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Abstract: The accurate detection of railway tracks from unmanned aerial vehicle (UAV) images is
essential for intelligent railway inspection and the development of electronic railway maps. Tradi-
tional computer vision algorithms struggle with the complexities of high-precision track extraction
due to challenges such as diverse track shapes, varying angles, and complex background information
in UAV images. While deep learning neural networks have shown promise in this domain, they
still face limitations in precisely extracting track line edges. To address these challenges, this paper
introduces an improved NL-LinkNet network, named NL-LinkNet-SSR, designed specifically for
railway track detection. The proposed NL-LinkNet-SSR integrates a Sobel edge detection module
and a SimAM attention module to enhance the model’s accuracy and robustness. The Sobel edge
detection module effectively captures the edge information of track lines, improving the segmentation
and extraction of target edges. Meanwhile, the parameter-free SimAM attention module adaptively
emphasizes significant features while suppressing irrelevant information, broadening the model’s
perceptual field and improving its responsiveness to target areas. Experimental results show that
the NL-LinkNet-SSR significantly outperforms the original NL-LinkNet model across multiple key
metrics, including a more than 0.022 increase in accuracy, over a 4% improvement in F1-score, and a
more than 3.5% rise in mean Intersection over Union (mIoU). These enhancements suggest that the
improved NL-LinkNet-SSR offers a more reliable solution for railway track detection, advancing the
field of intelligent railway inspection.

Keywords: deep learning; edge detection; railway track detection; attention mechanism

1. Introduction

Railway transportation plays a vital role in national economic growth, serving as a key
component of the transportation network. Precise railway track extraction is fundamental
for creating detailed electronic maps, maintaining smooth operations, and safeguarding
lives and property [1]. Traditionally, railway tracks have been inspected manually or
with specialized vehicles, but these methods are often inefficient and lack comprehensive,
high-frequency monitoring capabilities [2,3]. Manual inspections across extensive railway
networks are highly inefficient and labor-intensive. Moreover, optical sensors on inspection
vehicles often collect unsatisfactory data due to the loss of information details, adversely
affecting the accuracy of subsequent defect analysis and detection. With advancements in
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remote sensing and UAV technology, UAV inspections are increasingly utilized for the intel-
ligent detection of railway tracks, significantly enhancing the safety of high-speed railways.
Equipped with high-definition cameras, UAVs are able to efficiently collect data on rail-
way infrastructure without disrupting normal operations, thus improving both detection
accuracy and efficiency [4]. However, challenges remain due to the complex background
information in UAV images, the diversity of railway track shapes, and the variability of
shooting angles, which make high-precision extraction of track lines particularly difficult.

Traditional methods for railway track extraction often necessitate substantial prior
knowledge from researchers. Several studies have utilized models for track detection using
conventional computer vision algorithms [5,6]. However, these methods frequently misclas-
sify railway tracks due to their spectral similarities to other features such as buildings, fields,
water bodies, and parking lots. As a result, they often suffer from lower-than-expected
classification accuracy and issues related to extraction precision and robustness. Therefore,
it is essential that advanced detection algorithms be developed to improve the effectiveness
of UAV-based railway track inspections.

Traditional machine learning techniques play a key role in image feature detection;
techniques such as Scale-Invariant Feature Transform (SIFT) and Speeded-Up Robust Fea-
tures (SURF) provide robust solutions for detecting and describing local features in images
under varying conditions [7,8]. Histogram of Oriented Gradients (HOG) and Haar cascades
are also widely used in object detection as they capture shape information and rapidly
recognize features [9,10]. These methods have established the groundwork for detecting
features of railway tracks in UAV imagery. Deep learning has undergone rapid advance-
ments in recent years, significantly improving image recognition and object detection from
UAV imagery [11]. It is worth noting that the UAV benchmark study on object detection and
tracking has been instrumental in driving these advancements, establishing foundational
benchmarks and performance metrics for various applications of UAV-based visual sys-
tems [12,13]. This progress extends to various applications, including road extraction [14],
lane detection [15], railway foreign body detection [16], rail surface defect inspection [17],
and crop row detection and guidance system [18,19]. Deep learning-based methods for
detecting railway tracks from high-resolution UAV imagery offer notable advantages over
traditional approaches. They require less prior knowledge, reduce researchers’ workload,
and more effectively handle the complex environments encountered in railway track ex-
traction. These methods have already been employed in extracting railway tracks from
UAV imagery and in creating electronic railway maps [20,21].

Given the similarities between road extraction and railway track detection, methods
developed for road extraction are also effective for railway track detection using UAV
imagery. These methods identify the network structure of roads or railways in high-
resolution remote sensing images (with a resolution of 0.5 to 1 m), sourced from unmanned
aerial vehicle (UAV) remote sensing and satellite remote sensing platforms, by recognizing
multi-scale features. Unlike unsupervised learning, which often relies on color-based
segmentation, deep learning techniques utilize a range of features, including texture,
geometric shapes, and line patterns, to extract roads [22]. Currently, many road detection
algorithms for high-resolution remote sensing data utilize deep neural network models
based on encoder-decoder structures such as FCN, UNet, and DeepLabV3+. Researchers are
continually optimizing network architectures, objective functions, and training strategies
to achieve more precise road segmentation.

