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Abstract: In the field of Unmanned Aerial Vehicle (UAV) path planning, designing efficient, safe,
and feasible trajectories in complex, dynamic environments poses substantial challenges. Traditional
optimization methods often struggle to address the multidimensional nature of these problems,
particularly when considering constraints like obstacle avoidance, energy efficiency, and real-time
responsiveness. In this paper, we propose a novel algorithm, Dimensional Learning Strategy and
Spherical Motion-based Particle Swarm Optimization (DLS-SMPSO), specifically designed to handle
the unique constraints and requirements of cooperative path planning for Multiple UAVs (Multi-
UAVs). By encoding particle positions as motion paths in spherical coordinates, the algorithm offers a
natural and effective approach to navigating multidimensional search spaces. The incorporation of a
Dimensional Learning Strategy (DLS) enhances performance by minimizing particle oscillations and
allowing each particle to learn valuable information from the global best solution on a dimension-
by-dimension basis. Extensive simulations validate the effectiveness of the DLS-SMPSO algorithm,
demonstrating its capability to consistently generate optimal paths. The proposed algorithm outper-
forms other metaheuristic optimization algorithms, achieving a feasibility ratio as high as 97%. The
proposed solution is scalable, adaptable, and suitable for real-time implementation, making it an
excellent choice for a broad range of cooperative multi-UAV applications.

Keywords: multi-UAVs; cooperative path planning; time-varying communication constraint;
DLS-SMPSO; energy consumption constraint

1. Introduction

Unmanned Aerial Vehicles (UAVs) have become increasingly prevalent in a variety of
applications, ranging from environmental monitoring [1] and agricultural surveillance [2]
to search and rescue operations [3] and military missions [4]. The ability to deploy multi-
UAVs in a coordinated manner significantly enhances the efficiency and effectiveness of
these missions. However, the complexity of ensuring cooperation among multi-UAVs
introduces several challenges, particularly in terms of path planning [5–7] and maintaining
reliable communication [8].

In dynamic and unpredictable environments, the communication links between UAVs
can fluctuate significantly due to factors such as obstacles, interference, and the mobility of
the UAVs themselves. These time-varying communication [9] constraints present a major
challenge for effective path planning, as UAVs must continuously adapt their trajectories
to maintain connectivity while still accomplishing their mission objectives. Research on
communication constraints in multi-UAV systems has primarily focused on ensuring
reliable data exchange [10] and maintaining network connectivity [11]. Techniques such as
relay placement [12] and network topology optimization [13] have been explored to enhance
communication reliability. However, these methods often assume static or predictable
environments, which is not always the case in real-world applications. Several studies
have proposed integrating communication models with path planning algorithms [14–16]
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to address time-varying communication constraints. These approaches generally involve
real-time evaluation of communication link quality and dynamic adjustments to UAV paths
to ensure continuous connectivity. However, despite these advancements, there is still
a need for more robust and adaptive methods capable of addressing the complexities of
real-time, dynamic environments.

The field of cooperative path planning for multi-UAV systems has been widely ex-
plored, with numerous approaches developed to tackle various facets of the problem.
Traditional methods like A* and Dijkstra’s algorithms have been commonly applied to path
planning in static environments [17], but they struggle to perform effectively in dynamic set-
tings where time-varying constraints play a significant role. More recent methods have em-
ployed heuristic and metaheuristic approaches, including Genetic Algorithms (GA) [18,19],
Ant Colony Optimization (ACO) [20–22], Grey Wolf Optimizer (GWO) [23–25], and Ar-
tificial Bee Colony (ABC) [26–28] to enhance path planning capabilities under dynamic
conditions. Particle Swarm Optimization (PSO) [29–32] has emerged as a powerful tool
for optimization problems, including path planning for UAVs. Its capability to discover
near-optimal solutions in complex search spaces makes it well-suited for multi-UAV path
planning [33]. However, the standard PSO algorithm lacks the intrinsic ability to manage
communication constraints, which are crucial for the coordination and effective operation
of UAVs in collaborative missions.

