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Abstract: Celestial navigation is rarely seen in modern Uncrewed Aerial Vehicles (UAVs). The size
and weight of a stabilized imaging system, and the lack of precision, tend to be at odds with the oper-
ational requirements of the aircraft. Nonetheless, celestial navigation is one of the few non-emissive
modalities that enables global navigation over the ocean at night in Global Navigation Satellite
System (GNSS) denied environments. This study demonstrates a modular, low cost, lightweight
strapdown celestial navigation solution that is utilized in conjunction with Ardupilot running on
a Cube Orange to produce position estimates to within 4 km. By performing an orbit through a
full rotation of compass heading and averaging the position output, we demonstrate that the biases
present in a strapdown imaging system can be nullified to drastically improve the position estimate.
Furthermore, an iterative method is presented which enables the geometric alignment of the camera
with the Attitude and Heading Reference System (AHRS) in-flight without an external position input.
The algorithm is tested using real flight data captured from a fixed wing aircraft. The results from
this study offer promise for the application of low cost celestial navigation as a redundant navigation
modality in affordable, lightweight drones.

Keywords: UAV; navigation; celestial; strapdown; stellar; orbital; modular

1. Introduction

Celestial navigation is among the oldest forms of navigation in aviation [1]. The
abundance of salient stars, known to high levels of precision, make them a useful cue
for navigators when operating in clear conditions. The elevation of a star above the
horizon would be measured, yielding a ‘line of position’. This process was repeated with
different stars to fully determine the navigator’s position. The advancement of imaging and
computing hardware saw the integration of autonomous star trackers into manned aircraft,
as seen, for example, in Lockheed’s SR-71. These autonomous star trackers consisted of a
mechanically stabilized telescope and inertial sensors, whose observations, when combined,
could produce position estimates to within 0.3 nautical miles for up to 10 h of operation.
While accurate, these sensors tended to be both heavy and voluminous, making them
undesirable for more modern Size, Weight and Power Constrained (SWAP-C) applications.

By the advent of the 21st century, Global Positioning System (GPS) had become
ubiquitous in avionic navigation. The introduction of GPS caused the interest in celestial
navigation to wither due to its relative inaccuracy. Consequently, celestial navigation is
primarily seen only in space-based systems, whose orientation must be known to high levels
of precision. Nonetheless, celestial navigation was identified as a desirable alternative to
GPS [2], primarily due its robustness against potential jamming. Critically, few GPS-denied
alternatives exist that are capable of using passive sensors to estimate global position at
night or over the ocean. For this reason, celestial navigation remains an important topic of
research. The methodology presented in this paper demonstrates how celestial navigation
may be utilized on low cost Uncrewed Aerial Vehicles (UAVs) that lack the precision of an
expensive Attitude and Heading Reference System (AHRS).
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Existing works on strapdown celestial navigation tend to be focused on simulation.
One such example derives the equations for a celestial camera mounted directly to a
strapdown inertial system [3]. Similarly, a more recent study identified that a strapdown
celestial system is contingent on the initial conditions and will tend to diverge over time [4].
While some promise has been shown in the utility of such systems [5], the primary problem
with the navigation method is that the strapdown system must estimate the camera biases
and delineate these from true position error. This is difficult to achieve, as camera bias is
perceptually identical to motion over the Earth. Utilizing the celestial system as a highly
accurate attitude reference tends to produce useful results in high altitude aircraft [6] and
spacecraft [7–11]; however, as a modular solution, the celestial system must have a direct
input to the AHRS to improve the inertial position estimate. Alternatively, it has been
theoretically shown that atmospheric refraction can be observed to resolve positions [12].
This technique relies on the observation of the atmospheric refraction of starlight, which
occurs most significantly closest to the horizon. The angle of refraction tends to be minimal
and difficult to observe, requiring a highly stabilized viewing platform.

There are a number of reasons why celestial navigation has not become ubiquitous
in aviation and particularly in UAV applications. Firstly, there is significant complexity in
designing and configuring the hardware. A celestial system must typically be gimballed
to within arcminutes of precision, such that a narrow field of a view sensor may lock
onto a single star. This could be achieved through gyroscopic stabilization; however, the
inclusion of multiple kilograms of stabilization hardware is rarely justified to achieve a
navigation outcome with significantly worse performance than GPS. Secondly, celestial
systems require a clear view of the night sky, which places practical limitations on their
use. Thirdly, alongside the mechanical complexity, there exists a significant computational
complexity required to integrate a celestial payload into an existing system. A star database
must be maintained, image processing algorithms must be implemented to identify and
track stars, and the system may or may not require an interface for the existing AHRS
to time and orientate data. These reasons have overshadowed the benefit of having an
additional GPS-denied modality for navigation available to an aircraft.

