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Abstract: This research describes a vision-based control strategy that employs deep learning for an
aerial manipulation system developed for vegetation sampling in remote, dangerous environments.
Vegetation sampling in such places presents considerable technical challenges such as equipment
failures and exposure to hazardous elements. Controlling aerial manipulation in unstructured areas
such as forests remains a significant challenge because of uncertainty, complex dynamics, and the
possibility of collisions. To overcome these issues, we offer a new image-based visual servoing (IBVS)
method that uses knowledge distillation to provide robust, accurate, and adaptive control of the
aerial vegetation sampler. A convolutional neural network (CNN) from a previous study is used
to detect the grasp point, giving critical feedback for the visual servoing process. The suggested
method improves the precision of visual servoing for sampling by using a learning-based approach
to grip point selection and camera calibration error handling. Simulation results indicate the system
can track and sample tree branches with minimum error, demonstrating that it has the potential to
improve the safety and efficiency of aerial vegetation sampling.

Keywords: aerial robotics; visual servoing; vegetation sampler; deep learning; knowledge distillation

1. Introduction

Advancements in aerial manipulation systems, a subset of unpiloted aerial vehicle
(UAV)-based technology, have significantly enhanced the physical interaction with the en-
vironment, enabling contact tasks such as inspection, sampling, planting, and harvesting in
agriculture and forestry. UAV-based technology presents a practical solution for exploring
forests and sampling tree branches by overcoming limitations such as safety risks, height
restrictions, low precision in collection, and the inconvenience of transport for traditional
methods [1–3].

An aerial manipulation system combines the dexterity of a robotic arm with the
maneuverability of an aerial base platform, making it well-suited for sampling tree branches.
Studies in [4–6] investigated aerial manipulation systems for canopy sampling, from early
research to interaction modeling. For example, the DeLeaves project [1,7,8] used a UAV
equipped with a suspended sampling tool to collect forest canopy samples, while the
methodology proposed in [2] employed a compact and portable mini-drone to collect
tree samples.

Recent advances in remote sensing technology, especially LiDAR [9], have greatly
improved vegetation monitoring capabilities. LiDAR data have been successfully used to
estimate stand volume and above-ground biomass, resulting in rich three-dimensional in-
sights into forest systems. Furthermore, satellite imagery, such as that from Planet [10], has
been used to evaluate physiological factors in plants. However, these methods rely solely
on photographs and do not include real sampling, which is required to validate assessments
conducted through remote sensing, and thus provide a more detailed understanding of
plant health. Sampling is critical for gathering particular data on species composition,
nutrient content, and physiological responses, which can ultimately improve management
approaches. Machine learning algorithms such as Random Forest have proven useful in
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evaluating satellite reflectance data, allowing for better predictions of plant health and
productivity. These advancements show the possibility of merging remote sensing with
aerial manipulation systems in vegetation sampling, resulting in more precise management
and resource usage in forestry and agriculture.

Vegetation sampling using aerial manipulation systems presents several challenges,
including relative position sensing, control of the aerial manipulation system, collision
avoidance, and physical interactions with the environment [4–6,8,11]. One of the primary
challenges in deploying aerial robots for tree branch sampling is the control aspect. Se-
lecting an effective control method requires careful consideration to maintain a stable
interaction between the aerial robot and its surrounding environment. The selected ap-
proach has to effectively handle uncertainties, high levels of non-linearity, and complex
couplings between the aerial platform and the robotic manipulator payload that interacts
with elements in the environment.

The quality of data acquired by UAVs is significantly impacted by a number of parame-
ters, such as ambient variables, air conditions, and sensor specifications. These uncertainties
have the potential to cause measurement errors and compromise the validity of data inter-
pretation. For example, recent research [12] has shown that variables like light variability,
camera noise, and topography differences can have a major effect on the reflectance values
that UAV sensors are able to measure. Reducing these uncertainties is crucial to raising the
overall dependability of remote sensing applications for vegetation monitoring as well as
the accuracy of measurements conducted by drones.