Traditional path-planning algorithms often struggle to address the complexities of
time-varying communication constraints, highlighting the need for advanced methods that
can handle dynamic network conditions [34] while ensuring robust communication among
UAVs. PSO [35], a nature-inspired optimization technique, has demonstrated considerable
potential in path planning applications due to its simplicity and effectiveness in navigat-
ing complex search spaces. However, standard PSO algorithms require modifications to
adequately handle the challenges posed by time-varying communication constraints in
multi-UAV systems, ensuring both connectivity and optimal path planning.

To tackle these challenges, various enhanced PSO variants have been developed.
These improvements generally fall into several key areas: adaptive parameter control,
hybridization with other optimization techniques, the introduction of multi-swarm or
cooperative strategies, and the incorporation of novel operators. Ref. [36] presents an
Adaptive Quantum-behaved PSO (AQPSO) algorithm, which is applied to UAV path plan-
ning tasks, demonstrating notable improvements in both convergence speed and solution
quality. Ref. [37] introduces a Cooperative Multiple Swarm PSO (CMSPSO) method, in-
tegrating traditional PSO with a cooperative strategy among multiple swarms, resulting
in enhanced convergence efficiency and superior solution quality for UAV path planning
applications. Ref. [38] proposes an Adaptive Mutation PSO (AMPSO) algorithm, which
integrates mutation operators to prevent premature convergence and improve solution
diversity, particularly in challenging UAV path planning scenarios. Ref. [39] introduces a
Chaotic PSO (CPSO), incorporating chaos theory into the standard PSO algorithm, thereby
enhancing global search capabilities and avoiding local minima in UAV path optimization.
Ref. [40] proposes a Multi-Objective PSO (MOPSO) approach specifically tailored for UAV
path planning, efficiently optimizing multiple conflicting objectives. Meanwhile, Ref. [41]
presents a Quantum-behaved PSO (QPSO) algorithm designed for dynamic environments.
By incorporating quantum mechanics principles, QPSO significantly enhances the swarm’s
exploration capabilities, leading to more robust and adaptive path planning under uncer-
tain and fluctuating conditions. Ref. [42] investigates the application of Angle-encoded
PSO (APSO) for optimizing UAV deployment in search and rescue missions. This approach
encodes the search area using angular parameters, allowing UAVs to swiftly adjust their
search patterns in response to changing environmental conditions, which enhances the
efficiency and speed of rescue operations. Additionally, Ref. [43] introduces a hybrid PSO-
GA method designed to optimize the coverage and connectivity of UAV ad hoc networks.
By combining the strengths of PSO and GA, this hybrid algorithm improves network
performance, specifically in terms of coverage and communication latency. Refs. [44–46]
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combine different metaheuristic algorithms to enhance performance in UAV path planning.
The above UAV path planning algorithm is summarized as shown in Table 1.

Table 1. The classification of UAV path planning algorithms.

Algorithms Example

Heuristic A∗, Dijkstra’s, and so on
Metaheuristic GA, ACO, PSO, ABC, GWO, and so on

Hybrid Metaheuristic PSO-GA, PSO-GWO, and so on
PSO variants AQPSO, CMSPSO, AMPSO, CPSO, MOPSO, and so on

To address the challenge of multi-UAV collaborative path planning under communi-
cation constraints, Ref. [47] proposed the Comprehensive Learning and Dynamic Multi-
swarm PSO (CL-DMSPSO) algorithm. This approach facilitates the effective planning of
high-quality paths for UAVs, ensuring optimized performance in constrained environments.
However, it primarily addresses communication constraints alone. In real-world UAV
missions, communication and energy consumption constraints are often interdependent.
For instance, maintaining stable communication may require the UAV to follow a path that
increases energy consumption, while conserving energy might force the UAV to operate in
areas with weaker communication links.