Previous research has addressed the latter of these points, demonstrating that modern
computer vision libraries and embedded hardware are capable of handling the computa-
tional requirements of celestial navigation [13,14]. We address the first of these points in this
study by demonstrating the use of a strapdown celestial system for navigation. Contrary to
the stabilized alternative, a strapdown celestial system contains low mechanical complexity,
is lightweight, and can be implemented at a low cost. The primary trade-off is in the
accuracy of the navigation system. While high levels of accuracy are theoretically achiev-
able (depending on the quality of the optical system), the limiting factor with strapdown
celestial navigation is the accuracy of the AHRS. As a rough guide, an attitude error of 1◦

correlates with a position error of approximately 100 km. It is not uncommon for low cost
autopilots (such as the Cube Orange running ArduPlane v4.5 firmware) to produce attitude
errors in the vicinity of multiple degrees. Such biases would lead to positional offsets that
are far too significant for use in any real application.

We address this shortcoming by demonstrating how a simple orbital motion can
significantly improve a celestial position estimate. This technique has been used on the
ground to correct for boresight errors [15], and we demonstrate through experimentation
that a similar technique may be used on aircraft to correct for attitude errors. The principle
behind this maneuver is that a misaligned boresight will trace a circle about the true
boresight if a full azimuthal revolution is performed. The misalignment presents itself in
the navigation frame as a circular error in latitude and longitude, enabling the averaging of
the results to attain an improved position estimate. We demonstrate that this technique is
effective even when the camera is misaligned with the AHRS, offering a reliable method
for estimating the position to within 4 km from an unknown state. While lacking precision,
this method of localization is absolute, cheap to implement, and relatively lightweight.



Drones 2024, 8, 652 3 of 20

To our knowledge, no such technique currently exists in the literature. The methods
proposed here are intended to demonstrate the application of strapdown celestial naviga-
tion on a fixed-wing drone platform, while addressing the key practical difficulties in doing
so. Existing works are iterative, relying on the integration of celestial measurements with
inertial measurements using a filter such as an Extended Kalman Filter (EKF) or Unscented
Kalman Filter (UKF). This research demonstrates that a strapdown system can be treated
as a stand-alone, modular addition to an inertial system, such that the measurements do
not need to be integrated into the filter. Independence from an inertial filter enables the
celestial system to produce true global position measurements that are not affected by
initial conditions. Provided the use of an accurate clock, the results presented in this paper
will not degrade over time.

The remainder of this paper addresses the theory, implementation, and results of the
proposed method. We outline the equations for observing stars and estimating global
positions in Section 2, we describe the methdology used in star detection/tracking and the
experimental configuration, we explicitly define the equations for computing the mean
position in Section 3, we present the results from the flight trial and simulation in Section 4,
we discuss the results in Section 5, and we conclude in Section 6.

2. Theory
2.1. Star Observation

An observer may estimate their position with knowledge of the current sidereal time
and direction vectors to three or more stars in the local North East Down (NED) frame. A
camera system is mounted relative to the body frame of the aircraft, with Direction Cosine
Matrix (DCM) Cb/c describing the orientation of the camera with respect to the aircraft.
Given an aircraft with the orientation described by the DCM Cl/b, an observation Xc in the
camera frame may be transformed to the local NED frame by the following equation:

Xl = Cl/bCb/cXc (1)

Multiple stars are observed simultaneously through the imaging system. A calibrated
camera may be described by the pinhole projection model, such that

αxp = KXc (2)

where xp contains the homogeneous pixel coordinates of the projected star, K is the camera
intrinsic matrix, and Xc is the direction vector of the star in the camera coordinate frame.
Consequently, with knowledge of the camera intrinsic matrix, given an observation xp, the
vector Xc may be computed as follows:

Xc = αK−1xp (3)

where the scale factor α may be computed with the knowledge that Xc is unitary. Given
that |Xc| = 1, it follows that α|K−1xp| = 1. Therefore, α can be calculated as follows:

α =
1

|K−1xp| (4)

2.2. Position Estimation

The global position may be calculated using the zenith-angle, ζ, of stars. Following
the methodology presented by [16], each measurement ζ generates a plane that intersects
with the terrestrial sphere, yielding a circle on which the observer may be located. Two ob-
servations generate a line, of which only two points on this line intersect with the terrestrial
sphere. This case is depicted in Figure 1. Three observations precisely define the location of
the observer, and more than three observations can create an over-constrained system. We
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may utilize redundant measurements by estimating the least-squares approximation from
three or more star observations.

Figure 1. The circles around points S1 and S2 show the intersection of their respective planes with the
terrestrial sphere, forming circles about which the observation could have been made. Points S1 and
S2 are taken from the observed stars, located such that their respective star is observed at the zenith.
The zenith-angles ζ1 and ζ2 represent the angle at which the stars were actually observed. In this
case, two stars were observed, resulting in two potential points (P1 and P2) at which this observation
could have been made. Additional observations serve to reduce this ambiguity.