Research on road extraction focused on enhancing backbone networks, context infor-
mation extraction, and attention mechanisms. Convolutional neural networks (CNNs), as
a foundational deep learning architecture, significantly contribute to road segmentation.
For example, Tao et al. proposed the Seg-Road model, which combines Transformer and
CNN techniques for road extraction from remote sensing images [23]. Similarly, Qiu L
developed the Semantic Geometry Network (SGNet), which uses dual-branch backbones to
extract roads from high-resolution images [24]. Unlike CNN models that use dense layers
to generate fixed-length feature vectors and require fixed-size images, Fully Convolutional
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Networks (FCNs) employ interpolation layers to upsample feature maps, allowing them
to restore the input size and process images of any dimension. Varia et al. utilized the
FCN-32 network to segment road sections from ultra-high-resolution UAV imagery [25],
while Kestur et al. developed a novel U-shaped FCN (UFCN) specifically designed for road
extraction from UAV images [26]. Zhu et al. introduced the Global Context-Aware and
Batch-Independent Network (GCB-Net) for this purpose [27]. In GCB-Net, Global Context-
Aware (GCA) blocks within the encoder enhance the capture of global spatial relationships,
while multi-parallel unfolding convolutions enable the extraction of multi-scale road fea-
tures, thereby improving the model’s overall efficacy and connectivity of road topology.
Additionally, Dai L et al. introduced the Road-Enhanced Deformable Attention Network
(RADANet), which leverages road shape priors and deformable attention mechanisms to
extract road information from high-resolution images. This method effectively captures
semantic shape information and long-range dependencies between road features [28].

Despite the substantial advancements in road segmentation through deep learning,
the application of these methods to railway track extraction poses several challenges. Ex-
isting models often necessitate enhanced edge detection accuracy for track lines and face
difficulties with the linear structural characteristics of railway tracks. Deep learning-based
pixel-level feature extraction may introduce noise, gaps, or discontinuities, and these mod-
els fail to adapt to variations in the tilt angles of railway tracks in UAV imagery, which
reduces segmentation accuracy. Additionally, deep neural networks are often computa-
tionally inefficient due to their multiple layers and extensive parameter sets. Another
challenge is the absence of specialized training datasets specifically designed for railway
track extraction.

To address these challenges, this paper introduces an improved NL-LinkNet deep
learning network, termed NL-LinkNet-SSR, specifically designed for extracting railway
tracks from UAV aerial images [29]. This network provides a robust solution for the
automated extraction of railway track lines. Building on the conventional NL-LinkNet
architecture, the model integrates a Sobel edge detection module and a parameter-free
SimAM attention mechanism. These enhancements markedly enhance the network’s ability
to detect railway track edges, thus increasing the precision and reliability of the track
extraction process. The key contributions of this study include:

(1) The encoder integrates Sobel edge detection modules and non-local blocks to
effectively extract edge information of railway tracks from the input images and incorporate
it with the original feature maps. This integration improves the network’s edge perception
capabilities, enabling the model to capture fine details and contextual information about
the railway tracks, thus improving extraction accuracy and robustness.

(2) The decoder incorporates the SimAM attention mechanism, which is applied to
the output feature maps of each decoder block. This results in weighted feature maps that
emphasize the railway track regions, selectively amplifying the feature responses in these
areas. The parameter-free nature of SimAM ensures high computational efficiency without
the need for additional learning parameters.

(3) A new dataset consisting of 12,130 high-resolution railway track images and their
corresponding label images has been developed, providing a valuable data resource for
railway track extraction from UAV images.

The remainder of this paper is organized as follows: Section 2 reviews related work
on deep learning-based railway track extraction methods. Section 3 introduces the exper-
imental data from UAV images, the algorithm framework for track extraction, and the
network structure. Section 4 describes the experimental setup and evaluation metrics.
Section 5 presents a detailed analysis of the experimental results, including comparisons of
different models and ablation studies. Finally, Sections 6 and 7 provide the discussion and
conclusions, respectively.
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2. Related Work

Tong et al. [20] introduced a novel anchor-adaptive dual-branch architecture (DBA)
called ARTNet, based on the Progressive Learning Detector (PLD), for railway track detec-
tion from UAV aerial images, which significantly enhances the robustness of railway track
extraction. Several railway track extraction frameworks utilize an encoder-decoder struc-
ture to integrate multi-layer features of convolutional neural networks (CNNs), effectively
leveraging multi-scale information across different semantic levels. For example, Mammeri
et al. [30] employed a U-Net network with an encoder-decoder structure to extract railway
areas from drone images. Similarly, Weng et al. [31] proposed an improved method for
railway track extraction using the DeepLabV3+ model, which effectively eliminated errors
such as holes and spots in the extracted track lines through the use of morphological
algorithms. Additionally, Weng et al. [21] developed an enhanced D-LinkNet convolu-
tional neural network that integrates a specifically designed edge detection module to fuse
multi-level features, thereby improving the model’s ability to segment and extract track
edges. Tu et al. [32] proposed the RT-GAN framework, based on a generative adversarial
network structure, for precise railway track segmentation in drone images. Despite these
advancements in railway track area extraction and railway object recognition, there has
been no research specifically targeting the extraction of railway track lines from UAV im-
ages. Furthermore, current methods still exhibit limitations in accuracy and robustness
when extracting railway track lines, especially in scenes with varying tilt angles and com-
plex background noise. This underscores the need for a railway track detection method
that is better suited to such challenging conditions.

3. Dataset and Methodology

The algorithmic framework outlined in this paper is depicted in Figure 1, which
significantly enhances the detection of railway tracks from aerial images captured by
drones. The core innovation lies in the advanced adaptation of the NL-LinkNet network,
which now incorporates a Sobel edge detection module and a SimAM attention mech-
anism residual module [31]. These enhancements are specifically designed to improve
the network’s sensitivity to railway track features, which is a critical aspect for achieving
higher precision in identifying and delineating these structures from high-resolution drone
imagery. Initially, high-resolution images of ground railway tracks were captured using
drone aerial photography, and corresponding labeled images were generated. Data aug-
mentation techniques were applied to enhance model training. The NL-LinkNet network
was subsequently enhanced through the integration of an edge detection module and a
SimAM attention mechanism residual module [33], aimed at improving the model’s ability
to identify railway track features. The upgraded NL-LinkNet network was then utilized
for training and testing to further assess the accuracy of the model’s predictions. Finally,
comparative experiments and ablation studies were conducted to validate the effectiveness
and advantages of the model.

