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Abstract: In recent years, research on Unmanned Aerial Vehicles (UAVs) has developed rapidly.
Compared to traditional remote-sensing images, UAV images exhibit complex backgrounds, high
resolution, and large differences in object scales. Therefore, UAV object detection is an essential
yet challenging task. This paper proposes a multi-scale object detection network, namely YOLO-
DroneMS (You Only Look Once for Drone Multi-Scale Object), for UAV images. Targeting the
pivotal connection between the backbone and neck, the Large Separable Kernel Attention (LSKA)
mechanism is adopted with the Spatial Pyramid Pooling Factor (SPPF), where weighted processing
of multi-scale feature maps is performed to focus more on features. And Attentional Scale Sequence
Fusion DySample (ASF-DySample) is introduced to perform attention scale sequence fusion and
dynamic upsampling to conserve resources. Then, the faster cross-stage partial network bottleneck
with two convolutions (named C2f) in the backbone is optimized using the Inverted Residual Mobile
Block and Dilated Reparam Block (iRMB-DRB), which balances the advantages of dynamic global
modeling and static local information fusion. This optimization effectively increases the model’s
receptive field, enhancing its capability for downstream tasks. By replacing the original CIoU with
WIoUv3, the model prioritizes anchoring boxes of superior quality, dynamically adjusting weights
to enhance detection performance for small objects. Experimental findings on the VisDrone2019
dataset demonstrate that at an Intersection over Union (IoU) of 0.5, YOLO-DroneMS achieves a
3.6% increase in mAP@50 compared to the YOLOv8n model. Moreover, YOLO-DroneMS exhibits
improved detection speed, increasing the number of frames per second (FPS) from 78.7 to 83.3.
The enhanced model supports diverse target scales and achieves high recognition rates, making
it well-suited for drone-based object detection tasks, particularly in scenarios involving multiple
object clusters.

Keywords: drone images; LSKA; DySample; iRMB-DRB; WIoU

1. Introduction

The integration of Unmanned Aerial Vehicles (UAVs) and industry applications is
gradually becoming a research trend. Achieving accurate and real-time detection and
tracking of UAV multi-targets is one of the core challenges widely encountered in fields
such as security patrol, agricultural pest control, IoT transportation, and power line in-
spection [1]. Unlike traditional object detection, UAV imagery often contains numerous
small objects that are densely distributed, exhibits significant scale variations, and is set
against complex backgrounds. These factors significantly hinder the precision of detection
models. Additionally, the high-resolution characteristics of UAV images complicate the op-
timization of object detection algorithms. Some methods struggle to effectively detect and
differentiate small objects due to the cluttered environments and varying scales, leading to a
higher rate of false positives and negatives. Furthermore, many current approaches do not
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fully exploit the spatial resolution and contextual information available in high-resolution
images, resulting in suboptimal performance in object detection tasks [2,3].

With the rapid development of deep-learning methods, deep-learning-based object
detection has far surpassed the performance of traditional methods. Deep-learning-based
generic object detection algorithms can be categorized into two types: the R-CNN (Region-
based Convolutional Neural Network) series two-stage algorithms and the YOLO (You
Only Look Once) SSD (Single-Shot MultiBox Detector) series one-stage algorithms [4–6].
One-stage detectors provide end-to-end performance advantages; however, they typically
demonstrate lower accuracy in localizing and recognizing small objects. In contrast, two-
stage object detectors, which utilize a locate-then-recognize framework, achieve higher
accuracy but suffer from inferior real-time performance. Given the real-time operational
demands of UAVs, it is crucial to tackle the challenge of lightweighting object detection al-
gorithms. It is hard to balance accuracy and efficiency, leading to trade-offs where improved
accuracy in two-stage detectors compromises their applicability in real-time scenarios [7].
Moreover, many lightweight models sacrifice localization precision, particularly for small
objects, limiting their effectiveness in practical applications.

Training deep object detection models requires large amounts of data. Currently, major
UAV image object detection datasets include VisDrone (Vision Meets Drones) [8], UAVDT
(The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking) [9], etc. The
VisDrone dataset, for example, comprises images captured by multiple UAVs from oblique
aerial perspectives, spanning landscapes across 14 Chinese cities. It includes 10,000 images
and 2.6 million annotations, posing substantial challenges for object detection and track-
ing tasks. Images in the VisDrone dataset reach resolutions of up to 2000 × 1500 pixels
and encompass 10 distinct object categories. Notably, distinguishing between classes
such as people and pedestrians proves challenging due to varying scales, orientations,
uneven intensities, and significant image degradation. Addressing these challenges often
necessitates incorporating attention mechanisms to better discern differential information
among features.

When directly applying general object detection algorithms to UAV image target
detection, the detection performance is typically significantly degraded due to the spe-
cific characteristics of UAV images. Consequently, researchers have undertaken targeted
improvements, primarily focusing on optimizing two-stage detection algorithms, per-
forming data augmentation [10], optimizing anchor-free methods [11,12], and optimizing
lightweight models. In order to fully exploit the advantages of two-stage networks in detect-
ing small objects, Cai et al. [13] addressed the issue of improving the IoU training threshold
and proposed a network structure called Cascade R-CNN, which employs cascade-guided
IoU resampling. This significantly enhances the accuracy of small-object detection but
leads to a decrease in inference speed. Leveraging the characteristics of UAV image object
aggregation, researchers proposed ClusDet [14], a multi-stage clustering detection network
based on an improved R-CNN algorithm. This innovative framework integrates techniques
like region clustering, slice detection, and scale adaptation, tailored to boost inference speed
and enhance small-object detection rates in two-stage object detection networks applied to
high-resolution UAV imagery. Moreover, employing training methodologies such as scaling
for small objects and balancing positive–negative samples aims to elevate the accuracy
of two-stage R-CNN models. However, these approaches face challenges in seamlessly
handling scenes featuring a mix of small-scale and large-scale objects simultaneously.