Given n stars, with right ascension α and declination δ, observed at a zenith angle ζ,
we may define n planes within the geographic coordinate system. If we define λ as the
longitude of an observer whose zenith is directed towards the star, which can be expressed
as the difference between the star’s right ascension and the current Greenwich hour angle
of Aries, λ = α− GHAΓ, then it can be seen that the equation of a plane whose normal
vector is directed towards the star is given by

ax + by + cz− p = 0 (5)

where
a = cos λ cos δ

b = sin λ cos δ

c = sin δ

p = cos ζ

(6)

Therefore, given a minimum of three star observations, we can build matrices A and p
to formulate a least-squares approximation of the intersection of these planes. Vertically
stacking each equation yields

Ax = p (7)

where

A =


a1 b1 c1
a2 b2 c2
...

...
...

an bn cn

, x =

x
y
z

, p =


p1
p2
...

pn





Drones 2024, 8, 652 5 of 20

We apply the standard least-squares solution to find the point of intersection of the
planes, x, as follows:

x = (ATA)−1ATp (8)

Putting x back into geographical coordinates, we find the latitude and longitude which
best fits the star observations:

ϕ = tan−1
(

z√
x2 + y2

)
(9)

λ = tan−1
(

y
x

)
(10)

This value for the latitude and longitude minimizes the squared error in the position
vectors. This will be used in Section 3 for converting many observations into a single
position estimate.

3. Methods

A modular celestial navigation system should be mounted rigidly with respect to the
AHRS. The orientation of the aircraft, Cl/b, is provided by the autopilot. The orientation
of the camera, Cb/c, is unknown and must be calibrated to obtain accurate positional
information. For the purposes of this study, we assume that the precise orientation of
the camera remains unknown, and we consequently accept that the individual position
estimates will be erroneous. It will be shown later that this misalignment may be overcome
through the use of averaging. This is particularly useful given that the camera itself may be
mounted separately from the autopilot, thus being subjected to factors such as vibration,
aerodynamic loading, or changes in AHRS biases, which cause the relative orientation
between the AHRS and the camera to change over time.

3.1. Star Detection and Tracking

Stars are detected within an image using a basic binary thresholding operation. Given
a mean pixel value within the frame, µ, and standard deviation, σ, a binary threshold is set
at µ + 5σ, as advised in [17]. The contours are extracted, and an agglomerative clustering
algorithm is applied to cluster redundant detections.

Once detected, a standard Kalman filter is used to track individual stars between
frames. Each star is defined by its state vector:

xk =


u
v
u̇
v̇

 (11)

and a constant sized bounding box. The states u, v, u̇, and v̇ describe the x position, y
position, x velocity, and y velocity of the star on the image plane, respectively. The position
of the star is taken to be the subpixel maxima, computed as a weighted average of the 3× 3
Region of Interest (ROI) centered on the peak pixel value, as described by [18]

(u, v) =
(

∑i,j Ii,jui

∑i,j Ii,j
,

∑i,j Ii,jvj

∑i,j Ii,j

)
(12)

The state transition matrix F is defined assuming a constant velocity as follows:

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (13)
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The position and velocity of the stars are observed directly; therefore, the observation
matrix H is defined as the 4× 4 identity, such that the observation equation is simply
given by

zk = xk (14)

Following the standard Kalman filter equations, the a priori state and covariance
estimates are computed:

x̂k+1 = Fxk (15)

P̂k+1 = FPkFT + Q (16)

for the covariance matrix Pk with process noise Q. The innovation is calculated as follows:

yk = zk − x̂k+1 (17)

with covariance, Sk, given by
Sk = P̂k+1 + Rk (18)

where Rk is the measurement noise. The Kalman gain is computed as follows:

Kk = P̂k+1S−1
k (19)

and the posterior updates are applied to the a priori estimates:

xk+1 = x̂k+1 + Kkyk (20)

Pk+1 = (I−Kk)P̂k+1 (21)

The measurement noise, Rk, is defined as a diagonal matrix, with elements equal to
[ 0.5 0.5 1.0 1.0 ], and the process noise is also defined as a diagonal matrix, with elements
equal to [ 4.0 4.0 2.0 2.0 ]. The measurement noise was selected based on the calibration
accuracy of the camera, and the process noise was experimentally tuned to minimize the
occurrence of lost tracks under high motion conditions. The a priori state estimate is used
to propagate the bounding box containing the region of interest, within which the peak
is detected using Equation (12). The bounding box is centered on [u, v], rounded to the
nearest pixel. The width and height of the bounding box were fixed at 21 pixels for this
imaging system, given an image resolution of 1936× 1216 and a field of view of 53.5 deg.
A visual snapshot of the tracking system can be seen in Figure 2.

