compared the maximum and mean errors across the spoofing operation, and compared
the results of the method proposed in this paper with those of the method in [36]. As
shown in Table 1, the result reveals a substantial spoofing performance improvement with
the proposed method, demonstrating a 67.48% reduction in terms of the mean value of
RMSEr, and a 69.79% decrease in the mean value of RMSEv, compared with the results of
the proposed method in [36].
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Table 1. RMSE of [36] and the proposed method with triangular reference trajectory.

Spoofing Method RMSEr Max RMSEr Mean RMSEv Max RMSEv Mean

Literature [36] 27.0491 7.7619 7.8816 1.4832
Proposed 7.5043 2.5241 1.5687 0.4481

In order to verify the spoofing effectiveness and adaptability of the proposed method
in various scenarios, the reference trajectory is defined as a square trajectory, while the
other conditions remain unchanged.

• Experiment 2: Square Reference Trajectory (see Figure 7).

The first side of the reference trajectory is set as follows:

ax =

{
0, 0 ≤ t < 45
0, 45 ≤ t < 90

,

ay =

{
0.1, 0 ≤ t < 45

−0.1, 45 ≤ t < 90
.

The second side:

ax =

{
0.1, 90 ≤ t < 135

−0.1, 135 ≤ t < 180
,

ay =

{
0, 90 ≤ t < 135
0, 135 ≤ t < 180

.

The third side:

ax =

{
0, 180 ≤ t < 225
0, 225 ≤ t < 270

,

ay =

{
−0.1, 180 ≤ t < 225
0.1, 225 ≤ t < 270

The fourth side:

ax =

{
−0.1, 270 ≤ t < 315
0.1, 315 ≤ t < 360

ay =

{
0, 270 ≤ t < 315

0.1, 315 ≤ t < 360
.

The dynamic trajectory spoofing effect with square reference trajectory is shown
in Figure 7. As illustrated in Figures 8 and 9, the proposed spoofing method exhibited
significant reductions in both the RMSEr and RMSEv values compared with the method
in [36], demonstrating that high-quality spoofing performance can also be achieved with
the square reference trajectory. From the statistical data presented in Table 2, it can be
noticed that the proposed spoofing method outperformed the method in [36], reducing the
mean RMSEr and mean RMSEv values by 69.46% and 49.06%, respectively, across the entire
spoofing operation. A substantial enhancement in both position and velocity spoofing
accuracy has been achieved for the UAV’s dynamic trajectory control by implementing the
proposed method.

Table 2. RMSE of [36] and the proposed method with square reference trajectory.

Spoofing Method RMSEr Max RMSEr Mean RMSEv Max RMSEv Mean

Literature [36] 14.3879 8.8367 2.6339 0.7807
Proposed 6.0956 2.6985 1.5032 0.3977
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Figure 8. RMSEr of [36] and the proposed method with square reference trajectory.
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With the results of the two aforementioned experiments and the accompanying analy-
sis, it can be seen that the proposed spoofing method demonstrated superior effectiveness
compared to the existing method in both the dynamic trajectory control accuracy and
control response timeliness. It is worth noting that the control gain matrices such as Ks, Ks

d
and Ks

i are set as constants in the two experiments. By optimizing these control parameters,
the spoofing performance can be further enhanced.

5. Conclusions

The dynamic trajectory spoofing problem for UAVs has been investigated in this
paper. To address challenges such as significant spoofing errors during rapid acceleration
changes and the accumulation of errors over time in existing methods, a spoofing method
based on MPC with superior performance has been proposed. The details of the spoofing
procedure have been provided. Results from the simulation experiments demonstrate
a substantial enhancement in trajectory control accuracy and a reduction in cumulative
errors. The proposed method makes spoofing detection more difficult and the spoofing
operation more covert, which paves the way for successful dynamic trajectory spoofing of
UAVs. For future studies, it is important to acknowledge that verifying the effectiveness of
spoofing through numerical simulations may be insufficient. Developing a comprehensive
closed-loop control system for field experiments on spoofing requires significant effort, but
such endeavors are likely to yield more valuable insights. An alternative validation method
involves using software-in-the-loop (SITL) simulation, such as ArduPilot. It also should be
noted that the UAV dynamics in this paper are modeled as double-integrator. Although
this model adequately describes UAV movement characteristics in most scenarios, it may
not demonstrate optimal performance under conditions such as wind or sudden unstable
movements. Implementing spoofing in such non-ideal conditions presents additional
challenges. The dynamic models utilized by some UAVs and the SITL environment may
differ significantly from the one used in this paper, which could hinder the performance of
the proposed method. One potential solution to this issue is to employ advanced control
technologies, such as reinforcement learning, instead of traditional methods. As UAV anti-
spoofing capabilities continue to advance with emerging technologies like array antennas
and integrated visual-inertial navigation systems, the challenge of spoofing and gaining
control over these UAVs remains an unresolved issue that warrants further investigation.
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6. Novák, A.; Kováčiková, K.; Kandera, B.; Sedláčková, A.N. Global navigation satellite systems signal vulnerabilities in unmanned