Recently developed anchor-free networks are well suited for small-object detection
in UAV imagery. For instance, CenterNet focuses on object center localization and offset
prediction, which effectively enhances the detection rate of small objects [15]. However,
the reliance on high-resolution feature maps can compromise the real-time performance of
CenterNet. To address this, Google introduced MobileNet [16], which replaces traditional
convolutions with depthwise separable convolutions, significantly reducing computational
load and making it suitable for edge devices. Following this, various lightweight networks,
such as EfficientDet [17] and GhostNet [18], have been proposed. Additionally, techniques
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like L1 regularization-based model pruning and inter-group model distillation have gained
traction for accelerating inference speed while maintaining efficiency on edge computing
devices. However, these methods often incur a notable reduction in accuracy, posing a
challenge for applications that require precise object detection [19].

Consider the large models: The Detection Transformer with Improved Denoising
Anchor Boxes (DINO) enhances performance and efficiency over previous models by utiliz-
ing a denoising training approach through contrastive learning, a hybrid query selection
method for anchor initialization, and a look-ahead-twice scheme for box prediction [20].
Additionally, RSPrompter [21] is a prompt learning method tailored for instance segmen-
tation in remote-sensing imagery, leveraging the SAM foundational model. RSPrompter
aims to generate prompt inputs for SAM, allowing it to automatically produce semantic
instance-level masks. However, despite the advancements in large models for detection,
existing methods still fail to effectively address the challenges posed by multi-scale scenes,
leading to difficulties in accurately detecting and segmenting objects of varying sizes and
contexts. At the same time, the large model weight also occupies a large amount of GPU
memory, which is not conducive to the real-time flight of UAVs. If it is deployed locally,
there is a problem of transmission bandwidth, which reduces the real-time detection.

It can be seen that the above algorithms have problems such as unbalanced network
depth and width, insufficient classification accuracy, and insufficient inference speed,
especially in complex detection scenes with large-scale spans. To solve these issues above,
by fusing the characteristics of UAV images with the real-time performance and accuracy of
one-stage YOLO series algorithms, this paper fully leverages the advantages of YOLOv8n to
address issues such as imbalanced depth and width and insufficient classification accuracy,
effectively improving the accuracy of real-time detection of small models in UAV scenarios.
The main innovations of this study include the following:

(1) Fusing the LSKA with SPPF of the backbone end (SPPF-LSKA) innovatively to perform
weighted processing on multi-scale feature maps, which can better prioritize relevant
features at different scales.

(2) The neck being upsampled on the attention scale using ASF-DySample fusion of
high-dimensional information from deep feature maps with detailed information
from shallow ones.

(3) Employing iRMB-DRB for C2f transformation leverages the synergies between dy-
namic global modeling and static local information fusion, leading to more compre-
hensive feature representations.

(4) Replacing the original CIoU loss function with WIoUv3 can optimize the weighting for
small objects to improve detection performance, focusing on anchor boxes of ordinary
quality, enhancing the model’s localization performance, which further proves the
generalization of the proposed method.

The pipeline of the improved YOLOv8 algorithm is given in this paper, and the related
work of UAV object detection and YOLOv8 is introduced. Then, different improvements
including SPPF-LSKA, ASF-DySample, C2f-iRMB-DRB, and WIoUv3 are introduced in
detail. Finally, the proposed method is evaluated by ablation experiments and comparison
experiments.

2. Related Works
2.1. UAV Object Detection Workflow

The workflow for UAV-based object detection primarily encompasses four critical
steps: data acquisition, preprocessing, model training and inference, and postprocessing.
Initially, drones equipped with high-resolution cameras or other sensors operate within
the target area, capturing a substantial volume of imagery data in real time. These data
typically include images under various complex backgrounds and diverse lighting condi-
tions. Subsequently, the acquired images undergo preprocessing, which involves image
enhancement, noise reduction, and scale normalization to improve data quality and reduce
computational load.
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The next phase is model training and inference. For object detection tasks, deep-
learning models such as Faster R-CNN and YOLO are widely employed. These models,
trained on large-scale annotated datasets, can autonomously extract image features and
predict the positions and classes of objects. During the training process, data augmentation
techniques are applied to enhance the model’s generalization capability, and optimization
algorithms like Stochastic Gradient Descent (SGD) or Adam are used to adjust the model
parameters [19].

Upon completion of model training, the model is deployed onto embedded systems or
edge computing devices on the drone for real-time inference, enabling the rapid detection
of objects in newly acquired images. The final step is postprocessing, where detection
results are filtered and optimized. Techniques such as Non-Maximum Suppression (NMS)
are employed to eliminate redundant bounding boxes, and object tracking algorithms are
incorporated to enhance the continuity and stability of detections.

This entire workflow is iteratively refined to continuously improve the accuracy and
real-time performance of UAV object detection, thereby meeting the demands of various
application scenarios.