Thus, an effective path-planning algorithm must strike a balance between these con-
straints, optimizing both communication reliability and energy efficiency. Given the limi-
tations in communication and energy consumption, certain UAVs may be unable to inde-
pendently perform path planning. Consequently, effective coordination among all UAVs
becomes crucial in the path-planning process. In this paper, we introduce the DLS-SMPSO
algorithm, specifically designed for cooperative path planning in multi-UAV systems with
time-varying communication and energy consumption constraints. The DLS-SMPSO algo-
rithm tackles the complex challenges of UAV path planning by encoding each particle’s
position as a motion path in spherical coordinates, enabling efficient exploration of the
search space. By incorporating a DLS into velocity updates, the algorithm minimizes oscil-
lations, allowing particles to learn from the global best solution dimension by dimension.
Simulation results validate the algorithm’s feasibility and effectiveness, showcasing its
superior performance in handling these constraints.

The key contributions of our work are outlined as follows:
(1) A novel DLS-SMPSO algorithm is proposed to address the challenges of collabora-

tive path planning for multi-UAVs. By simply adjusting the angles in spherical coordinates,
the particle’s orientation can be modified directly without the need to decompose these
changes into cartesian components. As a result, the DLS-SMPSO algorithm can explore the
search space more naturally, facilitating smoother transitions and more precise adjustments
in particle positions.

(2) In the DLS-SMPSO algorithm, particle positions are encoded as motion paths using
spherical coordinates, rather than the conventional cartesian coordinates employed in
standard PSO. This spherical encoding is particularly advantageous for UAV path planning,
as it allows for more intuitive and direct manipulation of trajectories, resulting in more
efficient optimization and improved path generation.

(3) The integration of DLS minimizes particle oscillation during the evolutionary
process by enabling each particle to learn from the global best solution in a dimension-by-
dimension manner. This strategy helps prevent premature stagnation, leading to a more
stable and efficient optimization process. In addition, the algorithm seamlessly incorporates
constraint handling mechanisms, such as obstacle avoidance and boundary enforcement,
within the optimization process. This guarantees that the generated solutions are not only
optimal but also feasible and safe for practical real-world applications.

The rest of this paper is organized as follows: Section 2 offers a comprehensive
overview of the multi-UAV path planning problem formulation and reviews related work
on objective function design. Section 3 introduces the PSO variant algorithms and details
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the proposed DLS-SMPSO approach. Section 4 presents the simulation setup and results,
demonstrating the effectiveness of our approach. Finally, Section 5 concludes the paper
and outlines potential directions for future research.

2. Problem Formulation

In this section, we begin by outlining the cooperative path planning problem for
multi-UAVs, incorporating various essential constraints in Section 2.1. Following that, we
provide a detailed explanation of the path representation in Section 2.2. Building on this
foundation, we formulate the objective function for the specified path planning problem in
Section 2.3.

2.1. Problem Description

The UAV path planning problem involves determining optimal paths for n UAVs,
each starting from a specific location and aiming to reach Unmanned Ground Vehicle 0
(UGV0). The goal is to minimize various factors such as path length, energy consumption,
and collision risks while ensuring that the paths are feasible within the UAV’s kinematic
and dynamic constraints. Additionally, the paths must avoid both static and dynamic
obstacles in the environment. In more detail, the UAV path planning problem entails
finding the most efficient trajectories for five UAVs to travel from their respective starting
points to UGV0. The cost function to be minimized typically includes critical aspects such
as total distance traveled, energy consumption, and the risk of collisions with obstacles or
other UAVs. The planned paths must adhere to each UAV’s physical limitations, including
speed, acceleration, and turning radius, ensuring that the maneuvers are both possible
and safe. Obstacle avoidance plays a central role, requiring the UAVs to navigate around
static obstacles like buildings and trees, as well as dynamic obstacles such as other moving
UAVs or changing environmental factors. The problem also demands consideration of
communication constraints [9,48], especially in scenarios where UAVs must maintain
connectivity with ground stations or other UAVs. Ultimately, the challenge lies in balancing
these multiple objectives achieving paths that are not only optimal in terms of minimizing
costs but also robust, feasible, and safe for real-world operations.

The path planning problem for multi-UAV systems can be defined as determining the
optimal routes for a fleet of UAVs to travel from their respective starting points to UGV0.
These routes must minimize specific cost functions while satisfying constraints such as
obstacle avoidance, communication range, and the UAV’s dynamic capabilities.