aerial vehicle operations: Impact of affordable software-defined radio. Drones 2024, 8, 109. [CrossRef]
7. Mugnai, M.; Teppati Losé, M.; Herrera-Alarcón, E.; Baris, G.; Satler, M.; Avizzano, C. An efficient framework for autonomous

UAV missions in partially-unknown GNSS-denied environments. Drones 2023, 7, 471. [CrossRef]
8. Lemieszewski, Ł.; Prochacki, S. Decision support for autonomous drone flight based on satellite navigation signal. Procedia

Comput. Sci. 2023, 225, 1691–1698. [CrossRef]
9. Zhang, R.; Hao, G.; Zhang, K. Unmanned aerial vehicle navigation in underground structure inspection: A review. Geol. J. 2023,

58, 2454–2472. [CrossRef]
10. Lemieszewski, Ł.; Borkowski, P.; Radomska-Zalas, A.; Dobryakova, L.; Ochin, E. Cybersecurity of the Unmanned Marine Vehicles

in the Conditions of Partial or Complete Interruption Multi-GNSS Signals by Jamming and/or Spoofing. In Emerging Challenges
in Intelligent Management Information Systems; Springer: Cham, Switzerland, 2024; pp. 83–94.

11. Ochin, E.; Lemieszewski, A. Chapter 3—Security of GNSS. In GPS and GNSS Technology in Geosciences; Petropoulos, G.P.,
Srivastava, P.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 51–74.

12. Warner, J.; Johnston, R. A simple demonstration that the global positioning system (GPS) is vulnerable to spoofing. J. Secur. Adm.
2002, 25, 19–27.

13. Warner, J.; Johnston, R. GPS spoofing countermeasures. Homel. Secur. J. 2003, 25, 19–27.
14. Humphreys, T.; Ledvina, B.; Psiaki, M. Assessing the spoofing threat: Development of a portable GPS civilian spoofer. In

Proceedings of the ION GNSS Conference, Savannah, GA, USA, 16–19 September 2008; pp. 2314–2325.
15. Shepard, D.; Bhatti, J.; Humphreys, T. Evaluation of smart grid and civilian UAV vulnerability to GPS spoofing attacks. In

Proceedings of the ION GNSS Conference, Nashville, TN, USA, 17–21 September 2012; pp. 3591–3605.
16. Seo, S.; Lee, B.; Im, S.; Jee, G. Effect of spoofing on unmanned aerial vehicle using counterfeited GPS signal. J. Position. Navig.

Timing 2015, 4, 57–65. [CrossRef]
17. Norhashim, N.; Kamal, N.; Sahwee, Z.; Shah, S.; Sathyamoorthy, D.; Alfian, N. Effect of Global Navigation Satellite Signal (GNSS)

spoofing on unmanned aerial vehicles (UAVs) via field measurement. In Proceedings of the IEEE 16th Malaysia International
Conference on Communication (MICC), Kuala Lumpur, Malaysia, 10–12 December 2023; pp. 41–45.