2.2. The YOLOv8 Algorithm

The following section will discuss the feasibility of applying YOLOv8 for UAV object
detection. The YOLO algorithms are widely employed in object detection tasks involving
small objects due to their advantages of high inference speed, real-time capability, and
simplicity in network structure. YOLOv8 further optimizes the network architecture
compared to its predecessors, enhancing the overall detection performance [22–24]. The
network architecture of YOLOv8 consists of four parts: the input layer, the backbone
module, the feature enhancement module, and the output layer [25]. This architecture is
illustrated in Figure 1. After careful comparison, YOLOv8 is selected as the improved and
optimized baseline in this paper, and details will be presented in the following sections.
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2.2.1. Backbone

The backbone is primarily used for feature extraction. YOLOv8 replaces the Cross-
Stage Partial (CSP) module in YOLOv5 with the lightweight C2f module, enhancing
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feature representation capability through dense residual structures [26]. In YOLOv8,
the C2f module is a residual block, with its core idea centered around the introduction
of residual connections, enabling the network to learn a direct mapping relationship
between input and output, thereby optimizing the training process. The C2f module
consists of two convolutional layers (Conv), interconnected via residual connections. In
this residual connection, the input signal is directly passed to the output signal while
concurrently learning the mapping relationship between the input and output through
convolutional operations. This structure effectively addresses the issues of vanishing
gradients and limited representational capacity commonly encountered in deep neural
networks. The primary function of the C2f module in YOLOv8 is to enhance feature
extraction capabilities. By incorporating residual connections, the C2f module allows
the network to better learn and leverage the relational information between features,
thus improving the accuracy of feature extraction. Furthermore, due to the relatively
simple structure of the C2f module, it can effectively reduce the computational burden and
complexity of the model when computational resources are limited, thereby enhancing the
operational efficiency of the model.

In addition, the SPP module (spatial pyramid pooling) [27], originally used in ear-
lier YOLO versions like YOLOv5, has been replaced with the Spatial Pyramid Pooling
Fast (SPPF) module [28]. The SPPF module replaces the original three different-sized
convolutional kernels with three 5 × 5 convolutional kernels. This substitution is because
concatenating two 5 × 5 convolutional kernels is equivalent to using one 9 × 9 convolu-
tional kernel, and similarly, concatenating three 5 × 5 convolutional kernels is equivalent
to using one 13 × 13 convolutional kernel. Compared to using larger convolutional kernels
directly, concatenating multiple smaller kernels reduces network’s computational load,
thereby improving inference speed for UAV objects.

2.2.2. Neck

The Neck is primarily utilized for feature fusion, employing the Path Aggregation
Network (PAN) [29] in conjunction with the C2f module. It facilitates the fusion of feature
maps at different scales from the three stages of the backbone, aiding in the aggregation of
shallow information into deeper features.

YOLOv8′s neck layer continues the FPN+PAN [30] concept from YOLOv5. Compared
to YOLOv5, YOLOv8 replaces C3 with the C2f module and removes the convolutional
layer before upsampling, directly upsampling output features from different stages of the
backbone feature extraction network. These modifications further optimize the network
structure, enhancing detection efficiency.

2.2.3. Head

From YOLOv3 to YOLOv5, the detection head has consistently been coupled, meaning
that a single convolutional layer is used to simultaneously perform both classification and
localization tasks. It was not until the introduction of YOLOX [31] that the YOLO series
first adopted a decoupled head structure.

YOLOv8 also employs a decoupled head, with two parallel branches extracting cat-
egory features and position features separately. Subsequently, each branch utilizes a
1 × 1 convolutional layer to perform UAV object classification and localization tasks.

2.2.4. Loss

The loss function in YOLOv8 consists primarily of two components: classification
loss and localization loss. For YOLOv8, its classification loss is represented by VFL loss
(varifocal loss), while its regression loss takes the form of CIoU loss and DFL loss [32]. The
varifocal loss is defined as follows [33]:

VFL(p, q) =
{

−q(qlog(p) + (1 − q)(1 − p)) q > 0
−αpγ log(1 − p) q = 0

(1)
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where p represents the predicted class score, p ∈ [0, 1]; q represents the predicted target
score (if it is the true class, q is the predicted and true IoU; if it is another class, q is 0);
and α and γ represent the hyper-parameters of varifocal loss. VFL loss utilizes asymmetric
parameters to weight positive and negative samples differently, reducing only the negative
samples to achieve equal treatment of foreground and background contributions to the
loss.

3. Methods

This section describes the improvements employed in the YOLOv8 baseline, with
Figure 2 illustrating the structural attributes of the augmented YOLOv8 model. Firstly, the
method encompasses three components: SPPF-LSKA, ASF-DySample, and C2f-iRMB-DRB,
as is shown in Figure 2. Then, the IoU (Intersection over Union) mechanism transitions
from the default CIoU to WIoUv3.
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Figure 2. Model architecture of YOLO-DroneMS. SPPF-LSKA is adopted to perform weighted
processing on multi-scale feature maps, while C2f-iRMB-DRB is used for balancing the advantages of
dynamic global modeling and local information fusion. Additionally, ASF-DySample is utilized to
dynamically upsample the neck section.

3.1. SPPF-LSKA

The existing SPPF (Spatial Pyramid Pooling Factor) is a crucial component designed
for extracting multi-scale features. Utilizing spatial pyramid pooling, SPPF merges feature
maps of various scales, thereby enhancing the model’s robustness to changes in target
scales. However, despite its ability to enhance the extraction of multi-scale features to some
extent, there are still some defects in SPPF: Although SPPF utilizes spatial pyramid pooling
to handle multi-scale features, this simplistic fusion approach may not fully exploit the
correlations among features at different scales. Due to the design constraints of spatial
pyramid pooling, SPPF may not effectively handle targets at very small or very large
scales. Additionally, SPPF may encounter performance bottlenecks when dealing with
dense scenes.