3.1. UAV Data Preprocessing and Datasets Introduction

This dataset was acquired through aerial photography with DJI (Da-Jiang Innovation)
drones, specifically using the DJI Matrice 300 RTK model equipped with a Zenmuse P1
camera, covering specific railway lines in Qingdao and Nanjing, China. The drone operates
at a typical altitude of 150 m with a pixel size of 4.4 µm and a 35 mm lens, resulting in a
Ground Sample Distance (GSD) of 15.08 cm, which ensures detailed and precise imagery
for analysis. This task includes 214 high-resolution images, each with a resolution of
8192 × 5460 pixels at 96 dpi, totaling approximately 49.33 GB. The images were captured
along a predetermined linear flight path at regular intervals, which introduced some
redundancy in the railway information.
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Images containing railway tracks were specifically selected to ensure complexity
and diversity, meeting the requirements for railway track line extraction tasks. These
images were initially preprocessed with Gaussian filtering to reduce noise. Using the
coordinate information from the drone images, track line points were calculated through
linear interpolation, and these points were connected to form lines, resulting in binarized
label images with the track lines. These label images were automatically generated using a
Python program.

For model training, the filtered images and corresponding binarized track line label
images were cropped using a sliding window algorithm, resulting in 12,130 image slices.
These slices were then split into a training set and a test set in a 9:1 ratio, where the test set
also served as a validation set. The original images and label images of part of the dataset
can be seen in Figure 2.
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3.2. Data Augmentation

Several data augmentation techniques were applied to the railway track image datasets
to enhance the model’s generalization and robustness. These methods included random ad-
justments of image hue, saturation, and brightness to simulate various lighting conditions,
with hue altered within a −60 to 60-degree range and saturation and brightness varied
between −50 and 50 units. Perspective transformations introduced variability through
random translations, scaling, and rotations, with shift limits from −0.7 to 0.7, scale limits
from −0.8 to 0.8, and rotation limits from −90 to 90 degrees [34]. Gaussian noise was
added with a variance limit ranging from 15 to 60 to simulate sensor noise and realistic
image acquisition conditions. Elastic transformations with parameters such as alpha of
120, a sigma of 6, and an alpha affine of 3.6 simulated natural scene distortions to aid the
model in adapting to local deformations. Coarse Dropout randomly created black patches
or holes, ranging from 2 to 8 holes of 8 × 8 to 16 × 16 pixels, in order to simulate occlusions.
Additionally, random horizontal and vertical flips and 90-degree rotations were employed
to further increase the diversity and robustness of the dataset against directional biases.
All these augmentations were implemented using the Albumentations library, ensuring
a robust and diverse set of images that trains the model to perform effectively under
varied conditions.

3.3. Algorithm Framework

The improved NL-LinkNet network architecture is illustrated in Figure 1. This frame-
work is based on a ResNet34 [35] encoder-decoder structure, designed to enhance feature
representation in railway track line segmentation tasks. The network incorporates non-local
attention modules in the third and fourth encoder layers to capture long-range dependen-
cies and global contextual information.

A Sobel edge detection module is also integrated into the network to extract edge
features of railway track lines from the images. The module is a key image processing
technique that calculates the gradient magnitude at each pixel to highlight areas where
intensity sharply changes, indicating edges or boundaries within the image. The Sobel
edge detection module uses horizontal and vertical Sobel filters for edge detection in both
orientations, applying them via convolutional operations to emphasize relevant intensity
changes. The combined edge maps from both directions create a comprehensive scene
depiction, further refined by a 1 × 1 convolution that adjusts channel dimensions to
match subsequent network layers. This integration within the deep learning framework
significantly enhances the model’s ability to detect railway tracks with high accuracy.
These edge features are then fused with the output from the first encoder layer through
a channel adjustment layer, thereby enhancing the model’s capability to extract detailed
track line features.
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Additionally, a SimAM attention module is appended to each decoder block to re-
fine feature representation through an adaptive mechanism. The module is an attention
mechanism that dynamically adjusts the focus of the neural network on important features
within an image. By computing attention scores based on the significance of each feature,
SimAM effectively directs the model’s computational resources towards areas of interest,
enhancing detection accuracy and efficiency. This method is particularly beneficial in
environments with variable and intricate backgrounds where distinguishing key features
from noise is critical.

After several convolutional layers and nonlinear activation functions, the network
produces high-precision segmentation results for railway track lines. By leveraging the
strong feature extraction capabilities of the ResNet34 network and incorporating these
enhancement modules, the architecture achieves superior performance in extracting railway
track lines from complex scenes.

3.3.1. Non-Local Attention Module

Nonlocal attention blocks (NLBs) are a key enhancement for convolutional neural
networks (CNNs), designed to capture long-range dependencies in feature maps [29,36].
Traditional CNNs often face limitations due to their restricted receptive fields, which
hinder their ability to reference distant spatial information. Nonlocal blocks overcome this
limitation by calculating the response at a given position as a weighted sum of features
from all positions in the input feature map. This approach allows each spatial point to
aggregate contextual information from the entire image, enhancing the network’s ability to
process and understand complex patterns that span large areas.

In railway track extraction, nonlocal operations provide significant benefits. High-
resolution satellite images of railway tracks may be obscured by shadows, trees, or build-
ings, making accurate detection challenging for conventional methods. By incorporating
the NLBs, models can leverage global information across the entire image, improving the
precision of track extraction even in the presence of such obstacles. The ability of nonlocal
blocks to compute a weighted sum across the entire feature map enables each spatial point
to gather contextual information from the whole image. This capability enhances the
model’s performance, as demonstrated by NL-LinkNet’s superior results in the DeepGlobe
Challenge, where it outperformed state-of-the-art models with fewer parameters and faster
training times.