In our earlier work [13], we proposed Nonlinear Disturbance Observer-Based Control
(NDOBC) and Adaptive Sliding Mode Control (ASMC) as robust control strategies for
aerial manipulation systems designed for vegetation sampling. These methods employed
a decoupled architecture, treating the uncrewed aerial vehicle and the manipulator arm
of the sampler payload as separate units, estimating the coupling between the robotic
arm and the aerial platform. The coupling was treated as an unmodeled dynamic with
unknown disturbances affecting the system’s behavior. While this decoupled structure
may reduce control accuracy, it is robust against some level of external disturbance. Its
performance in highly uncertain environments such as forests requires careful tuning of the
controller parameters. To address this issue, the current research proposes using a human-
like perception system and visual servoing to enhance control accuracy and adaptability in
complex environments.

Visual servoing has a wide range of applications for aerial robots, including object
tracking [14–18], object manipulation [19,20], and inspection tasks [21]. In the context of
agriculture, computer vision and visual servoing have been widely used to improve the
precision and effectiveness of different processes involving aerial manipulation systems
or in general aerial robots, such as automated fruit inspection, harvesting, plant tracking,
pruning, pollinating, accurate pesticide application, and autonomous navigation in crop
fields [22–25]. As an example, a modular software framework was developed in [26] to
accommodate an extensive range of agricultural applications and hardware. This frame-
work implements motion control and visual sensing to operate agricultural robotics in
dense vegetation.

Tree branch sampling, in particular, requires active branch tracking using on-board
sensing, such as vision, to accurately track and grasp the desired branch with the end
effector, allowing the manipulator to move accordingly [6]. A vision sensor was employed
in [8] to detect and locate canopy tree branches, and [27] addressed the challenge of branch
localization and tracking of the canopy in cluttered environments using stereo vision,
enhancing the capability of aerial manipulation systems in complex settings.

Visual servoing refers to a closed-loop robot motion control technique that uses visual
feedback to minimize the error between the vision feedback observed at the current position
of the robot/camera and the desired position [28]. Visual servoing can be classified into
three main categories: position-based visual servoing (PBVS), image-based visual servoing
(IBVS), and hybrid visual servoing methods.
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PBVS defines the control input in 3D Cartesian space using position estimation tech-
niques and a priori knowledge of the geometric model of the observed object [29]. Due
to the calculation of error in 3D space, PBVS results in a simpler control law and minimal
length trajectory [30], but this also makes the method highly sensitive to calibration noise
from camera parameter biases and estimation errors from inaccuracies in the target 3D
kinematic model [29,31].

IBVS defines the error in the image plane to enhance the tolerance to camera cali-
bration errors. Additionally, IBVS does not necessitate a geometric representation of the
objective [32]. This approach may encounter challenges such as local minima and singu-
larities in the image Jacobian matrix when the number of features is small [32,33]. IBVS
is frequently employed in mobile robots [29] and UAVs [34] due to its robustness and
well-defined framework [31].

Hybrid visual servoing is a control technique that integrates or switches between
PBVS and IBVS to improve control performance [35]. Different environments may require
different switching rules, leading to poor generality [32].

Compared with the other two methods, IBVS has been increasingly researched in
recent years due to its high steady-state control accuracy [33]. Due to the benefits associated
with IBVS, this approach is chosen for the current study. The use of IBVS has notable
advantages for agricultural and forestry sampling applications, specifically its ability
to handle camera calibration errors well and its lack of requirements for a geometric
representation of the target. Aerial vegetation sampling requires maintaining high accuracy
and adapting under various environmental conditions.The well-defined framework of IBVS
allows for effective control even in the presence of uncertainties and varying conditions.
For these reasons, the present work focuses on leveraging IBVS to enhance the performance
and reliability of aerial vegetation sampling systems.

Learning-based visual servoing employs data-driven techniques to understand different
components of the visual servoing process in unstructured and unknown environments [30].
This approach enables robots to make decisions based on visual feedback, facilitating robust
operation in dynamic settings. Key components include visual feature representation [36],
adjustment of servoing gains [31,37], and the perception and control process [38].