To further enhance the multi-scale feature extraction capability, researchers have in-
troduced Large Separable Kernel Attention (LSKA) [34]. LSKA is a form of attention
mechanism based on depthwise separable kernels, aimed at capturing dependencies be-
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tween spatial and channel domains to increase the model’s sensitivity to target features
(Figure 3a). The Visual Attention Network (VAN) incorporating Large Kernel Attention
(LKA) modules has demonstrated superior performance across various visual tasks [35],
surpassing traditional visual transformers.
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However, the deep convolutional layers within these LKA modules incur quadratic
increases in computation and memory consumption as the kernel size expands. To address
these challenges and enable the use of significantly larger kernels within attention modules
of the VAN, a series of Large Separable Kernel Attention modules, collectively termed
LSKA, are proposed.

As the kernel size expands, the LSKA approach subtly steers VAN towards prioritizing
object shapes over textures. This inclination towards shape features offers distinct benefits
in object detection scenarios, where resilience to texture and lighting variations holds
paramount importance. In YOLO-DroneMS, the LSKA mechanism is strategically em-
ployed post-SPPF to dynamically process multi-scale feature maps with weighted attention
(Figure 3b).

Specifically, LSKA first calculates spatial and channel weights for each feature map,
and then adjusts the feature maps accordingly based on these weights. This allows the
model to focus more on features relevant to the target, thereby enhancing detection accuracy.
By leveraging LSKA within SPPF, YOLO-DroneMS can better prioritize relevant features
at different scales, thereby improving its overall detection accuracy without significantly
increasing computational overhead.

3.2. ASF-DySample

YOLOv8, like many object detection models, struggles with effectively fusing features
from different scales. Traditional upsampling methods, such as dynamic convolution-
based methods like CARAFE and FADE [36], can be computationally expensive. To solve
these two problems, this study proposes a novel network structure of ASF-DySample to
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transform the neck of YOLO-DroneMS, and this section will introduce the improvement in
detail.

Attentional Scale Sequence Fusion (ASF) [37] is a novel approach for scale-aware
feature fusion, which better integrates the high-dimensional information from deep feature
maps with the detailed information from shallow ones. Here, the size of the image changes,
but scale-invariant features occur during image downsampling. Scale space is constructed
along the axis of scale in the image, representing not only scale but also the range of scales
that objects can possess. Scale refers to the level of detail in an image. While a blurred
image may lose details, the structural features of the image can be preserved.

On the other hand, DySample is a novel dynamic upsampling method that achieves
upsampling through learned sampling [38]. This approach, when employed for upsampling
in image or video processing, circumvents the high complexity and computational burden
associated with traditional dynamic convolution-based upsampling methods. Implemented
from the perspective of point sampling, DySample dynamically adjusts sampling points by
summing offsets with original grid positions (Figure 4). This method not only exhibits high
resource efficiency but can also be readily implemented using standard PyTorch built-in
functions. Such a design allows DySample to perform well across various dense prediction
tasks, including semantic segmentation, object detection, instance segmentation, panoptic
segmentation, and monocular depth estimation.
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offsets with original grid positions.

DySample’s dynamic sampling reduces the accumulation of prediction errors by con-
trolling offset ranges, a crucial aspect in enhancing prediction accuracy near boundaries [39].
Through methods such as improving initial sampling positions and adjusting offset ranges,
DySample effectively enhances the performance and quality of upsampling.

ASF-DySample transforms the neck part of YOLOv8 by introducing the Dynamic-
ScalSeq module and integrating it into the feature fusion process (Figure 5). The Dynamic-
ScalSeq module takes as input the features from different scales and dynamically samples
them according to learned weights. This module dynamically adjusts the sampling strategy
based on the features’ scale, allowing for better adaptation to the feature of the input image.

At the end of the neck, the output of the DynamicScalSeq module is merged with the
features from the shallow feature maps using the Add operation. This integration enhances
the fusion of high-dimensional information from deep feature maps with detailed informa-
tion from shallow feature maps, contributing to improved object detection performance.

Overall, ASF-DySample introduces a dynamic upsampling mechanism through the
DynamicScalSeq module, which optimizes the fusion of features from different scales in
the YOLOv8 neck architecture, leading to more effective object detection.
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3.3. C2f-iRMB-DRB

The main idea of the Inverted Residual Mobile Block (iRMB) [40] is to fuse lightweight
CNN architectures and attention-based model structures (similar to ACmix) to create
efficient mobile networks. By rethinking the components of inverted residual blocks
(IRBs) [41] and transformers [42], iRMB achieves a unified perspective, thereby extending
CNN’s IRB to attention-based models (Figure 6).
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The design goal of iRMB is to effectively utilize computational resources and achieve
high accuracy while keeping the model lightweight. The primary innovation of the iRMB
module lies in the lightweight characteristics of Convolutional Neural Networks (CNNs)
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and the dynamic processing capabilities of transformer models. This structure is particu-
larly suitable for dense prediction tasks on mobile devices, as it aims to provide efficient
performance in environments with limited computational capabilities.

iRMB improves the handling of information flow through its inverted residual design,
allowing for the capture and utilization of long-range dependencies while maintaining
model lightweightness, which is crucial for tasks such as image classification, object detec-
tion, and semantic segmentation. This design enables the model to operate efficiently on
resource-constrained devices while maintaining or enhancing prediction accuracy.