The function of the nonlocal block can be described by the following equation:

yi =
1

C(x) ∑∀j f
(
xi, xj

)
g
(
xj
)

(1)

where yi is the output at position i, and xi and xj represent the input features at positions i
and j, respectively. The function f

(
xi, xj

)
computes the pairwise relationship (or affinity)

between features at positions i and j. C(x) is a normalization factor, typically set as
C(x) = ∑∀j f

(
xi, xj

)
. A common choice for f is the embedded Gaussian function:

f
(
xi, xj

)
= eθ(xi)

Tϕ(xj) (2)

where θ(xi) = Wθxi andϕ
(
xj
)
= Wθxj are linear embeddings, and the function g

(
xj
)
= Wgxj

is a linear embedding applied to the input features. The non-local block uses learnable
weights Wθ , Wϕ, Wg to transform the linear embeddings of the input features. Then, it cal-
culates the pairwise function of similarity between features using the embedded Gaussian
function. It aggregates features from all positions weighted by the calculated similarity and
adds the aggregated features back to the original input to form the output, maintaining
residual connections that preserve both local and global information.
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3.3.2. Edge Detection Module

The Sobel operator is a commonly used method for edge detection in image processing.
It utilizes two 3 × 3 kernels: one for detecting horizontal edges and another for detecting
vertical edges. These kernels convolve with the input image to approximate the gradients
in the horizontal and vertical directions. The gradient magnitude at each pixel is then
computed as the square root of the sum of the squares of these horizontal and vertical
gradients. In the model, the feature maps generated by the Sobel edge detection module
are concatenated with those from the first layer of the LB module in the encoder along the
channel dimension. This process enriches the model’s representation of the input image.

During implementation, the Sobel kernels are first transferred to the same GPU device
as the input tensor to ensure consistent computation. The input tensor is then padded using
reflection padding to handle boundary pixels and preserve edge information. Assuming
the input tensor x has dimensions (C, H, W), where C is the number of channels, H is the
height, and W is the width, the padded tensor dimensions become (C, H + 2, W + 2). The
Sobel operator, with its 3 × 3 kernel, is then applied in both the horizontal and vertical
directions to the input tensor, producing two edge maps that represent the horizontal and
vertical edge intensities. The convolved output tensor size remains (C, H, W) for both the
horizontal and vertical convolutions, thereby maintaining the same number of channels as
the input.

To compute the overall edge strength (gradient magnitude) for each pixel, the square
root of the sum of the squares of the horizontal and vertical edge maps is calculated. A
small epsilon (1e-8) is added to this calculation to avoid zero gradients. The resulting edge
strength is then maximized along the channel dimension while maintaining the original
spatial dimensions, resulting in a feature map of size (1, H + 2, W + 2). Finally, a 1 × 1
convolution layer is applied to adjust the channel dimensions of the edge map, ensuring
it matches the expected input size of the subsequent layers. This module effectively
converts the input image into an edge map, highlighting edges in both horizontal and
vertical directions, thereby providing crucial information for further railway track line
processing tasks.

3.3.3. SimAM Attention Mechanism

SimAM is a lightweight, parameter-free attention mechanism designed for convolu-
tional neural networks and is commonly used in visual tasks such as image classification,
object detection, and image segmentation [33]. Unlike traditional channel or spatial at-
tention modules, SimAM calculates three-dimensional attention weights for feature maps
directly within the inference layer without increasing the network’s parameter count. In-
spired by neuroscience principles, this module employs an energy function to evaluate the
importance of each neuron, thereby reducing model complexity and computational cost.
This approach enhances the representational capacity of convolutional neural networks,
leading to improved performance in visual tasks, such as railway track line extraction.

First, the module calculates the mean µ̂ and variance σ̂2 of the input feature map X.
The energy function for each neuron is defined as

e∗t =
4
(
σ̂2 + λ

)
(t − µ̂)2 + 2σ̂2 + 2λ

(3)

where µ̂ and σ̂2 are the mean and variance of the feature map, respectively, and λ is a
predefined coefficient. This equation indicates that a lower energy value e∗t signifies a more
important neuron for visual processing. Consequently, the importance of each neuron can
be determined by 1

e∗t
. The squared difference (d) between each feature and the mean is then

calculated and normalized by the adjusted variance term (v), given by v = d.sum(dim=[2,3])
n ,

where n is the number of elements minus one. The inverse of the energy function Einv
is computed as Einv = d

4(v+λ)
+ 0.5. Finally, the attention map is generated by applying
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a sigmoid function to the inverse energy values and refining the feature map by scaling,
X̃ = sigmod

(
1
E

)
·X.

4. Experiments
4.1. Implementation Details

The experiments were conducted on a Windows 11 operating system, utilizing an
NVIDIA RTX 4090 graphics card with 24 GB of VRAM and CUDA version 11.2. The PyTorch
framework was used for model training. Several optimization algorithms, including
SGD, RMSprop, Adam, and AdamW, were tested during the experiments. AdamW was
ultimately chosen due to its superior performance in terms of faster convergence, improved
training stability, and better generalization. SGD showed slower convergence on complex
data, while RMSprop and Adam offered adaptive learning but occasionally led to instability
or overshooting. AdamW, by decoupling weight decay from the optimization process,
provided faster convergence and better generalization and was proven to be the most stable
and effective optimizer in our experiments [37]. A batch size of 8 was chosen to balance
computational efficiency and memory usage. The initial learning rate was set to 2e-5, and a
weight decay of 1e-4 was applied to mitigate overfitting. A learning rate decay strategy
was employed using the ReduceLROnPlateau scheduler, which reduced the learning rate
by a factor of 0.8 after 10 consecutive epochs without improvement in validation loss. The
model was trained for 100 epochs to ensure thorough learning and convergence.

4.2. Loss Function

The loss function used in this study for railway track line detection is a combination
of Dice loss and Focal loss, referred to as Dice Focal Loss [38]. This hybrid loss function
effectively addresses the significant class imbalance between positive and negative samples
in the dataset.

Dice loss measures the overlap between predicted and true binary masks [39], with a
focus on accurately predicting positive samples. It is computed using the Dice coefficient.
The Dice loss is given by:

D f = 1 −
2 ∑ ytrueypred + ϵ

∑ ytrue + ∑ ypred + ϵ
(4)

where ytrue and ypred are the ground truth and predicted binary masks, respectively, and ϵ
is a small constant to prevent division by zero.