The precision and efficiency of visual servoing systems are each significantly influ-
enced by the selection of visual features extracted from the image as visual feedback [39].
Traditional visual servoing methods use handcrafted visual features [36], but recent ad-
vances in computer vision have shown that data-driven methods are capable of effectively
learning and understanding complex patterns from images, particularly when provided
with a large number of examples [40]. Data-driven methods have encouraged the use
of learning-based feature representations [36]. A common issue during visual servoing
is the loss of features from the camera’s field of view. In this scenario, it is essential to
implement a control approach to resolve the feature loss issue by either handling the feature
loss [41,42]—which involves maintaining control regardless of lost features—or by prevent-
ing feature loss through long-horizon trajectory planning [43,44], optimal planing and con-
trol (like Model Predictive Control (MPC)) [45–47], applying visibility constraints [31,37],
or the use of autonomously learned strategies to complete the servo [37]. To tackle the
challenges of target loss and low control efficiency, refs. [31,37] introduce a visual ser-
voing control system for UAVs and mobile robots, respectively. These systems use deep
reinforcement learning (DRL) approaches, enabling real-time dynamic adjustment of the
servo gain.

Unlike traditional visual servoing approaches, some data-driven frameworks (such
as the one proposed by [30]) do not require feature extraction and tracking. This method,
known as direct visual servoing, bypasses these steps by utilizing pixel intensities
directly [48]. In [30], a convolutional neural network (CNN) was trained to perform
end-to-end visual servoing without prior knowledge of the geometry of the underlying
scene and the intrinsic parameters of the camera. Additionally, an image-based visual
servoing technique using Extreme Learning Machine (ELM) and Q-learning adjusts the
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servo gain in [29,33] to improve convergence speed and stability. Furthermore, a multi-
perspective visual servoing framework introduced in [36] uses reinforcement learning to
learn an optimal control policy from different perspectives, demonstrating its effectiveness
in complex environments.

Besides feature extraction, selecting a robust control approach that can handle both
visual error and estimation error is another significant challenge. Numerous learning
approaches have been investigated in the field of visual servoing, with reinforcement
learning (RL) [29,31,36,37,49,50] and end-to-end visual servoing [38] being particularly
prominent. RL-based approaches for visual servoing face several significant challenges.
One major drawback is that the parameters learned by RL are often highly specific to the
training environment and task, making it difficult to generalize RL policies to new or unseen
environments [30]. This lack of generalization limits the applicability of RL in diverse and
dynamic settings. RL-based visual servoing can lead to unsmooth actions, especially
when the RL agent relies on the current state, resulting in suboptimal performance [36].
RL also requires large amounts of training data to learn effective policies, which can be
time-consuming and computationally expensive to gather [38]. Designing appropriate
reward functions is another challenge, as poorly designed rewards can hinder the learning
process or lead to unintended behaviors [38]. RL algorithms are also prone to becoming
trapped in local minima during training, which can prevent the discovery of optimal
policies [38]. Although RL has potential for visual servoing, it faces challenges relating to
the specificity of the environment, the smoothness of actions, the data needed, the design
of reward functions, and the stability of training. Tackling these problems is essential for
enhancing the efficiency and practicality of learning-based visual servoing systems. Despite
these challenges, integrating RL with traditional control methods presents a promising
direction for future work. Hybrid approaches that combine RL with classical visual servoing
techniques could leverage the strengths of both methodologies, providing a more flexible
solution for complex environments. Such an approach would allow for the robustness of
conventional methods while also incorporating the adaptability of RL, thus enhancing the
overall performance of aerial manipulation systems. Table 1 provides a concise comparison
of the above visual servoing methods.

Table 1. Comparison of different visual servoing methods.

Method Key Features Strengths Limitations

Learning-Based Visual Servoing
Data-driven techniques for
decision-making in unstructured
environments.

Robust operation in dynamic
settings; learns complex patterns
from data.

Requires large training datasets;
may face issues with
generalization across
environments.

End-to-End Visual Servoing
Directly maps input images to
control commands without
feature extraction.

Bypasses feature extraction;
potentially faster processing.

May struggle with complex
environments; relies on
high-quality training data.

Hybrid Approaches Combines IBVS and PBVS.
Leverages strengths of both
methodologies; adaptable to
varying conditions.

Complexity in integration; poor
generality; may require extensive
tuning.

Position-Based Visual Servoing
(PBVS) Uses 3D pose information. Effective for tasks needing precise

positioning. Sensitive to camera calibration.

Image-Based Visual Servoing
(IBVS)

Operates on image features to
minimize error in the image
plane.