18. Feng, W.; Friedt, J.; Goavec-Merou, G.; Meyer, F. Software-defined radio implemented GPS spoofing and its computationally
efficient detection and suppression. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 36–52. [CrossRef]

19. Ferreira, R.; Gaspar, J.; Sebasti, A.; Souto, N. A software defined radio based anti-UAV mobile system with jamming and spoofing
capabilities. Sensors 2022, 22, 1487. [CrossRef] [PubMed]

20. He, D.; Qiao, Y.; Chen, S. A friendly and low-cost technique for capturing non-cooperative civilian unmanned aerial vehicles.
IEEE Netw. 2019, 33, 146–151. [CrossRef]

21. Chae, M.; Park, S.; Choi, S.; Choi, C. Commercial fixed-wing drone redirection system using GNSS deception. IEEE Trans. Aerosp.
Electron. Syst. 2023, 59, 5699–5713. [CrossRef]

22. Alharasees, O.; Abdalla, M.; Kale, U. Analysis of human factors analysis and classification system (HFACS) of UAV operators. In
Proceedings of the New Trends in Aviation Development (NTAD), Novy Smokovec, Slovakia, 24–25 November 2022; pp. 10–14.

23. Alharasees, O.; Adali, O.; Kale, U. Human factors in the age of autonomous UAVs: Impact of artificial intelligence on operator
performance and safety. In Proceedings of the International Conference on Unmanned Aircraft Systems, Warsaw, Poland, 6–9
June 2023; pp. 798–805.

24. Alharasees, O.; Adali, O.; Kale, U. UAV operators’ cognition and automation: Comprehensive measurements. In Proceedings of
the New Trends in Aviation Development (NTAD), Stary Smokovec, Slovakia, 23–24 November 2023; pp. 15–20.

25. Lee, Y.; Yeom, J.; Jung, B. A novel array antenna-based GNSS spoofing detection and mitigation technique. In Proceedings of the
IEEE 20th Consumer Communications & Networking Conference, Las Vegas, NV, USA, 8–11 January 2023; pp. 489–492.

26. Burbank, J.; Greene, T.; Kaabouch, N. Detecting and mitigating attacks on GPS devices. Sensors 2024, 24, 5529. [CrossRef]
27. Nayfeh, M.; Li, Y.; Shamaileh, K.A.; Devabhaktuni, V.; Kaabouch, N. Machine learning modeling of GPS features with applications

to UAV location spoofing detection and classification. Comput. Secur. 2023, 126, 103085. [CrossRef]
28. Aissou, G.; Slimane, H.O.; Benouadah, S.; Kaabouch, N. Tree-based supervisedmachine learningmodels for detecting GPS

spoofing attacks on UAS. In Proceedings of the IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON), New York, NY, USA, 1–4 December 2021; pp. 0649–0653.

https://doi.org/10.3390/info10110349
https://doi.org/10.1049/cje.2019.12.006
https://doi.org/10.3390/drones8050203
https://doi.org/10.3390/drones8060231
https://doi.org/10.3390/drones8030109
https://doi.org/10.3390/drones7070471
https://doi.org/10.1016/j.procs.2023.10.158
https://doi.org/10.1002/gj.4763
https://doi.org/10.11003/JPNT.2015.4.2.057
https://doi.org/10.1109/MAES.2020.3040491
https://doi.org/10.3390/s22041487
https://www.ncbi.nlm.nih.gov/pubmed/35214388
https://doi.org/10.1109/MNET.2018.1800065
https://doi.org/10.1109/TAES.2023.3264193
https://doi.org/10.3390/s24175529
https://doi.org/10.1016/j.cose.2022.103085


Drones 2024, 8, 602 17 of 17

29. Jiang, P.; Wu, H.; Xin, C. DeepPOSE: Detecting GPS spoofing attack via deep recurrent neural network. Digit. Commun. Netw.
2022, 8, 791–803. [CrossRef]

30. Talaei Khoei, T.; Ismail, S.; Kaabouch, N. Dynamic selection techniques for detecting GPS spoofing attacks on UAVs. Sensors 2022,
22, 662. [CrossRef]

31. Jayaweera, M. A novel deep learning GPS anti-spoofing system with DOA time-series estimation. In Proceedings of the 2021
IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6.

32. Varshosaz, M.; Afary, A.; Mojaradi, B.; Saadatseresht, M.; Ghanbari Parmehr, E. Spoofing detection of civilian UAVs using visual
odometry. ISPRS Int. J. Geo-Inf. 2020, 9, 6. [CrossRef]

33. Finn, A.; Jia, M.; Li, Y.; Yuan, J. Detecting Stealthy GPS spoofing attack against uavs using onboard sensors. In Proceedings of the
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Vancouver, BC, Canada, 20–23 May 2024; pp.
1–6.