(1) The UAV must avoid collision obstacles in the environment.
(2) The UAV’s path must adhere to its turning angle constraints to ensure feasible and

safe flight.
(3) The UAV must maintain communication with a UGV0 or other UAVs, which may

impose constraints on its path.
(4) The UAV’s path must minimize energy consumption to ensure that the mission

can be completed within the available battery capacity.

2.2. Path Representation

In the context of multi-UAV path planning, where there are n UAVs and m waypoints,
the path representation becomes a more complex but structured task. Each UAV’s trajectory
is defined by a series of waypoints, where each waypoint represents a specific coordinate
in 3D space.

For n UAVs, the paths can be represented as:

Pi = [(xi1, yi1, zi1), (xi2, yi2, zi2), . . . , (xim, yim, zim)] (1)

where i = 1, 2, . . . , n denotes the UAV index, and (xij, yij, zij) denotes the j-th waypoint
for the i-th UAV. Here, m represents the total number of waypoints that each UAV must
navigate through from its starting position to UGV0.
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The sequence of waypoints forms a trajectory that the UAV must follow from its
start position to UGV0. The challenge lies in ensuring that these waypoints are chosen to
minimize a predefined cost function in Equation (1) while satisfying the UAV’s operational
constraints, avoiding obstacles, and coordinating with other UAVs to prevent collisions.
For a UAV’s path to be considered feasible, it must meet several essential constraints.
These include complying with the UAV’s kinematic and dynamic limits, such as maximum
speed, acceleration, and turning radius. The path must also guarantee the safe avoidance
of obstacles in the environment. Additionally, UAVs must maintain adequate separation
to avoid mid-air collisions. The chosen waypoints should facilitate smooth transitions
between different path segments, avoiding sharp turns or abrupt maneuvers that could
compromise the UAV’s stability. Furthermore, the path must accommodate communication
requirements, ensuring the UAVs remain within the necessary communication range to
maintain control and receive mission updates. By satisfying these conditions, the planned
paths will ensure safe, efficient, and successful mission execution.

2.3. Objective Function

The objective function in UAV path planning is a key mathematical tool that defines
the mission’s goals, such as minimizing total path length, reducing energy consumption,
and avoiding collisions with obstacles. It incorporates various criteria affecting the UAV’s
performance, including kinematic and dynamic constraints, environmental terrain, and
static obstacle avoidance. By optimizing this function, the path planning process aims to
identify the most efficient and safe routes for all UAVs, ensuring they successfully reach
UGV0 while meeting all mission-specific requirements.

In the cooperative path planning problem for multi-UAV systems with time-varying
communication constraints, the objective function is crafted to optimize multiple criteria
simultaneously. The aim is to determine a set of paths that minimize the overall mission
cost while adhering to all constraints. Key factors include path length, safety, energy
consumption, communication connectivity, turning angle limitations, and obstacle collision
avoidance, ensuring that the mission is both efficient and feasible.

The objective function J can be formulated as a weighted sum of these criteria:

J = w1 Jlength + w2 Jsafety + w3 Jenergy + w4 Jcommunication + w5 Jturning + w6 Jobstacle (2)

where w1, w2, w3, w4, w5, and w6 are weighting factors that balance the relative importance
of each criterion. Each component of the objective function is detailed below:

(1) Path length
The path length component aims to minimize the total distance traveled by all UAVs.

It is defined as the sum of the lengths of the paths [31] of all UAVs:

Jlength =
n

∑
i=1

mi−1

∑
j=1

√(
xi(j+1) − xij

)2
+
(

yi(j+1) − yij

)2
+
(

zi(j+1) − zij

)2
(3)

where n is the number of UAVs, mi is the number of waypoints for UAV i, and (xij, yij, zij)
are the coordinates of the j-th waypoint for UAV i.