The Focal loss is utilized to further mitigate the issue of class imbalance by focusing
more on hard-to-classify samples [40]. It modifies the standard binary cross-entropy loss by
introducing a modulating factor that decreases the loss contribution from easy examples
and increases it for hard examples. The Focal loss is defined as:

F = −α(1 − pt)
γ log(pt) (5)

where pt is the predicted probability of the true class, α is a balancing factor, and γ is a
focusing parameter that adjusts the rate at which easy examples are down-weighted.

By combining these two loss functions, the Dice Focal Loss effectively harnesses
the strengths of both, providing robust performance in handling class imbalance and
improving the model’s ability to accurately detect railway tracks. The overall loss function
is expressed as:

DF = D f + F (6)

4.3. Evaluation Metrics

In this study, several evaluation metrics were employed to assess the performance of
the railway track line detection model, including accuracy, mean Intersection over Union
(mIoU), precision, F1-score, recall, and the kappa coefficient. These metrics provide a



Drones 2024, 8, 611 10 of 21

comprehensive evaluation of the model’s effectiveness. All these indicators are derived
from the confusion matrix. The definitions of each parameter in the confusion matrix are
presented in Table 1.

Table 1. Confusion matrix diagram.

Prediction

Railway Track
Line

Non-Railway
Track Line Sum

Ground
truth

Railway track line TP FN TP + FN
Non-railway track

line FP TN FP + TN

Sum TP + FP FN + TN TP + TN + FP + FN

Accuracy measures the overall correctness of the model by calculating the ratio of
correctly predicted samples to the total number of samples. It is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (7)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives.

Mean Intersection over Union (MIoU) evaluates the average overlap between the
predicted and ground truth segments across all classes. It is calculated as:

MIoU =
1
N

N

∑
i=1

Ai ∩ Bi
Ai ∪ Bi

(8)

where N is the number of classes, Ai is the predicted set for class i, and Bi is the ground
truth set for class i.

Recall (or sensitivity) calculates the proportion of true positive predictions among
all actual positive samples, reflecting the model’s ability to detect positive samples. It is
given by:

Recall =
TP

TP + FN
(9)

F1-score is the harmonic mean of precision and recall, providing a single metric that
balances both precision and recall. It is defined as:

F1−score = 2 × Precision·Recall
Precision + Recall

× 100% (10)

Kappa coefficient (Cohen’s kappa) measures the agreement between the predicted
and ground truth labels, adjusted for the agreement occurring by chance. It is calculated as:

κ =
p0 − pe

1 − pe
(11)

where p0 is the observed agreement ratio, and pe is the expected agreement by chance.

p0 =
TP + TN

TP + TN + FP + FN
(12)

pe =
(TP + FP)× (TP + FN) + (TN + FP)× (TN + FN)

(TP + TN + FP + FN)2 (13)
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5. Results and Analysis
5.1. Visualization of Railway Track Lines Extraction

The visualization results of the railway track line extraction are presented in Figure 3.
These results demonstrate the model’s strong generalization capability on the railway
tracks dataset. It is clear that the proposed model effectively identifies railway track line
regions across various angles and complex backgrounds. The model robustly identifies and
segments railway track lines, effectively differentiating them from diverse environments,
including snowy conditions, urban clutter, and amidst foliage. This is evidenced by the
distinct contrast between the original images and the processed results, where track lines
are prominently highlighted. These examples highlight the model’s strong generalization
capability across a broad range of scenarios, affirming its adaptability to different railway
track orientations and environmental conditions. The implementation of the Sobel edge
detection module, combined with the SimAM attention mechanism, enhances the model’s
sensitivity to subtle edge details, crucial for accurate track delineation in complex scenes.
Furthermore, the inclusion of NLBs in the model architecture allows it to capture and utilize
global contextual information, thus enabling the model to maintain performance even
when local visual information is compromised by occlusions or blending with background
textures. This advanced integration of NLBs with edge detection and attention mechanisms
proves particularly effective in scenarios where track lines are obscured or blend with
backgrounds of similar textures. It demonstrates the model’s superior feature extraction
capabilities and robustness, ensuring reliable track detection even under challenging real-
world conditions.

Drones 2024, 8, x FOR PEER REVIEW 12 of 22 
 

 

Figure 3. Railway track line extraction results based on the improved NL-LinkNet model (NL-

LinkNet-SSR). 

To demonstrate the effectiveness and robustness of the method in extracting railway 

track lines, the model’s performance was compared against four other network models: 

NL-LinkNet, DeepLabv3+, U-Net, and FCN. All experiments were conducted under iden-

tical conditions using the same dataset to ensure fairness and objectivity. The results of 

different models in railway track line extraction are illustrated in Figure 4. 

The NL-LinkNet model shows relatively accurate track line extraction but exhibits 

deviations and broken lines, especially in the first and third images, where the continuity 

of the extracted lines is compromised. The DeepLabv3+ model performs well in capturing 

most railway lines accurately, but there are minor inconsistencies, particularly in the first 

and third images, where the lines are not as precise as the ground truth. The U-Net model 

struggles with accurately extracting railway lines, displaying noticeable gaps and noise, 

especially in the first, second, and fourth images. The FCN model has difficulty maintain-

ing the continuity of railway lines, resulting in significant gaps and misdetections, espe-

cially in the first, third, and fourth images. In contrast, the proposed method outperforms 

the other models, delivering the most accurate and continuous railway track line extrac-

tions. The extracted lines closely match the ground truth with minimal deviations and 

noise, demonstrating the robustness and effectiveness of the proposed approach. Moreo-

ver, compared to the proposed method, the U-Net, DeepLabv3+, and FCN models often 

miss segments with similar colors and textures and struggle to extract smaller segments. 

These models perform poorly in extracting railway track lines, particularly in shadowed 

areas, due to insufficient feature learning when dealing with similar colors, textures, and 

shadows, leading to a loss of detail. 