Figure 2. Star tracker operating on video footage captured in-flight. Image intensity is amplified 10×.
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3.2. Experimental Configuration

Celestial imagery was captured in-flight from a 4 m flying wing UAV. The selected
autopilot (Cube Orange) was mounted at the center of mass, and the celestial payload
was mounted in the shoulder of the aircraft (see Figure 3). The celestial payload collected
imagery at a rate of 10 Hz, as well as the attitude and position data from the autopilot,
enabling post-analysis. A Raspberry Pi 5 (Raspberry Pi Ltd., Cambridge, UK) was used
as the companion computer, interfacing with the celestial camera and the autopilot. An
Alvium 1800 U-240 (Allied Vision, Stradtroda, Germany) monochrome sensor fitted with
a f/1.4 6 mm wide angle lens was chosen for the imaging system. A serial Universal
Asynchronous Receiver Transmitter (UART) link between the Raspberry Pi and the Cube
Orange facilitated the transport of MAVLink v2.0 messages. The AHRS data from Ardu-
Plane’s EKF3 was recorded at a rate of 30 Hz, and the ground truth GPS position data were
recorded at a rate of 10 Hz. The Raspberry Pi clock was synchronized with GPS time prior
to takeoff. The Raspberry Pi and the camera were mounted on a PLA 3D-printed structure
(see Figure 4) for integration into the airframe.

The test flight was conducted on a moonless night. The wind was modest, typically re-
maining below 5 m/s. The flight plan consisted of both straight legs and orbital trajectories
with varying radii. An overview of the flight plan can be seen in Table 1.

Table 1. Flight plan for the test flight.

Description Direction Repeats Radius (m) Altitude (m)

Takeoff 30
Orbit to Altitude CCW 4 300 800

Straight Legs N/S 6 2500 800
Orbit CW 1 1200 800
Orbit CW 2 600 800
Orbit CCW 1 600 800
Orbit CCW 1 1200 800

Orbit to Altitude CCW 1 300 100
Land 0

The total flight lasted 72 min. Astronomical twilight ceased at 19:32, and takeoff was
conducted at 19:53. The GPS receiver in the aircraft was not allowed to be switched off to
enable emergency failsafes and prevent fence breaches. We address the consequences of
this in Section 4.4.

Figure 3. Platform layout of the autopilot and celestial payload within the airframe.
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Figure 4. The celestial payload, consisting of a Raspberry Pi 5 and an Alvium 1800 U-240 monochrome
sensor fitted with a 6 mm f/1.4 wide angle lens.

3.3. Position Estimation

The star tracker in Section 3.1 operates on distorted images. The pixel location from
each star tracker is extracted. rectified, and subsequently converted to a unit vector in NED
coordinates according to Section 2.1. Given an observation Xl = [x y z]T , the elevation of a
star above the horizon is calculated as

el = − tan−1 y√
x2 + y2

(22)

and, subsequently, the zenith-angle ζ is calculated as 90− el.
In the initial case, the camera orientation Cl/b is not known to a high level of precision.

Assuming that an attempt is made to mount the camera in alignment with the autopilot,
an initial DCM may be formulated from some combination of 90◦ Euler rotations. It will
be seen that as long as this orientation is accurate to within a hemisphere of tolerance, the
exact value does not matter, as it will be recalculated in flight.

If a minimum of six stars are visible within the frame, a Random Sample Consen-
sus (RANSAC) approach to position estimation may be used to remove bias from false
detections. RANSAC is a technique used to identify outliers in sample data and omit
them from the estimation process. This is useful for detecting misidentified stars or for
removing non-star detections (such as satellites or overhead planes). In the context of
position estimation, the RANSAC algorithm randomly selects three stars to generate a
position estimate. Subsequently, the algorithm compares the location of the remaining stars
against the position estimate. If the remaining stars are within some heuristic tolerance,
they are considered inliers. If they are outside of tolerance, they are considered outliers.
The position estimate which minimizes the mean squared error of the inliers is chosen
as the estimate. A pseudocode implementation of this RANSAC position estimation is
outlined in Algorithm 1.
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Algorithm 1 Position-RANSAC