Quick adjustments based on
visual feedback; can work with
varying object appearances.

Local minima and singularities;
can require more features for
reliable control.

Reinforcement Learning
Approaches

Utilizes RL to dynamically map
visual inputs.

Adaptable to changing
environments; learns from
interaction with the environment.

Large training data requirement;
can lead to unsmooth actions and
local minima issues.

Some end-to-end methods train both perception and control systems simultaneously [51],
while others separate these functions into distinct modules for perception and robot control [52].
While end-to-end training can be effective, it often requires a substantial number of sam-
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ples and may encounter issues if there is a discrepancy between the training and testing
environments [53]. To address these challenges and manage uncertainties effectively in a clus-
tered forest environment while minimizing sampling costs, the latter approach is adopted here,
where perception and control are handled through separate modules. This strategy provides
greater flexibility and robustness, enabling more efficient adaptation to varied conditions and
reducing the overall expense associated with reinforcement learning-based techniques.

2. Detection and Feature Extraction

In the development of robotic systems for the forestry sector, computer vision is
crucial for understanding scenes and gathering essential information. This technology not
only facilitates tasks such as mapping and navigation, but also plays a significant role in
collecting physical samples from the tree canopy [54]. Researchers rely on these samples for
conducting breeding experiments, carrying out genetic analysis, and monitoring disease
occurrences [27]. To conduct autonomous physical sampling using unmanned aerial
vehicles, precise and reliable real-time computer vision algorithms capable of running
onboard are required to ensure efficient data collection.

The process of autonomous tree branch sampling includes the identification of appro-
priate trees, the detection of the desired branch, and the accurate extraction of the cutting or
grasping point. These extracted points are then employed as visual features for the visual
servoing, providing essential vision feedback for the system. To achieve this, the developed
model needs to be trained in a complex, cluttered, and dynamic environment where there is
no plain image background. A geometric feature could be extracted to indicate the suitable
point for gripping and cutting the branch. In our scenario, we identify the lines of the tree
branches and determine the grabbing point (Figure 1). The sway motion of the branch
is modeled in [27], where a tracking algorithm is proposed. However, in this work, the
sway motion is ignored for simplification purposes in the assumptions. It is acknowledged
that environmental factors such as wind or movement in the branches can affect system
performance in real-world scenarios. To enhance the robustness and applicability of the
system in practical settings, adaptive control strategies or predictive models that account
for dynamic environments could be explored in future work. This will help address the
complexities introduced by branch motion.

The tree branch line detection algorithm using CNN proposed in [55] is applied here
to specify the direction and position of the tree branch, and to determine the desired grasp
point required for the visual servo loop. The suggested method employs a CNN to predict
straight lines that represent tree branch extensions, followed by a Hough transform to
estimate the direction and position of the line. The grip point is then determined as the
pixel point having the greatest likelihood of being on the line. To achieve robust evaluation,
we used tenfold cross-validation, with 90% of the data for training and 10% for testing.
Furthermore, in [55], the approach was tested against multiple corruptions (Gaussian and
shot noise) with varying severity levels, indicating its robustness in difficult situations. The
experimental study in that paper yielded an F1-score of 96.78%, demonstrating the method’s
accuracy and precision. The PReLU activation function was employed in all convolution
layers except the final layer, which used ReLU to improve feature representation.

The dataset was created by [55] for images containing relevant phrases and keywords
linked to tree branches. After collecting the original collection of images, a data-cleaning
procedure was performed to remove duplicate or irrelevant images that did not match the
topic of the study. To standardize the input size for the CNN model, all remaining photos
were shrunk to 128 × 128 pixels. The final collection included 1868 images, each with at
least one notable tree branch. The goal was to identify the main tree branch in each image,
while smaller branches were ignored. All images were manually annotated with a straight
line to indicate the direction of the primary tree branch. For complex or curved branches,
the longest visible segment of the branch was identified. This method ensured labeling
uniformity and gave explicit targets for the CNN to train and evaluate.
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In terms of performance, the CNN model achieved outstanding results [55]. The
F1-score, which considers both precision and recall, was 0.9678. Precision, defined as the
fraction of correctly identified main branches among all positive predictions, was 0.9698.
Recall, which assesses how effectively the model identified all important main branches,
was 0.9674.