Overall, the proposed method demonstrates superior performance in accurately ex-

tracting railway track lines compared to NL-LinkNet, DeepLabv3+, U-Net, and FCN. This 

highlights the effectiveness of the proposed improvements in enhancing the precision and 

reliability of railway track detection from UAV imagery. 

Figure 3. Railway track line extraction results based on the improved NL-LinkNet model (NL-
LinkNet-SSR).

To demonstrate the effectiveness and robustness of the method in extracting railway
track lines, the model’s performance was compared against four other network models: NL-
LinkNet, DeepLabv3+, U-Net, and FCN. All experiments were conducted under identical
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conditions using the same dataset to ensure fairness and objectivity. The results of different
models in railway track line extraction are illustrated in Figure 4.
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Figure 4. Comparative analysis of railway track line extraction results from different models.
(a) UAV imagery; (b) ground truth; (c) NL-LinkNet; (d) Deeplabv3+; (e) U-Net; (f) FCN; and
(g) The proposed method.

The NL-LinkNet model shows relatively accurate track line extraction but exhibits
deviations and broken lines, especially in the first and third images, where the continuity
of the extracted lines is compromised. The DeepLabv3+ model performs well in capturing
most railway lines accurately, but there are minor inconsistencies, particularly in the first
and third images, where the lines are not as precise as the ground truth. The U-Net model
struggles with accurately extracting railway lines, displaying noticeable gaps and noise,
especially in the first, second, and fourth images. The FCN model has difficulty maintaining
the continuity of railway lines, resulting in significant gaps and misdetections, especially
in the first, third, and fourth images. In contrast, the proposed method outperforms the
other models, delivering the most accurate and continuous railway track line extractions.
The extracted lines closely match the ground truth with minimal deviations and noise,
demonstrating the robustness and effectiveness of the proposed approach. Moreover,
compared to the proposed method, the U-Net, DeepLabv3+, and FCN models often miss
segments with similar colors and textures and struggle to extract smaller segments. These
models perform poorly in extracting railway track lines, particularly in shadowed areas,
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due to insufficient feature learning when dealing with similar colors, textures, and shadows,
leading to a loss of detail.

Overall, the proposed method demonstrates superior performance in accurately ex-
tracting railway track lines compared to NL-LinkNet, DeepLabv3+, U-Net, and FCN. This
highlights the effectiveness of the proposed improvements in enhancing the precision and
reliability of railway track detection from UAV imagery.

Table 2 presents the quantitative extraction metrics for railway track lines on the test
set. The proposed model achieved the best performance with an accuracy (Acc) of 98.2%, an
F1 score of 74.9%, a mean Intersection over Union (mIoU) of 65.3%, and a Kappa coefficient
of 84.1%. The F1 score, which is the weighted average of precision and recall, serves as an
objective measure of the model’s performance. The model’s F1 score of 74.9% outperforms
the other models, with DeepLabv3+ following closely at 72.8%, which is 2.1% lower than
the proposed model. In contrast, the FCN model performed the least effectively, with an F1
score of only 66.3%, which is 8.6% lower than the proposed model.

Table 2. The evaluation metrics of proposed and comparative models on railway track
extraction tasks.

Method Accuracy F1-Score mIoU Recall Kappa

NL-LinkNet 0.960 0.706 0.618 0.733 0.810
DeepLabv3+ 0.974 0.728 0.636 0.762 0.842

UNet 0.959 0.694 0.603 0.745 0.740
FCN 0.964 0.663 0.595 0.727 0.768

Proposed 0.982 0.749 0.653 0.780 0.841

To validate the performance of the proposed method in railway track line extraction,
the training loss convergence process of different models on the railway dataset was visual-
ized. During training, the training loss typically decreases gradually, while the validation
loss, computed on data outside the training set, assesses the model’s generalization ability.
A decrease in both losses indicates effective learning by the model.

The training and validation loss curves for various models, shown in Figure 5, provide
insights into their performance and generalization capabilities over the training epochs.
All models exhibit a steady decrease in training loss, reflecting effective learning. However,
validation loss shows variability, highlighting the models’ ability to generalize to unseen
data. The NL-LinkNet (Figure 5a) and DeepLabv3+ (Figure 5b) models demonstrate a stable
decrease in training loss, with validation loss following a similar trend, suggesting good
generalization. However, the validation loss stabilizes at a higher value than the training
loss, indicating some degree of overfitting. The UNet (Figure 5c) and FCN (Figure 5d)
models also show a reduction in training loss but with more fluctuations in validation loss,
particularly in UNet, which may imply potential overfitting or sensitivity to the validation
set. Among all models, NL-LinkNet-SSR achieves the lowest training and validation losses,
indicating superior learning and generalization capabilities. The validation loss closely
tracks the training loss with a minimal gap, suggesting robust performance with less
overfitting.

Overall, NL-LinkNet-SSR exhibits the most promising results in minimizing both
training and validation losses, followed by NL-LinkNet and DeepLabv3+. UNet and FCN
show greater variance in validation loss, indicating potential challenges in generalization.
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5.2. Ablation Experiment

To validate the impact of the proposed modules and improvements on the perfor-
mance of the railway track detection network, ablation experiments were designed to
quantitatively evaluate track line extraction performance. The experiments were based on
the NL-LinkNet network, with two enhancements individually incorporated: the SimAM
attention mechanism and the Sobel edge detection module. This resulted in the NL-
LinkNet-SimAM and NL-LinkNet-Sobel networks, respectively. When both modules were
combined, the network was designated as NL-LinkNet-SSR. The experimental results for
these networks on the test dataset are presented in Table 3.

Table 3. The evaluation metrics of the ablation experiment on the railway track extraction task.