Cl/b, Cb/c
GHAΓ← getGHAAries()
As← [ ]
Ps← [ ]
for obs in observations do

az, el = computeAzEl(obs, Cl/b, Cb/c)
a, b, c, p = computePositionCoe f f icients(GHAΓ, az, el, obs.ra, obs.dec)
As.append([a, b, c])
Ps.append([p])

end for

inliers← 0
outliers← 0
best error ← inf
x← [0, 0, 0]
for 0 < i < iterations do

j← 3 randomly selected indexes
build A and p using As[j] and Ps[j]
x̂← (ATA)−1ATp
inlier error ← 0
for all remaining indexes k do
E ← Ps[k]− As[k]x̂
if E < tolerance then

inliers += 1
inlier error += E

else
outliers += 1

end if
end for
if inliers : outliers > acceptable ratio then

mean error = inlier error/inliers
if mean error < best error then

best error = mean error
x← x̂

end if
end if

end for

ϕ← tan−1
(

x[2]√
x[0]2+x[1]2

)
λ← tan−1 ( x[1]

x[0]

)
return ϕ, λ

We first demonstrate that, in the general case, the DCM Cl/b is not fixed during flight.
In an integrated solution, the celestial system would provide attitude measurements to
the EKF, and the offset from this attitude would be estimated. As a modular solution,
however, this is infeasible. Taking the output from the EKF to be the true orientation of the
aircraft, we can use the true GPS position to compute Cl/b. We use the Kabsch-RANSAC
methodology presented in [19] to calculate the ideal rotation between a star’s theoretical
location and its actual location. In conjunction with the autopilot output, this rotation
yields Cl/b. Testing over an 89 s section of flat and level flight, it can be seen in Figure 5 that
the camera roll angle shifts by approximately 0.2◦, the pitch angle shifts by approximately
0.05◦, and the yaw angle shifts by approximately 0.3◦. In the context of celestial navigation,
these are significant perturbances which, had the offsets been attributed to position as
opposed to camera orientation, would have been interpreted as around 30 km of positional
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offset. Indeed, by assuming that Cl/b is fixed, we can see in Figure 6 that the latitude
drifts by approximately 0.2◦ over the same short window of flat and level flight. Over an
extended period (hours), the orientation may shift such that positional errors are in the
range of hundreds of kilometers.

Figure 5. True camera orientation in the aircraft body frame, as calculated using a combination
of stellar observations, aircraft attitude, and GPS data. Data are captured from a straight segment
of flight over 89.5 s (895 video frames). Top: Calculated camera yaw angle in aircraft body frame.
Middle: Calculated camera pitch angle in aircraft body frame. Bottom: Calculated camera roll angle
in aircraft body frame.
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Figure 6. Position estimation over a an 89.5 s straight segment of flight. It can be seen that, by
assuming the camera orientation is fixed, significant positional error makes its way into the estimate.
Top: Latitude estimated using celestial imagery with Ardupilot AHRS. Bottom: Longitude estimated
using celestial imagery with Ardupilot AHRS.

It is clear that a stand-alone celestial module cannot function in the conventional
manner with consumer-grade hardware, unless the autopilot is capable of integrating the
attitude output from the celestial system into its own filter and estimating the camera
orientation. We will demonstrate now a method which, given a very rough initial estimate
of the camera orientation, is capable of returning position estimates to within 4 km. This
is significant in the context of long flights, where alternative dead-reckoning solutions
would experience positional drift that is either linear (assuming velocity measurements are
available) or quadratic (assuming only acceleration measurements) as a function of time.

By performing a rotation through 360◦ of compass heading, at an approximately
constant yaw rate, the position estimates can be averaged to find an approximation of the
orbital center. Provided n images throughout an orbit are available, there exists n latitude
and longitude estimates, which may be expressed as unit vectors in the Earth Centred Earth
Fixed (ECEF) frame pece f

i . The mean position is taken to be the mean of these vectors:

p̄ece f =
1
n

n

∑
i=1

pece f
i (23)
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The latitude and longitude are simply calculated as

ϕ = sin−1(z) (24)

λ = tan−1
(

y
x

)
(25)

where x, y, and z are the elements of the mean position vector.
Once an initial position estimate has been formulated, it may be used to calculate a

more precise estimate of the camera orientation Cb/l . The aim of orientation estimation is
to find the rotation matrix R that minimizes the residual error between a set of observations
uc represented in the camera frame of reference and a set of theoretical unit vectors vl in
the NED frame of reference:

E =
n

∑
i=1
||vl

i −Ruc
i ||2, (26)

In this case, the rotation matrix R is composed of the aircraft DCM, Cl/b, and the
camera DCM, Cb/c:

R = Cl/bCb/c (27)

where we accept Cl/b as a deterministic output from the autopilot, and so the camera
orientation may be found given R and Cl/b:

Cb/c = CT
l/bR (28)

Each observation uc
i is correlated with a database star. This correlation is obtained

through star identification. During the instantiation of the star tracker, a lost-in-space log-
polar star identification algorithm is used to determine the IDs of each star in the frame [20].
The theoretical position vectors vl

i in the NED coordinates are generated from the star’s
right ascension and declination, the time of observation, and the estimated latitude and
longitude [13]. This allows for the use of the Kabsch algorithm [21] to find the rotation R
between the observed stars and the database stars. Following the implementation in [19],
the algorithm is provided in Algorithm 2, where A is the matrix of n observation vectors
with dimension [n× 3] and B is the matrix of n theoretical vectors, also with dimension
[n × 3]. The resulting rotation R is used in conjunction with the most recent autopilot
attitude data to find the camera orientation Cb/c.