The DilatedReparamBlock in UniRepLKNet [43] enhances the model’s ability to handle
larger receptive fields by employing dilated convolutions, thereby improving performance
on complex or fine-grained tasks (Figure 7). This enables the model to better capture
details and contextual information in images, which is particularly beneficial for image-
processing tasks.
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By incorporating DRB into the iRMB and integrating it into the C2f architecture, the
model gains enhanced ability to capture fine details and contextual information from im-
ages, as is shown in Figure 8. This is crucial for tasks requiring precise object detection and
recognition. The integration of DRB within iRMB enables efficient attention mechanisms
and spatial information processing, facilitating effective feature fusion within the baseline
architecture. This ensures better integration of features across different scales, leading
to more comprehensive feature representations. The iRMB-DRB approach enhances the
model’s capability to handle features at various scales. This is essential for object detection
tasks, where objects may appear at different sizes within an image. By effectively processing
features at different scales, the model improves its overall performance and accuracy in
detecting objects of varying sizes and complexities.
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3.4. WIoU Loss

The loss function of YOLOv8 comprises confidence loss, classification loss, and bound-
ing box loss functions, with the bounding box loss function reflecting the error between
the ground truth boxes and predicted boxes. The design of the bounding box loss function
significantly impacts the performance of object detection, as a good bounding box loss
function can enhance the precision of UAV object detection. Object detection datasets
frequently contain instances of suboptimal quality, and an excessive focus on bounding box
regression for such cases may impede advancements in UAV object detection capabilities.

To address this issue, the Wise-IoU (WIoU) loss function is proposed [44], which is a
loss function with bounding box localization based on a dynamic non-monotonic focusing
mechanism. For low-quality samples, geometric metrics such as aspect ratio and distance
between predicted and ground truth boxes increase the penalty, affecting the model’s
generalization ability. When the predicted boxes align well with the ground truth boxes, the
penalty on geometric metrics should be reduced. WIoU has three versions: v1 constructs
an attention-based bounding box loss, while v2 and v3 add a focusing mechanism on top of
v1, with v3 demonstrating superior performance. WIoUv1 is constructed based on distance
metrics, as presented in Equations (2) and (3) [45].

RWIOU = exp(

(
x − xgt

)2
+

(
y − ygt

)2(
W2

g + H2
g

)∗ ), (2)

LWIoUv1 = RWIOULIoU , (3)

where x and y represent the center coordinates of the bounding box, xgt and ygt represent
the center coordinates of the target box, Wg and Hg represent the width and height of the
minimum bounding box, WIoU ∈ [1,e) expands the IoU (Intersection over Union) loss
function value IoU for regular quality anchor boxes to a certain extent, while IoU ∈ [0,1]
significantly reduces the WIoU for high-quality anchor boxes. When there is a high overlap
between the target box and the anchor box, emphasis is placed on the distance between the
centers of the two boxes. The asterisk (*) denotes the detachment of Wg and Hg from the
computational graph.

The WIoUv2 bounding box regression loss function is designed to reduce the con-
tribution of simple samples to the loss value, while enabling the model to focus on the
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monotonic focusing coefficient of difficult samples, thereby enhancing the UAV object detec-
tion performance. The formula for the WIoUv2 loss function is shown in Equation (4) [43].

LWIoUv2 = Lγ∗
IoULWIoUv1 , γ > 0 (4)

where γ∗ IoU decreases as IoU decreases during training, which can lead to slow conver-
gence in the later stages of model training. To address this issue, a moving-average IoU
is introduced to maintain the overall γ∗ IoU/IoU at a relatively high level, as shown in
Equation (5).

LWIoUv2 =

(L∗
IoU

LIoU

)γ

LWIoUv1 (5)

where γ is the exponential factor. The WIoUv3 loss function utilizes outlierliness to describe
the quality of anchor boxes, where lower outlierliness indicates higher-quality anchor
boxes, while higher outlierliness suggests lower-quality anchor boxes. The definition of
outlierliness is shown in Equation (6).

β =
L∗

IoU
LIoU

(6)

For anchor boxes with low outlierliness, a small gradient boost is assigned to garner
more attention to ordinary anchor boxes. Conversely, for anchor boxes with high outlier-
liness, a small gradient boost is assigned to prevent significant harmful gradients from
low-quality anchor boxes. This constructs a focusing coefficient applied to WIoUv1 to
derive WIoUv3, as depicted in Equation (7) [46].

LWIoUv3 = rLWIoUv1 , r =
β

δαβ−δ
(7)

where α and δ are hyper-parameters, β is the non-monotonic focusing coefficient, and r
is the conversion coefficient. Due to the dynamic nature of IoU and the quality partition-
ing criteria for anchor boxes, WIoUv3 can dynamically allocate gradients tailored to the
circumstances of each moment, thereby enhancing model performance for UAV object
detection.

4. Experimental Studies
4.1. Dataset

This study employs the VisDrone2019 dataset [8] for experimental validation. Both
the training and validation datasets are partitioned into images sized 800 × 800 with a
stride of 600. The training dataset comprises 25,447 annotated images, while the validation
dataset includes 1115 images with corresponding annotations. From the validation set,
547 images are reserved for testing purposes. The VisDrone2019 dataset encompasses
10 classes, such as pedestrian, people, bicycle, car, van, truck, tricycle, awning-tricycle, bus,
and motor. Through numerical analysis, as detailed in Table 1, the dataset reveals a class
imbalance, characterized by numerous small objects and fewer large objects. Additionally,
certain classes exhibit minimal variability and significant inter-class confusion, presenting
formidable challenges (Figure 9).