It is important to address the computational cost of deploying deep learning models in
real time on UAVs, which often have limited processing power. To optimize performance, the
NVIDIA Jetson Orin NX module can be utilized on the aerial vehicle. This advanced platform
provides impressive AI performance of up to 100 Tera Operations Per Second (TOPS), making
it capable of handling complex neural network tasks efficiently in real time.

Figure 1. Schematic illustration of aerial tree branch detection and feature extraction.

3. System Modeling

In this study, a UAV is equipped with a two-link rigid manipulator, as shown in
Figure 2. In order to provide an accurate representation of this system, it is necessary to
determine both an inertial reference frame, F I : {XI , YI , ZI}, and a body reference frame,
F B : {XB, YB, ZB}, that is fixed to the center of mass of the UAV.

Figure 2. Two-link aerial sampling system of conifer tree branches—inertial reference frame,
F I : {XI , YI , ZI}, and a body reference frame, FB : {XB, YB, ZB}.
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The position and orientation of the UAV in the inertial frame, FI , are denoted by PUAV
and ΦUAV , respectively. Here, ΦUAV = [φ, θ, ψ]T represents the Euler angle vector, which
includes the roll, pitch, and yaw angles.

Let R̄ be the rotation matrix between the inertial and body frames, and T̄ be the
transformation matrix, deriving the relation between Euler angles and angular velocity.
The linear and rotational velocities of the UAV in the inertial frame, ṖUAV and Ω̇UAV , are
expressed in terms of the linear velocity of the UAV in the body frame, ṖB

UAV , and the time
derivatives of the Euler angles, Φ̇UAV . Superscript B denotes the body frame and variables,
while the bar indicates matrices.

ṖUAV = R̄ṖB
UAV , (1)

Ω̇UAV = T̄Φ̇UAV , (2)

The relationship between the rotational velocity of the UAV in the body frame, Ω̇B
UAV ,

and that in the inertial frame, Ω̇UAV , is expressed as follows:

Ω̇B
UAV = R̄TΦ̇UAV = R̄T T̄Φ̇UAV = Q̄Φ̇UAV , (3)

where superscript T denotes the transpose of a matrix.
Arm joint angles are represented by the vector q = [q1, q2]

T . The position of the ith
joint in the inertial frame, Pi, can be determined by knowing the position of the UAV and
the position of the joint in the body reference frame, PB

i .

Pi = PUAV + R̄PB
i . (4)

Next, the linear velocity, ṖB
i , and angular velocity, ωB

i , of the ith joint in the body frame
are calculated as follows:

ṖB
i = Jp1q̇1 + ... + Jpi q̇i = J̄i

p q̇, (5)

ωB
i = Jo1q̇1 + ... + Joi q̇i = J̄i

o q̇, (6)

where J̄i
p and J̄i

o are the linear and angular velocity Jacobians for the ith joint, respectively.
Finally, these linear and angular velocities are expressed in the inertial reference frame as

Ṗi = ṖUAV − Skew(R̄PB
i ) + R̄ J̄i

p q̇, (7)

ωi = ΩUAV + R̄ J̄i
o q̇. (8)

The function Skew() produces the skew-symmetric matrix of any input vector.
Defining the state vector of the system as η = [PUAV , ΩUAV , q]T , the dynamics of the

system can be calculated using the Euler–Lagrange theory as follows:

M̄(η)η̈ + C̄(η, η̇)η̇ + G(η) = u, (9)

where M̄ is a symmetric positive definite inertia matrix, C̄ represents the centrifugal and
Coriolis forces, and G is the gravitational vector, derived from reference [56]. Also, u
denotes the control input.

4. Visual Servoing
4.1. Image-Based Control

By determining the desired grip point from [27], four features around the target point
can be selected to design an image-based, visual servo control system. These four features
ensure that the IBVS can accurately guide the end-effector to the desired point. Four
features are required because they provide sufficient information for accurately guiding the
end-effector by determining both the position and orientation of the target relative to the
camera. This reduces ambiguity, ensures stability, and enables full six-degree-of-freedom
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control, including translation in three dimensions and rotation about three axes. These
factors collectively enhance the performance and reliability of the IBVS system.