Algorithm 2 Kabsch

Translate vectors in A and B such that centroid is at origin
Compute the matrix C = ATB
Compute the singular value decomposition U, Σ, V = SVD(C) such that C = UΣVT

Set diagonal elements Σ1 through to Σn−1 = 1.
if det(UV) > 0 then

Σn = 1
else

Σn = −1
end if
Compute the rotation matrix R = VΣUT

Once the camera orientation has been found, two options are presented, depending
on the computational power of the flight computer. If the computer is capable of parallel
processing, then the set of theoretical star locations vl may be re-calculated using the
updated latitude and longitude, and the estimated positions may be re-calculated using the
updated camera DCM Cb/c. This enables the system to recursively converge on a position
estimate from a single set of orbital data. Alternatively, it is possible to repeat an orbit
and calculate a new set of latitudes and longitudes. This method does not require post
hoc processing and may be better suited to real-time applications. For the purposes of this
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study, we use the former method, as this allows us to treat each orbit as an independent
sample, yielding an independent position estimate, thus giving us deeper insight into how
the characteristics of a given orbit affect the position estimate. An example of this process
can be seen in Figure 7.

(a) Initial position estimate with an uncalibrated camera.
It can be seen that the initial position error is large, at
44.50 km.

(b) Second iteration of position estimation, using the
position from the previous iteration to calibrate the cam-
era. It can be seen that the position error from the first
estimate has been interpreted as a camera orientation
offset, and the radius of the position estimates is now ap-
proximately equal to the positional error in the output
of the first iteration. The position error is now 2.39 km.

(c) Third iteration of position estimation. The improved
position estimate from the previous output has been
used to calibrate the camera. The primary source of
error now lies in the asymmetry of the orbital dynamics.
The position error has increased slightly to 3.03 km.

(d) Final iteration of position estimation. The final posi-
tional error is 2.54 km.

Figure 7. Visualization of the position estimates as the algorithm converges on the location of the
aircraft. Each blue point represents an independent position that was calculated from an image frame,
the red dot represent the estimated position taken from the mean of the individual estimates, and the
yellow dot represents the true center of the aircraft’s orbit.
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4. Results
4.1. Position Estimation

Following the experimental configuration in Section 3, the position of the aircraft is
estimated for each orbit. The camera was initially aligned using a rotation matrix built from
Euler angles of −90◦, 0◦, and 180◦ in yaw, pitch, and roll, respectively, for a yaw–pitch–roll
rotation sequence. This is a coarse approximation based on the orientation with which the
camera was mounted to the airframe. Of course, the true orientation differs from this; as
can be seen in Figure 5, there is approximately a 5◦ error in this initial orientation.

Each orbit is treated as an independent observation. This is achieved by resetting
the camera orientation at the initialization of every orbit, thus requiring the algorithm to
recalculate the camera DCM. The output from each of the orbital motions listed in Table 1 is
shown in Table 2. The position error is measured as the distance between the final celestial
position estimate and the center of the orbit, calculated using the Haversine function.

Table 2. Celestial positioning results.

Description Direction Radius (m) Pos. Error (km) Iterations

Orbit to Altitude (1) CCW 300 3.56 5
Orbit to Altitude (2) CCW 300 7.18 4
Orbit to Altitude (3) CCW 300 9.67 4
Orbit to Altitude (4) CCW 300 9.89 4
Orbit (5) CW 1200 2.21 4
Orbit (6) CW 600 3.48 5
Orbit (7) CW 600 2.54 5
Orbit (8) CCW 600 1.73 5
Orbit (9) CCW 1200 2.90 4
Orbit to Altitude (10) CCW 300 7.16 6

4.2. Estimation Accuracy

It can be seen that the orbits which are neither climbing nor descending produced
more accurate positional data. These orbits had larger radii, which consequently produced
greater numbers of position estimates per orbit. Additionally, the variance in the pitch
and roll axis during ascent/descent tends to be greater, as the total energy control system
utilizes the pitch axis to throttle the climb/descent rate. By taking these two factors into
account, we calculate the standard error as a function of the covariance in pitch and roll,
as well as the number of samples. The generalized variance is calculated by taking the
determinant of the covariance matrix in pitch and roll, where this matrix is given by

Σθ,ϕ =

[
COV(θ, θ) COV(θ, ϕ)
COV(ϕ, θ) COV(ϕ, ϕ)