Table 1. Statistics of different size types of objects of the VisDrone2019 dataset.

Object Type Small (0× 0~32× 32) Mid (32× 32~96× 96) Large (96× 96~)

Quantity (×10,000) 44.44 18.63 1.704
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4.2. Experimental Configuration

The construction, training, and testing of each UAV object detection model in the
experiment are conducted within the PyTorch deep-learning framework, utilizing CUDA
and CuDNN for acceleration. As shown in Table 2, the experimental setup is based on
the Linux operating system, with an Intel(R) Xeon(R) Gold 6130 CPU, 25 GB of RAM, and
an NVIDIA GeForce RTX 3090 Ti GPU with 24 GB of VRAM. PyTorch version 2.0.0 and
Python version 3.8.5 are employed.

Table 2. Experimental configuration.

Name Configure

Operating System Linux
CPU Intel(R) Xeon(R) Gold 6130
GPU NVIDIA GeForce RTX 3090 Ti

GPU Memory 24 G
Programming language Python 3.8.5

Deep-learning framework Pytorch 2.0.0
Name Configure

4.3. Evaluation Indicators

To validate the model performance, various object detection evaluation metrics are
employed, including precision, recall, average precision (AP), and mean average precision
(mAP). Recall represents the model’s ability to retrieve all relevant instances, assess-
ing the model’s completeness in object detection, while precision evaluates the model’s
accuracy in predicting positives. The formulas for precision and recall are shown in
Equations (8) and (9), respectively [47].

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

where TP denotes the number of true positives predicted by the model, FP represents the
number of false positives (actual negatives incorrectly predicted as positives), and FN rep-
resents the number of false negatives (actual positives incorrectly predicted as negatives).

Using recall and precision for the same class as the horizontal and vertical axes,
respectively, the resulting curve is termed the precision–recall (P-R) curve. The area under
the P-R curve, bounded by the axes, represents the average precision (AP) for that class.
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The mAP is obtained by averaging AP values across all classes [48]. The formulas for
calculating AP and mAP are presented in Equations (10) and (11), respectively.

AP =
∫ 1

0
p(r)dr, (10)

mAP =
N

∑
i=1

APi/N (11)

where N represents the total number of classes in the training set, and i denotes the i-th
class. In this study, N is set to 10, as the number of classes in the VisDrone2019 dataset is 10.

5. Results
5.1. Ablation Experiments

To validate the performance gains brought by three optimization strategies—WIoUv3,
SPPF-LSKA, ASF-DySample, and iRBM-DRB—this study conducted the following ablation
experiments on the VisDrone2019 dataset. The experimental results are shown in Table 3.

Table 3. Ablation experiment results of modules on the VisDrone2019 dataset.

Models WIoUv3 SPPF-LSKA ASF-
DySample iRMB-DRB F1-Score Precision Recall mAP@50 Params/M

YOLOv8n 0.32 1 0.51 0.276 3.15
√ 0.33 1 0.51 0.279 3.15
√ √ 0.32 1 0.51 0.280 3.43
√ √ √ 0.33 1 0.51 0.281 3.31
√ √ √ √ 0.35 1 0.52 0.312 3.14

Across all improvements of the YOLOv8n model, precision remains consistently high
at 1, indicating minimal false-positive predictions. The F1-score shows a slight variation
ranging from 0.32 to 0.35, suggesting a stable overall performance.

Recall also exhibits consistency, hovering around 0.51 to 0.52, indicating the model’s
ability to capture a significant portion of positive instances. Notably, the mean average
precision (mAP@50) demonstrates a gradual improvement from 0.276 in the baseline
YOLOv8n model to 0.312 in the fully modified iteration. YOLOv8n-WIoUv3 introduces
the WIoUv3 component, resulting in a marginal increase in F1-score, recall, and mAP@50
compared to the baseline.

Further enhancements with SPPF and LSKA contribute to a minor improvement in
mAP@50. Additional modifications with ASF and dynamic sampling lead to a slight boost
in mAP@50. The incorporation of iRMB and DRB yields the most significant improve-
ment in mAP@50, reaching 0.312. The progressive inclusion of enhancements results in
incremental improvements in object detection performance. Finally, the last iteration incor-
porating iRMB and DRB achieves the highest mAP@50 score, indicating the effectiveness
of these modifications in refining the model’s accuracy. And it is noted that the number of
parameters of YOLO-DroneMS obtained after the improvement is slightly lower than that
of YOLOv8.

5.2. Comparison of Models

To validate the effectiveness of the proposed method, this study utilized the YOLOv8n
model as the baseline algorithm and conducted comparative experiments, including SSD,
Faster R-CNN, Cascade R-CNN, YOLOv3, and YOLOv5 for validation, as shown in Table 4.
It presents a comparative analysis of various models’ performance on the VisDrone2019
dataset, focusing on different object categories, including pedestrian, people, bicycle, car,
van, truck, tricycle, awning-tricycle, bus, and motor, along with the metrics mAP@50
and FPS.
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Table 4. Results of different models on the VisDrone2019 dataset (%). mAP@50 and FPS are metrics
(The bold denotes the best effect and highlights the algorithm we proposed).