Method Accuracy F1-Score Miou Recall Kappa

NL-LinkNet 0.960 0.706 0.618 0.733 0.810
NLLinkNet-Sobel 0.971 0.718 0.620 0.758 0.824

NLLinkNet-SimAM 0.975 0.732 0.644 0.761 0.835
NL-LinkNet-SSR 0.978 0.749 0.653 0.780 0.841

The visual results of the ablation experiments are illustrated in Figure 6, highlighting
the differences in track line extraction performance among the various models. The base
NL-LinkNet model, as shown in Figure 6c, tends to miss or inaccurately detect track lines
in complex scenarios. Incorporating the Sobel edge detection module, resulting in the NL-
LinkNet-Sobel model, leads to noticeable improvements in the completeness and accuracy
of track line extraction, especially in identifying track line edges, as depicted in Figure 6d.
The NL-LinkNet-SimAM model, which includes the SimAM attention mechanism, further
enhances track line detection by improving focus on track lines and reducing false detec-
tions and omissions, particularly in complex backgrounds, as seen in Figure 6e. Finally,
the NL-LinkNet-SSR model, which combines both the Sobel edge detection and SimAM
attention mechanisms, demonstrates the best performance in track line extraction, almost
perfectly reconstructing the actual track lines with minimal false detections and omissions,
as shown in Figure 6f. This indicates that the combination of edge detection and attention
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mechanisms effectively enhances the model’s detection capabilities in complex scenarios,
significantly improving accuracy and completeness.
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Table 3 supports these visual observations with quantitative results from the ablation
experiments. The base NL-LinkNet model achieves an accuracy of 0.960 and an F1-Score of
0.706. Adding the Sobel edge detection module (NL-LinkNet-Sobel) improves all metrics,
with accuracy increasing to 0.971 and the F1-Score rising to 0.718. The incorporation of the
SimAM attention mechanism (NL-LinkNet-SimAM) further enhances performance, with
accuracy reaching 0.975 and an F1-Score of 0.732. The NL-LinkNet-SSR model, integrating
both modules, achieves the highest performance, with an accuracy of 0.978 and an F1-Score
of 0.749. These results highlight that combining both the Sobel edge detection and SimAM
attention mechanisms significantly enhances the model’s detection capabilities.

From the experimental results in Table 3 and Figure 6, it is evident that the NLLinkNet-
Sobel, NLLinkNet-SimAM, and NL-LinkNet-SSR models show significant improvements
across various metrics compared to the original NL-LinkNet model. Specifically, both the
SimAM attention mechanism and the Sobel edge detection module enhance prediction
accuracy to varying degrees.
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The SimAM attention mechanism adaptively highlights critical features, broadens the
perceptual field, and enhances responses in the target areas. This improvement leads to
a reduction in missed detections and enhances the model’s accuracy and robustness. In
contrast, the Sobel edge detection module enriches the image’s detailed features, minimizes
background interference, and emphasizes edge cues, thereby improving feature extraction.
This allows the model to better understand image structures and ultimately enhances
prediction accuracy.

Figure 7 presents the training and validation loss curves for different models. In
Figure 7a, the original NL-LinkNet model shows a rapid decrease in training loss during the
early stages, but the validation loss stabilizes and fluctuates significantly in the later stages,
indicating some degree of overfitting. In contrast, Figure 7b reveals that the NLLinkNet-
SimAM model achieves a significantly lower and more stable validation loss compared
to NL-LinkNet, suggesting that the SimAM attention mechanism effectively enhances the
model’s generalization ability. Similarly, Figure 7c shows that the NLLinkNet-Sobel model
demonstrates improvements in both training and validation loss, further verifying the
performance enhancement provided by the Sobel edge detection module. Finally, Figure 7d
illustrates that the NLLinkNet-SimAM-Sobel model performs the best among all models,
with the lowest training and validation losses. This indicates that the combination of the
SimAM attention mechanism and the Sobel edge detection module significantly enhances
the model’s overall performance.
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Figure 7. Training and validation loss curves for different models: (a) Original NL-LinkNet,
(b) NLLinkNet-SimAM, (c) NLLinkNet-Sobel, and (d) NL-LinkNet-SSR. The figures illustrate the
impact of different modules on the model’s training and validation loss convergence, highlighting
the benefits of incorporating SimAM and Sobel modules.

Overall, the experimental results show that the improved NLLinkNet model, in-
tegrating both the SimAM attention mechanism and the Sobel edge detection module,
outperforms all other models on key metrics, offering a more reliable solution for railway
track detection.
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6. Discussion
6.1. Enhancements and Limitations of the Improved NL-LinkNet Model

Through the Sobel edge detection module, the improved NL-LinkNet model more
accurately captures the edge features of the tracks, significantly enhancing its ability to
extract track edges. This allows the model to better identify and segment track lines, even
in complex backgrounds. Meanwhile, the SimAM attention mechanism adaptively em-
phasizes key features and expands the perceptual range, enhancing the responsiveness
of target areas. This reduces missed detections and improves both the accuracy and ro-
bustness of the model. In addition, the NL-LinkNet architecture was used as the baseline
for the railway track detection task due to its unique capabilities in handling complex,
linear structures across expansive spatial contexts. Unlike methods that focus narrowly on
localized regions, NL-LinkNet integrates spatial relationships on a broader scale, essential
for accurately detecting the continuous and interconnected nature of railway tracks. This
model employs non-local blocks (NLBs) to capture long-range dependencies within the
input data, ensuring that each spatial feature is considered in relation to the entire scene.
This global contextual awareness is crucial for distinguishing railway tracks from complex
backgrounds, where similar-looking features may lead to detection errors. Moreover, NL-
LinkNet is specially optimized for linear and elongated structures, providing significant
advantages over more generalized attentive models that may not adequately highlight
features pertinent to railway detection. Compared to other commonly used models such as
FCN, U-Net, and DeepLabv3, the improved NL-LinkNet model demonstrates significant
advantages across several key metrics, including accuracy, F1-Score, and MIoU. The supe-
rior performance is largely due to the SimAM attention mechanism’s ability to adaptively
emphasize important features after each encoder and the Sobel edge detection module’s
role in enriching edge detail features and reducing background interference.