Assume that the desired image vector of the grip from the CNN method is sd, and the
current image vector observed by the camera is s(t). The visual error es(t) can be defined as

es(t) = s(t)− sd, (10)

In visual servoing, the derivative of the vector s(t) is related to the relative velocity
between the camera and the object vco through the interaction matrix Ls as

ṡ(t) = Lsvco +
∂s
∂t

, (11)

where
∂s
∂t

denotes the derivative of features due to the object motion. In the forestry
application, it is assumed that the sway motion of a branch is ignored (that is, the object

remains stationary), making
∂s
∂t

= 0. The time derivative of the visual error can thus be
found to be

ės(t) = ṡ(t) = Lsvco , (12)

A desired first order control law, ės(t) = −Kes(t), is assumed for the visual servo
control to ensure that the error converges to zero, where K is a constant control gain. The
desired velocity between camera and object vco can be found as

vco = L+
s {−K(s(t)− sd)}, (13)

where
L+

s = (LT
s Ls)

−1LT
s , (14)

In the present work, the camera is mounted on the gripper as an eye-in-hand configu-
ration, and so vco is obtained in the camera frame (which is the same as the gripper frame)
and must be related to the gripper’s desired velocity in the inertial frame ẋd to calculate the
control signal and guide the gripper to the grip point. ẋd can be calculated as

ẋd = R̄R̄g−UAVvco , (15)

where R̄g−UAV denotes the relative rotation matrix between the gripper and the
UAV platform.

4.2. Dynamic Control

In order to calculate the control signal in the gripper inertia frame, the system dynamics
presented in (9) should be re-written in the gripper inertia frame using the gripper Jacobian
matrix J̄x by

M̄x(x)ẍ + C̄x(x, ẋ)ẋ + Gx(x) = ux, (16)

where x is the gripper pose in the inertia frame and

M̄x(x) = Jx(η)
−T M(η)Jx(η)

−1, (17)

C̄x(x, ẋ) = Jx(η)
−T(C̄(η, η̇)− M(η)Jx(η)

−1 J̇x(η))Jx(η)
−1, (18)

Gx(x) = Jx(η)
−TG(η), (19)

ux = Jx(η)
−Tu. (20)

Now, with the gripper equation and desired velocity defined, a control law is needed
to ensure that the gripper reaches the target point. In our previous work, ref. [13,56], the
adaptive sliding mode controller proved to be both robust and efficient for controlling
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aerial manipulation systems, and this approach was chosen for this study. To determine
the control signal, the error ex, sliding surface Sx, and reference state xr are defined as

ex = x − xd, (21)

ẋr = ẋd − Λex, (22)

Sx = ėx + Λex. (23)

where Λ is a positive diagonal matrix. The control signal, ux, is obtained from

ux = M̄x(x)ẍr + C̄x(x, ẋ)ẋr + Gx(x)− Kv ėx − Kpex + ∆̂, (24)

where Kp and Kv are positive definite matrices and ∆̂ is the estimated uncertainty, which
can be calculated as

˙̂∆ = −K∆Sx. (25)

The stability of this control approach is thoroughly discussed in [57].

4.3. Learning Based Control

This study presents a novel end-to-end learning-based approach for vision-based
control of an aerial vegetation sampling system, which is separated into distinct perception
and control modules. The control method involves training neural networks to fully model
the entire control process and then applying knowledge distillation (KD) to refine smaller
networks based on the larger, pre-trained ones. KD enables the development of more
compact networks with fewer parameters by transferring insights from larger models.
This process not only reduces network size but also introduces a regularization effect that
enhances the generalizability and robustness of the smaller networks.

A supervised learning framework addresses the vision-based control challenge. Super-
vised learning focuses on estimating the relationship between input–output pairs, which
can then be used to predict outputs for new inputs. In sampler control, the system control
signal is estimated and generated based on the system state variables, current and desired
visual features, and errors as

xtrain = [sT
d , sT , ηT , eT

x , ėT
x ]

T . (26)

To train the network, inputs are randomly generated within a specified range, and the
controller calculates the corresponding outputs. The system’s input vector is unordered,
with no spatial correlation among its elements. Additionally, due to the lack of temporal
trends, all samples are independent and identically distributed, as the controller bases
the control signal solely on the current system state, ignoring previous states. This work
employs multilayer perceptron (MLP) neural networks for the task [58].