Models Pedestrian People Bicycle Car Van Truck Tricycle Awning-
Tricycle Bus Motor mAP@50 FPS

SSD [49] 0.027 0.023 0.002 0.298 0.062 0.056 0.018 0.012 0.215 0.031 0.074 9.6
Faster R-CNN [50] 0.187 0.090 0.063 0.666 0.335 0.238 0.126 0.100 0.478 0.171 0.246 14.5

Cascade
R-CNN [13] 0.166 0.072 0.066 0.677 0.362 0.255 0.133 0.103 0.491 0.169 0.249 9.3

YOLOv3 [51] 0.069 0.041 0.023 0.442 0.136 0.171 0.046 0.051 0.374 0.071 0.142 40.1
YOLOv5 [52] 0.222 0.138 0.057 0.650 0.213 0.178 0.071 0.084 0.457 0.203 0.227 68.9
YOLOv7 [53] 0.179 0.0974 0.0448 0.618 0.272 0.26 0.0935 0.111 0.433 0.185 0.229 66.1

YOLOv8n [23] 0.226 0.117 0.065 0.670 0.305 0.337 0.143 0.149 0.518 0.225 0.276 78.7
RT-DETR [54] 0.0773 0.0347 0.0171 0.386 0.179 0.172 0.0489 0.0633 0.306 0.078 0.248 73.7
YOLOv9 [55] 0.207 0.108 0.0517 0.643 0.287 0.291 0.107 0.123 0.472 0.211 0.25 80.8

Ground DINO
1.5 [56] 0.215 0.092 0.061 0.627 0.279 0.296 0.102 0.137 0.456 0.208 0.262 73.1

YOLOv10 [57] 0.19 0.125 0.059 0.63 0.271 0.262 0.0883 0.119 0.453 0.199 0.243 78.3
YOLO-DroneMS 0.330 0.262 0.069 0.744 0.369 0.265 0.203 0.106 0.423 0.351 0.312 83.3

Firstly, existing models like SSD and YOLOv3 demonstrate relatively lower precision
across most classes compared to more advanced architectures such as Faster R-CNN,
Cascade R-CNN, YOLOv5, YOLOv7 [53], YOLOv8n (Figure 1), and the latest models (RT-
DETR [54], YOLOv9 [55], Ground DINO 1.5 [56], and YOLOv10 [57]). While Faster R-CNN
and Cascade R-CNN exhibit competitive performance, particularly in detecting cars and
related vehicles, they still show limitations in accurately identifying smaller objects like
tricycles and awning-tricycles.

Secondly, YOLOv5 and YOLOv8n represent advancements in object detection, offering
improved precision across multiple classes compared to their predecessors. However, they
still struggle with certain object classes, such as tricycles and buses. SSD achieves an
mAP@50 score of 0.074, indicating relatively lower overall performance, but Faster R-CNN
demonstrates an mAP@50 score of 0.246, showing improved performance compared to SSD.
The Cascade R-CNN slightly outperforms Faster R-CNN with an mAP@50 score of 0.249.
Considering the YOLO series models, YOLOv3 shows a moderate performance with an
mAP@50 score of 0.142, YOLOv5 exhibits competitive performance with an mAP@50 score
of 0.227, and YOLOv8n shows further improvement with an mAP@50 score of 0.276, noting
that the latest models RT-DETR and YOLOv9 do not substantially improve in mAP@50.
Then, the improved model achieves the highest mAP@50 score of 0.312, indicating superior
overall performance compared to the other models.

Thirdly, the final model achieves the highest mAP@50 score of 0.312, indicating its
superior overall performance compared to the other models (Figure 10). Remarkably, the
proposed model outperforms all other models across the board. It achieves significantly
higher precision in detecting pedestrians, people, cars, and other objects, as evidenced
by its superior performance in almost all object classes. The superior performance of
the improved model suggests better robustness to variations in object size, orientation,
and occlusion within the VisDrone2019 dataset. This robustness is particularly crucial in
real-world scenarios where objects may vary significantly in appearance and context.

The inference speed of YOLOv8-DroneMS far surpasses that of the other models,
including the latest SOTAs-Ground DINO 1.5 and YOLOv10, on mAP@50 and speed. For
the top-performing YOLOv8n and YOLOv9, our model exhibits a significant improvement,
being 5.8% faster than YOLOv8n and 2.7% faster than YOLOv9.

Finally, the confusion matrices generated by YOLOv8n and the YOLOv8-improved
model are illustrated in Figure 11 below.
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and 7%, respectively.

The optimal model demonstrates a significant improvement in classification accu-
racy while reducing classification confusion. Particularly, the recognition accuracy for the
“pedestrian” class shows the most notable enhancement, with an increase of 9%. Addi-
tionally, the “people” and “car” classes have improved by 8% and 7%, respectively. There
is a general advancement in classification accuracy across other classes as well, with the
“car” class achieving the highest classification accuracy of 70%, while the “bicycle” class
exhibits the lowest at only 4%. This disparity reveals the model’s recognition preference for
different categories.

Regarding the identification of small objects such as “motor”, the baseline YOLOv8n
model achieves a classification accuracy of only 19%, with a 14% probability of misiden-
tifying “motor” as “bicycle”. However, through optimization in our optimal model, the
recognition accuracy for “motor” increases to 25%, representing a 6% improvement over
YOLOv8n. YOLO-DroneMS notably enhances the accuracy of drones in identifying pedes-
trians, vehicles, and other small objects.