]
(29)

where the function COV(x, y) describes the covariance between sets x and y:

COV(x, y) = ∑n
i=1(xi − x̄)(yi − ȳ)

n
(30)

given n samples. The standard deviation is found given the generalized variance:

σ =
√
|Σθ,ϕ| (31)

and thus the standard error in roll and pitch is calculated given the standard deviation and
the number of samples as follows:

SE =
σ√
n

(32)
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It can be seen in Figure 8 that the relationship between the estimated standard error
and the true error is approximately linear. The accuracy of the first orbit is likely due to
chance; this is a good indicator that the factors dictating an accurate positional estimate
are indeed the variance in pitch and roll throughout the orbit and the total number of
samples. The inverse of the trend-line may be used as an estimate for the Circular Error
Probable (CEP), where

CEP = 1205× SE− 0.567 (33)

and CEP is estimated in kilometers.

Figure 8. Plot of the standard error in pitch and variance versus the true error. It can be seen that the
relationship is approximately linear.

4.3. Initial Conditions

We demonstrate here that the initial value of the camera rotation matrix has little effect
on the final position estimate. This is significant because, as shown in Section 3, many
factors may cause changes in the relative orientation between the camera and the AHRS.
Choosing orbit 5 as an example, we show that as long as the estimated boresight of the
camera is accurate to within a hemisphere of tolerance (that is, the estimated boresight
is within 90◦ of the true boresight), the algorithm will converge near the true location. A
graphical representation of the first iteration given various camera calibrations is shown in
Figure 9. In each case, with a position error less than 90◦, the position estimate converged
to within the estimated CEP. It can be seen in Table 3 that an initial calibration error beyond
90◦ results in a position estimate on the opposite side of the Earth.

Table 3. Sensitivity to initial camera calibration.

Initial Orientation Error Final Pos. Error (km) Iterations

Nil (calibrated) 2.47 2
Initial Guess (≈5◦) 2.49 4
45◦ 2.46 5
60◦ 2.51 5
85◦ 2.49 6
120◦ 19,987.66 5
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(a) Initial approximation (b) 45◦ error in initial camera alignment

(c) 60◦ error in initial camera alignment (d) 120◦ error in initial camera alignment

Figure 9. Visualization of position estimates for a given camera misalignment. It can be seen
that as long as the camera is aligned to within 90◦, the mean estimated position provides a good
approximation of the true position.

4.4. Simulation of Wind Effects

The flight trial was conducted with modest amounts of wind, utilizing GPS to conduct
an orbit. We postulate that in the presence of wind, the position is better attained by fixing
the pitch and roll of the aircraft, such that a constant yaw rate is achieved in the local NED
frame. This approach does not require GPS to perform an orbit and only relies on compass
heading and inertial attitude sensors to follow a trajectory. Simulation results strongly
indicate that GPS is not required but is in fact detrimental to the orbital method of position
estimation. As a consequence of not using GPS, the aircraft is subjected to lateral drift in
the local NED frame. The amount of drift experienced by the aircraft during an orbit is,
however, minimal in comparison to the scale to which position is being estimated.

We used JSBSim to simulate the aircraft’s flight dynamics, in conjunction with Ardupi-
lot’s software-in-the-loop simulator to generate synthesized motion-blurred imagery. The
images were generated following the methodology in [13], factoring in the motion blur ex-
perienced by the camera. A strong southerly wind of 54 km/h was added to the simulation.
An orbit was performed using GPS, and another was performed using a fixed pitch and
roll angle with GPS disabled. During the fixed-attitude orbit, the aircraft drifted 1.05 km.
The simulated trajectory of the GPS-denied orbit can be seen in Figure 10.
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Figure 10. Simulated trajectory of the aircraft during a GPS-denied orbit in high wind conditions.

Applying the same methodology, the position was calculated for both the GPS-guided
orbit and the GPS-denied orbit. The control protocol of the GPS-guided orbit was to
maintain a ground track at a fixed radius about a point in an identical manner to what was
performed in the real flight test. This method adjusts the pitch and roll of the vehicle to
compensate for wind and altitude. Up-wind sections of the orbit are prolonged in time, and
down-wind sections are contracted in time. The resulting position estimates are heavily
biased towards the prolonged portion of the orbit, which consequently skews the mean
calculation. Under high wind conditions, it can be seen that following a fixed-radius ground
track is not optimal for position calculation. The resulting position error was 18.27 km, as
seen in Figure 11. By contrast, the fixed-attitude orbit achieved a position error of 2.29 km,
despite being subjected to over 1 km of drift. This highlights the importance of fixing the
aircraft attitude rather than following a constant-radius orbit.

(a) Final iteration of position estimation from a
GPS-guided orbit. The position error is 18.27 km.