In knowledge distillation, when a large network is trained for a classification task, the
layer immediately preceding the softmax function generates a valuable embedding of the
input data. Work by [59] suggests that training a smaller network to predict the embedding
and classify the sample should be conducted simultaneously, and this method is applied
for visual control in this study.

KD starts with training a large neural network, the teacher network, to address a
regression problem by minimizing the mean squared error (MSE) between its outputs and
the target outputs. As illustrated in Figure 3, a smaller network, the student or distilled
network, is then trained to ensure that its output layer accurately predicts the target
outputs, while one of its hidden layers learns to predict the embedding, generated by a
corresponding hidden layer in the teacher network. The loss function for training the
student network is defined as the sum of two MSE loss functions by
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Figure 3. Suggested knowledge distillation block diagram.

Loss = αLstudent + (1 − α)Ldistillation, (27)

Lstudent = MSE(ystudent, ydesired), (28)

Ldistillation = MSE(zstudent, zteacher). (29)

Significantly, the teacher network remains unchanged while the student network is
trained, with backpropagation exclusively applied to the student network. In our previous
work on KD control [60], we found that training individual networks for each output and
distilling these networks separately produced the most effective results, and so the same
strategy is used for KD in this research as well. It is critical to take into account the perfor-
mance trade-offs when employing knowledge distillation (KD) to simplify neural networks.
While KD can drastically reduce model complexity, it may also result in decreased control
accuracy, especially if the distilled model is unable to capture the nuances of the original
model. This drop in precision can have an impact on the system’s capacity to perform opti-
mally, particularly in dynamic circumstances where precise control is required. Alternative
strategies for balancing performance and computing simplicity include model pruning
and architectural optimization. These strategies have demonstrated potential in improving
model robustness while maintaining high accuracy, making them viable candidates for
future application in our system.

Figure 4 illustrates the proposed end-to-end visual servo control system for aerial
vegetation sampling. This system employs a CNN to extract the desired features, which
are then provided to the image-based vision control unit to determine the required gripper
motion. This motion is subsequently processed by the adaptive sliding mode (ASM) to
compute the control signals for both the UAV and the robotic arms. The entire control
process is replaced using a KD neural network, which directly computes the control signal
by only observing the tree branches.
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Figure 4. Proposed visual servoing block diagram.

5. Simulation Results

This section evaluates the performance of the proposed controllers for the aerial
platform developed at the University of Alberta (see Figure 5). The platform, a modified
DJI S1000, features a custom three-degree-of-freedom robotic arm with a cutting mechanism
at the end. In the simulation results, we used only two active links, with the third link
remaining passive and merely connected to the gripper. A perspective camera with a focal
length of 1024 pixels and a principal point at 512 pixels, mounted on the gripper, guides
the system to the desired grip point.

To create the teacher network, we concatenate control signal networks to produce an
output with eight components. This teacher network is then distilled into the student net-
work with the architecture shown in Table 2. Each teacher network is distilled individually,
and these distilled networks are combined to form the final controller. The training uses
the PReLU activation function and mean squared error (MSE) with five hidden layers.

Figure 5. Aerial vegetation sampler experimental platform.

Table 2. Architecture of distilled networks.

Number of Neurons Activation

Hidden 1 25 PReLU

Hidden 2 25 PReLU

Hidden 3 (zstudent) 50 —

Hidden 4 25 PReLU

Hidden 5 25 PReLU

Output 1 —

Two scenarios are considered to demonstrate the efficiency of the proposed vision-
based control approach for gripping the sample: one from the top and the other based on
the initial position relative to the sample.
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5.1. Gripping from the Top

In this simulation, the desired grip point is positioned 10 m above the origin. The
UAV, a fully actuated drone, starts at [5, 5, 15] meters with initial Euler angles of 10 degrees.
Achieving the target point becomes easier when the starting Euler angles are zero. However,
reaching the goal becomes more difficult when the initial Euler angles are not equal to
zero. That is why, in this simulation scenario, non-zero Euler angles are selected as initial
conditions. The first link is set at a 30-degree angle, and the second link has zero initial
deflection. The initial velocity of the UAV is set to zero.