34. Kerns, A.; Shepard, D.; Bhatti, J. Unmanned aircraft capture and control via GPS spoofing. J. Field Robot. 2014, 31, 617–636.
[CrossRef]

35. Guo, Y.; Wu, M.; Tang, K. Position deceptive tracking controller and parameters analysis via error characteristics for unmanned
aerial vehicle. Int. J. Adv. Robot. Syst. 2018, 16, 172988141882540. [CrossRef]

36. Guo, Y.; Wu, M.; Tang, K. Covert spoofing algorithm of UAV based on GPS/INS-integrated navigation. IEEE Trans. Veh. Technol.
2019, 68, 6557–6564. [CrossRef]

37. Gao, Y.; LI, G. A GNSS instrumentation covert directional spoofing algorithm for UAV equipped with tightly-coupled GNSS/IMU.
IEEE Trans. Instrum. Meas. 2023, 72, 99. [CrossRef]

38. Geng, X.; Guo, Y.; Tang, K.; Wu, W.; Ren, Y. Research on covert directional spoofing method for INS/GNSS loosely integrated
navigation. IEEE Trans. Veh. Technol 2023, 72, 5654–5663. [CrossRef]

39. Dong, P.; Xiang, X.; Liang, Y. The research on channel estimation and signal-noise ratio estimation based on minimum error
entropy Kalman filter for single carrier frequency domain equalization system. Int. J. Commun. Syst. 2023, 36, e5403. [CrossRef]

40. Hu, G.; Xu, L.; Gao, B. Robust unscented Kalman filter-based decentralized multi sensor information fusion for INS/GNSS/CNS
integration in hypersonic vehicle navigation. IEEE Trans. Instrum. Meas. 2023, 72, 1–11.

41. Kiswanto, G.; Baskoro, A.; Hasymi, Z.; Ko, T. Tool wear monitoring in micro-milling based on digital twin technology with an
extended Kalman filter. J. Manuf. Mater. Process 2024, 8, 108.

42. Li, D.; Felix, J.; Chin, Y.; Jusuf, L.; Susanto, L. Integrated extended Kalman filter and deep learning platform for electric vehicle
battery health prediction. Appl. Sci. 2024, 14, 4354. [CrossRef]

43. Richalet, J.; Rault, A.; Testud, J. Model predictive heuristic control: Applications to industrial processes. Automatica 1978, 14,
413–428. [CrossRef]

44. Yang, L.; Wang, X.; Zhou, Y.; Liu, Z.; Shen, L. Online predictive visual servo control for constrained target tracking of fixed-wing
unmanned aerial vehicles. Drones 2024, 8, 136. [CrossRef]

45. Wang, S.; Guo, J.; Mao, Y.; Wang, H.; Fan, J. Research on the model predictive trajectory tracking control of unmanned ground
tracked vehicles. Drones 2023, 7, 496. [CrossRef]

46. Li, B.; Song, C.; Bai, S.; Huang, J.; Ma, R.; Wan, K.; Neretin, E. Multi-UAV trajectory planning during cooperative tracking based
on a fusion algorithm integrating MPC and standoff. Drones 2023, 7, 196. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.dcan.2021.09.006
https://doi.org/10.3390/s22020662
https://doi.org/10.3390/ijgi9010006
https://doi.org/10.1002/rob.21513
https://doi.org/10.1177/1729881418825407
https://doi.org/10.1109/TVT.2019.2914477
https://doi.org/10.1109/TIM.2023.3240197
https://doi.org/10.1109/TVT.2022.3230781
https://doi.org/10.1002/dac.5403
https://doi.org/10.3390/app14114354
https://doi.org/10.1016/0005-1098(78)90001-8
https://doi.org/10.3390/drones8040136
https://doi.org/10.3390/drones7080496
https://doi.org/10.3390/drones7030196

	Introduction 
	UAV Trajectory Control Model 
	UAV Dynamic Trajectory Spoofing 
	The Methodology of Dynamic Trajectory Spoofing 
	MPC-Based Dynamic Trajectory Spoofing Method 

	Simulation Verification and Discussion 
	Conclusions 
	References