However, due to the complexity of the background in the railway dataset, extracting
clear, continuous, and complete railway networks in complex and varying scenes remains a
challenge. Additionally, despite the significant advantages of the proposed model in various
complex scenarios, such as shadows and size changes, compared to the comparative models,
the overall performance improvement is still moderate. There remains a gap between the
model’s results and the precision of manual visual interpretation. In addition, there are
certain threats to validity in our approach. One key limitation is the reliance on dataset
quality, which can affect model generalization. Variations in lighting and background
conditions across different regions could lead to discrepancies in performance. Another
concern is the potential overfitting of the model to specific railway track patterns, although
various data augmentation techniques have been applied to increase diversity, such as
adding Gaussian noise, elastic transformations, and random flipping. The Sobel edge
detection module is specifically designed for linear structures. The model’s dependence on
detecting linear features may hinder its performance when encountering more complex and
non-linear railway track geometries. Future work could focus on expanding the dataset
and introducing further diversity in track shapes to improve generalization.

6.2. Comparative Analysis of Improved NL-LinkNet Model with Existing Methods

The improved NL-LinkNet model proposed in this paper introduces the Sobel edge
detection module and the SimAM attention mechanism, effectively enhancing railway track
detection performance. Compared to existing remote sensing railway track extraction meth-
ods, such as the improved DeepLabV3+ model, which focuses on utilizing MobileNetV3
and CARAFE for efficient up sampling and accurate segmentation [31], the proposed
approach emphasizes edge feature extraction to address the complexity of railway track
detection. While DeepLabV3+ optimizes overall track area segmentation, our model specif-
ically targets precise track line detection, ensuring higher accuracy in capturing track edges.
In contrast to Weng et al.‘s work, which uses an improved D-LinkNet model for detecting
railway track areas [21], this paper focuses on extracting finer railway track line details.
Weng’s approach is effective at segmenting broader track regions but may miss critical edge
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details, particularly in complex backgrounds. The integration of the Sobel edge detection
module ensures that fine edge features are captured, improving performance in scenar-
ios where accurate line extraction is crucial. ARTNet, with its dual-branch architecture,
provides full-angle detection [20], but the NL-LinkNet-SSR model focuses on robustness
in edge feature extraction, yielding higher accuracy and stability when faced with back-
ground noise and complex track shapes. Compared to the anchor-adaptive ARTNet, which
is designed to handle varying railway track angles through its dual-branch architecture,
the improved NL-LinkNet model demonstrates stronger global feature representation by
integrating NLBs. This allows each spatial feature point to reference all other contextual
information, enhancing the model’s ability to detect tracks in complex backgrounds where
track edges and textures may be similar to surrounding elements. Additionally, compared
to “Rethinking attentive object detection via neural attention learning,” the improved NL-
LinkNet model offers a unique advantage by focusing on holistic scene comprehension and
robust feature integration. While the neural attention learning approach focuses on dynam-
ically prioritizing salient features within an image, our NL-LinkNet model integrates these
features with non-local spatial relationships, providing a comprehensive understanding
of the scene. This capability is particularly effective in environments where traditional
attention mechanisms might overlook crucial interconnections of railway track features due
to their localized nature. The SimAM attention mechanism, applied after each encoder in
our model, further emphasizes important features while suppressing irrelevant background
information, thus improving detection accuracy and reducing false positives. Moreover,
the Sobel edge detection module enhances edge detail extraction, contributing to more
precise track detection.

This combination of NLBs, attention mechanisms, and edge detection gives our model
a clear advantage in handling diverse track shapes and challenging backgrounds, offering
a significant improvement over existing methods that leverage attentive object detection
primarily focused on localized areas.

7. Conclusions

To address the issues of missing and false detections in railway track detection us-
ing deep learning algorithms, this study proposes several improvements. A Sobel edge
detection module is introduced into the NL-LinkNet semantic segmentation network to
enhance edge segmentation performance. Additionally, the SimAM attention mechanism
is integrated to focus on important features, further improving the prediction accuracy of
the network model.

To overcome the challenge of limited railway track datasets, original UAV data was
collected using low-altitude drones and manually annotated to create a comprehensive
dataset. This dataset includes images of railway tracks captured under various environ-
mental conditions, such as different seasons and weather scenarios, which enhances the
model’s robustness and generalization capability.

The proposed model outperforms all others in railway track line extraction, achieving
top marks in F1-Score (0.982), MIoU (0.749), recall (0.653), and Kappa coefficient (0.841). It
excels in accurately detecting and localizing tracks in complex and variable environments,
demonstrating its effectiveness and reliability for practical applications. Compared to
DeepLabv3+ and the original NL-LinkNet, the proposed model shows a 0.82% improve-
ment in F1-Score and a 2.9% increase in MIoU over DeepLabv3+, as well as significant
enhancements of 2.20% in F1-Score and 4.30% in MIoU compared to NL-LinkNet. These
results highlight the model’s improved precision and robustness in challenging conditions.
The ablation studies reveal that the NL-LinkNet-SSR model, enhanced with the Sobel edge
detection module and the SimAM attention mechanism, provides notable performance
improvements in detecting railway tracks, thereby enhancing both the detection capabilities
and accuracy of the NL-LinkNet model.

However, while the improved algorithm enhances track detection accuracy, the ad-
dition of edge detection modules and attention mechanisms increases computational
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complexity. Despite these improvements, there remains considerable room for exploration
in future research. For instance, combining image enhancement techniques with multitask
learning methods could further improve model performance. Additionally, exploring one-
shot learning and data augmentation strategies could enhance the model’s effectiveness
on small sample datasets. Future research could also focus on designing lightweight net-
work models suitable for deployment on embedded devices or mobile platforms, thereby
expanding the range of practical applications. Furthermore, to address the challenges
encountered with our current methodologies, future efforts will focus on refining the model
and employing oblique photogrammetry to capture multi-angle UAV railway track images.
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