Figure 6 displays the feature trajectory, showing the initial feature positions marked
with circle symbols (o) and their desired points marked with cross symbols (×). Figure 7
presents the feature trajectory error, demonstrating that the error converges to zero around
30 s. Figure 8 plots both the transnational and rotational velocities of the gripper. The
UAV and its gripper 3D trajectory are depicted in Figure 9. Figure 10 shows the gripper
position and its position error, confirming that the gripper successfully reached the desired
grip point.

Figures 11 and 12 present the overall system states. These figures illustrate an initial
oscillation in the Euler angles within the first 10 s. The UAV achieves the grip point with
final roll and pitch angles of zero, while its heading is approximately −40 degrees. The
angles of the links adjust to 80 and 50 degrees, respectively, to reach the grip point.

Figure 6. Feature trajectory—top approach.

Figure 7. Feature Error—top approach.
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Figure 8. Gripper transnational and rotational velocities—top approach.

Figure 9. UAV and gripper trajectory—top approach.

Figure 10. Gripper position and position error—top approach.
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Figure 11. UAV and arm states—top approach.

Figure 12. UAV and arms states’ derivative—top approach.

5.2. Gripping from Below

In this simulation, the desired grip point remains the same as in the previous case,
with similar UAV and arm states. The only difference is the drone’s initial height, which is
set to 7 m instead of 15 m as in the previous scenario.

Figure 13 indicates that the feature trajectory in the “Gripping from the Top” approach
was smoother, while in the “Gripping from Below” approach, there is a noticeable curve
that changes the feature direction in the middle of the trajectory. Figure 14 reveals that the
convergence time for feature error is similar in both scenarios, although the error dynamics
differ slightly.

Figure 15 shows that the magnitudes of both translational and rotational speeds are
smaller in the “Gripping from Below” scenario, with the UAV approaching the target more
slowly. This slower approach speed could be attributed to the UAV’s initial position being
closer to the grip point. In Figure 16, the UAV and arm experience different trajectories.
Initially, they ascend to a higher altitude relative to the target point before approaching the
grip point. In contrast, the “Gripping from the Top” approach involved both the UAV and
arm descending in altitude as they neared the target. Figure 17 illustrates the gripper’s
position, confirming that it successfully reached the desired grip point.
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Figure 18 depicts the system states, where the pitch angle initially increased before
decreasing, while the roll and heading angles first decreased and then increased, ultimately
converging to zero. This pattern is similar to what was observed in the “Gripping from the
Top” approach. Figure 19 presents the system states’ derivatives, where a similar rate of
change in states is observed across both approaches. This indicates consistent behavior in
the dynamics of the UAV and its control system during the gripping maneuvers, regardless
of the approach direction.

Figure 13. Feature trajectory—down approach.

Figure 14. Feature error—down approach.
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Figure 15. Gripper transnational and rotational velocities—down approach.

Figure 16. UAV and gripper trajectory—down approach.

Figure 17. Gripper position and position error—down approach.
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Figure 18. UAV and arm states—down approach.

Figure 19. UAV and arms states’ derivative—down approach.

6. Conclusions

An innovative visual servoing framework intended for aerial vegetation sampling was
presented in this paper. The framework incorporates a number of cutting-edge methods,
including a distilled neural network, adaptive sliding mode control, image-based visual
servoing, and neural network-based grip point recognition. The method uses data from an
external neural network that is devoted to grip point recognition to create control signals
through the use of a model-based training architecture. These components work together
to give the framework precise control over the aerial system. Simulation results were used
to comprehensively assess the effectiveness of the suggested controller, showing that it can
guide the gripper to the intended grasp position with nearly no error. Further research
endeavors will investigate techniques to tackle feature loss and integrate additional sensors,
such LiDAR, into the system to augment its resilience in practical situations. To increase the
accuracy of drone-based measurements in vegetation monitoring applications, additional
research will be carried out on the effects of data quality and sources of uncertainty.
Additionally, the technique can be implemented in real time on the NVIDIA Jetson Orin
NX, making use of its sophisticated processing powers to guarantee effective performance
in real-world scenarios.
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