(b) Final iteration of position estimation from
GPS-denied orbit. The position error is 2.29 km.

Figure 11. Comparison of position estimation in high wind conditions. It can be seen that the course
followed by a GPS-guided orbit introduces errors in the estimation process. The GPS-denied orbit
follows a fixed-attitude orbit, resulting in drift, but ultimately yielding a more accurate position.

5. Discussion

The results presented in Section 4 demonstrate that strapdown celestial navigation
as a modular solution has potential use in Global Navigation Satellite System (GNSS)-
denied UAV navigation. The celestial camera was mounted to the airframe, separate
from the autopilot, but still utilizing the AHRS orientation information coming from the
autopilot. This has significant implications for integration into SWAP-C airframes, in
which the inclusion of stabilization hardware adds unwanted mass. With a modern GPS
receiver weighing only a few grams and producing estimates to within 1m accuracy, it is
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understandable that, given the choice, an alternative celestial navigation solution would
not be included. Yet, GNSS denial is increasing in prevalence, and alternative navigation
solutions must be explored if a UAV is to operate under such circumstances.

The most profound outcome from this study is the celestial system’s independence
from the initial conditions. Provided a functional AHRS and navigation system which
is capable of performing an orbit, the celestial system can produce a position estimate
from any unknown position on the globe, with a camera that is aligned to within 90◦. The
remaining source of error lies in the clock drift, which is typically equal to 3 ppm (0.3 s per
24 h) for a modern real-time clock. This has significant implications for long endurance
aircraft, which may need to operate for many hours in RF contested environments. It
has been shown that the rate of divergence in dead reckoning navigation is substantial
without a velocity estimate [22], particularly in consumer grade systems. Even with velocity
measurements, in the presence of wind, a tactical grade aircraft may drift by 10 km per
hour. In such cases, over the course of multiple hours, the precision offered by the proposed
method is a vast improvement.

For loitering aircraft, this method of localization is convenient, as the flight plan need
not change. For aircraft travelling significant distances, it may be sufficient to intermittently
perform a single orbit, and utilize the more erroneous position estimate for course correction.
The act of performing an orbit through a full compass rotation effectively nullifies the biases
and offsets between the AHRS and the celestial camera. The main source of error for each
independent position estimate during an orbit, is the misalignment of the estimated zenith
with the true zenith. This may be caused by a number of factors, such as aerodynamic
loading causing minor perturbations in the camera’s orientation relative to the autopilot,
improper alignment or calibration of the inertial system, or simply due to estimation
errors caused by improperly estimated centrifugal acceleration. In each of these cases, it is
expected that the error remains approximately constant throughout an orbit. Consequently,
zenith errors at one particular azimuth are cancelled out by the zenith errors at the opposing
(180◦ offset) azimuth. This is the reason why such a method is capable of working with
almost arbitrary levels of initial error.

This flight was conducted using GPS to maintain the orbital position. We recognize
that, in a true GNSS denied environment, wind errors will cause the aircraft to drift during
an orbit. While this may introduce some error into the position estimate, we show in
Section 4 that the primary factor governing the accuracy of a position estimate is the
variance in the zenith-angle throughout the orbit. The circular position errors seen for
example in Figure 7, are not caused by the change in aircraft position. They are caused
by a misalignment of the optical system, and consequently may be reproduced by simply
maintaining constant roll and pitch throughout a full compass rotation. In Section 4.4 we
show that even in high wind conditions, the appropriate strategy is to maintain roll rate
and accept that there will be positional drift throughout the orbit. This strongly suggests
that the presence of GPS during the flight test offered no advantages to the algorithm.

An obvious limitation of this method is its dependence on sky visibility. Some re-
search has shown that short-wave infrared cameras offer a daylight visible alternative to
visible spectrum cameras [23,24]. These tend to have far lower signal-to-noise ratios, re-
sulting in more erroneous measurements. It may be the case that the proposed positioning
method is capable of nullifying the increased observational error from short-wave infrared
observations. This may be a potential topic for future research.

6. Conclusions

This study proposed a method for obtaining more accurate positional estimates from
a modular strapdown celestial navigation system. We hypothesized that by flying in an
orbital motion, the errors in estimated zenith angles would cancel one another at opposing
azimuths. The methodology was tested in a real flight, demonstrating that the position
can be routinely estimated to within 4 km by performing orbits at a fixed altitude and
airspeed. Throughout each orbit, positional estimates are generated from the individual
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celestial images, and these positions are averaged at the conclusion of the orbit. We show
that by recursively estimating the mean position and using this position to recalibrate the
orientation of the camera, the algorithm is capable of converging near the true location.
Testing found that the algorithm is robust against initial conditions, requiring no knowledge
of the prior position and only requiring the camera to be aligned to within a hemisphere
of tolerance.
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