5.3. Visualization

In order to test the actual effectiveness of drone object detection, the following vi-
sualized heatmap analysis is conducted. As shown in Figure 12, SSD and Cascade are
not focused enough on target recognition and exhibit significant missed detection cases.
Faster R-CNN shows some improvement, but the performance is not as good as YOLOv5s,
which is not sensitive enough to pedestrian targets. Ultimately, YOLOv8 and the proposed
YOLO-DroneMS in this paper show better performance, with YOLO-DroneMS showing
a slight improvement in target confidence compared to YOLOv8 and also demonstrating
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better accuracy in detecting distant targets than YOLOv8. Compared to the latest SOTA
like YOLOv10, YOLO-DroneMS has a clearer recognition of small and dense targets at the
far end.
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In summary, the YOLOv8-improved model not only enhances overall classification
accuracy but also specifically optimizes the recognition capability for small objects, marking
a significant advancement for complex drone vision tasks.

5.4. Generalization Experiments

In order to thoroughly validate the effectiveness and robustness of the proposed
method, this study conducted a comparative verification on the private remote-sensing
dataset named RiverInspect-2024. And the next practical application of YOLO-DroneMS
model is considered for a river drone-inspection project, where UAV object models are de-
ployed for engineering monitoring during the construction phase of hydraulic engineering
projects, as well as river monitoring during the operational phase of hydraulic engineering.
This dataset comprises a total of 7182 images, randomly and evenly split into 5013 for
the training set, 1441 for validation set, and 728 for testing set. And there are four object
classes including stag-water, transportation boat, spoil, and garbage, as shown in Figure 13.
When selecting the same reference size, stag_water represents large-sized target objects,
g_garbage is biased towards medium-sized target objects, while trans_boat and spoil are
biased towards small-sized target objects.
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Figure 13. Statistical plot of the classes in the RiverInspect-2024 dataset.

The RiverInspect-2024 dataset encompasses both regularly shaped ship objects and
irregularly shaped objects such as accumulated garbage, spoil, and pooled water objects.
Recognizing irregularly shaped targets poses significant challenges due to variations in ob-
ject colors, weather conditions during capture, and diverse backgrounds. Specific examples
of UAV aerial photography effects and detection are shown in Figure 14.

Using RiverInspect-2024 as the dataset for the generalization test, the final comparison
results of each model are shown in Table 5.
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Table 5. Experiment results of models on the RiverInspect-2024 dataset (The bold denotes the best
effect and highlights the algorithm we proposed).

Models Precision Recall mAP@50

SSD [49] 0.867 0.849 0.876

Faster R-CNN [50] 0.623 0.825 0.761

Cascade R-CNN [13] 0.67 0.771 0.741

YOLOv3 [51] 0.851 0.713 0.783

YOLOv5 [52] 0.855 0.854 0.892

YOLOv7 [53] 0.865 0.831 0.88

YOLOv8n [23] 0.834 0.845 0.896

RT-DETR [54] 0.855 0.843 0.899

YOLOv9 [55] 0.848 0.819 0.888

Ground DINO 1.5 [56] 0.839 0.832 0.881

YOLOv10 [57] 0.846 0.839 0.896

YOLO-DroneMS 0.893 0.843 0.906

The mAP@50 for YOLO-DroneMS is 0.906, which is the highest value in all models,
which reflects the overall performance of the model in object detection tasks, showing
that YOLO-DroneMS excels in accurately detecting objects with high confidence levels. At
the same time, it is noted that compared with the advanced models (RT-DETR, YOLOv9,
Ground DINO 1.5, and YOLOv10), YOLO-DroneMS still has certain advantages, indicating
that it is highly competitive in UAV target detection. And the performance on the private
dataset shows that YOLO-DroneMS has a certain robustness.

6. Conclusions and Discussion

This study explores the distribution of objects in the VisDrone dataset, focusing on
UAV detection scenarios. On the Visdrone dataset, model improvement and optimization
are conducted based on the YOLOv8 baseline. This optimization effectively increases the
model’s receptive field, enhancing its capability for UAV detection tasks. Firstly, this study
proposes the LSKA mechanism to SPPF, and weighted processing of multi-scale feature
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maps is performed, which allows the model to focus more on features relevant to the
target, thereby enhancing detection accuracy. For the neck, ASF-DySample introduces
attention scale sequence fusion and dynamic upsampling to enhance the fusion of high-
dimensional information from deep feature maps with detailed information from shallow
feature maps. Then, the C2f structure is optimized using iRMB-DRB, which balances the
advantages of dynamic global modeling and static local information fusion, making it easier
to capture fine details and contextual information from UAV images. Finally, replacing
the original CIoU with WIoUv3 makes the YOLO-DroneMS focus on anchoring boxes
of standard quality, dynamically optimizing the weighting for small objects to improve
detection performance.

YOLO-DroneMS also achieves the best performance on the private dataset in general-
ization experiments.

UAV object detection faces several challenges and issues in practice, including: 1. Small
target detection: Small objects may be difficult to accurately detect due to factors such as
low resolution and low contrast. 2. Target occlusion and dense scenes: In dense scenes,
occlusion between objects may occur, resulting in some targets being occluded by others. 3.
Variations in lighting and weather conditions: UAVs capture images under different lighting
and weather conditions, such as shadows, direct sunlight, or rainy and foggy weather,
leading to changes in the appearance and features of objects. 4. Real-time requirements:
Many applications require real-time UAV object detection, such as in monitoring and
emergency response fields.

Future research will utilize multi-scale features that can improve the detection ca-
pability for targets of different sizes, considering that the relationship and contextual
information between targets and their surroundings can enhance the detector’s ability to
handle occlusion and dense scenes and design lightweight model structures and algorithms
to reduce the computational and storage costs of models to enable efficient target detection
on resource-constrained UAV platforms.
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