The cost of path length Equation (3) in UAV path planning is a critical element of the
overall Objective Function Value (OFV), which serves as a comprehensive measure for
evaluating the efficiency and feasibility of a given path. The path length cost reflects the
total distance a UAV must travel from its starting point to UGV0, passing through the nec-
essary waypoints. A shorter path length typically results in reduced energy consumption,
shorter travel times, and overall more efficient mission execution, which is especially im-
portant when UAVs have limited battery life or must operate within strict time constraints.
However, focusing solely on path length may not yield the best solution, as other critical
mission factors must also be considered. To account for this, the OFV often incorporates
a penalty function alongside the path length cost. This penalty function adds terms that
impose additional costs for violating specific constraints, such as proximity to obstacles,
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entering no-fly zones, or straying from predefined safe routes. For example, if a UAV’s
path passes too close to a hazardous area or another UAV, the penalty function increases
the OFV, discouraging such risky paths during the optimization process. By integrating the
path length cost in Equation (3) and penalty functions, the objective function becomes more
robust, guiding the path planning algorithm not only to minimize the distance traveled
but also to adhere to safety, regulatory, and operational constraints. This approach ensures
that the resulting paths are not only efficient but also safe and compliant with mission
requirements. By balancing various factors, the optimization process delivers paths that
are both effective and practical, enhancing the UAV’s overall performance in complex and
dynamic environments.

(2) Safety
In UAV path planning, safety and feasibility constraints such as Equation (4) are

paramount to ensuring secure and effective operations. Safety constraints include avoiding
collisions with both static obstacles (e.g., buildings, trees) and dynamic obstacles (e.g., other
UAVs and UGV0), adhering to no-fly zones, and maintaining altitude and speed within
operational limits. Additionally, UAVs must monitor battery life to ensure mission comple-
tion and a safe return while remaining within the communication range of control systems.
Feasibility constraints involve navigating diverse terrains, managing payload weight and
size, adhering to airspace regulations and local laws, and ensuring that the path planning
algorithm is computationally efficient and scalable. These constraints collectively guarantee
that UAVs operate safely, efficiently, and in compliance with relevant regulations. This can
be represented as [42]:

Jsafety =
n−1

∑
i=1

(I[v(mi, mi + 1) < vmin] + I[v(mi, mi + 1) > vmax]

+I[Wi > Wmax]) (4)

where v(mi, mi + 1) is the speed between waypoints mi and mi + 1. vmin and vmax are the
minimum and maximum allowable speeds, respectively. Wi is the weight of the UAV’s
payload. Wmax is the maximum allowable payload weight.

(3) Energy consumption
Energy consumption is a critical factor in UAV path planning, particularly for missions

requiring long endurance or operations in environments where recharging opportunities
are limited. Several factors influence a UAV’s energy consumption, including path length,
speed, altitude, and maneuvering requirements. Therefore, incorporating and minimizing
energy consumption is essential in the objective function, as seen in Equation (5) of the
UAV path planning problem. The energy consumption component aims to minimize the
energy used by UAVs and can be approximated by the total distance traveled, changes in
altitude, and the number of turns along the path. This ensures that the UAVs can complete
their missions efficiently while conserving energy. It is defined as:

Jenergy =
n

∑
i=1

(
mi−1

∑
j=1

√(
xi(j+1) − xij

)2
+
(

yi(j+1) − yij

)2
+
(

zi(j+1) − zij

)2

+α
mi−1

∑
j=1

∣∣∣zi(j+1) − zij

∣∣∣+ β
mi−2

∑
j=1

∣∣∣θi(j+2) − θi(j+1)

∣∣∣) (5)

where α and β are weighting factors for altitude changes and turns, respectively, and θij
represents the heading angle at waypoint j for UAV i.

(4) Time-varying communication
Time-varying communication constraints in UAV path planning refer to the dynamic

nature of communication between UAVs and between UAVs and UGV0. These constraints
can fluctuate due to several factors, including environmental changes (such as obstacles or
weather conditions), UAV positions, and varying network conditions. As UAVs navigate
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their paths, the quality of communication links may change [48], leading to periods of
reliable communication interspersed with periods of limited or no communication. To
ensure smooth operations, the path planning algorithm must account for these time-varying
constraints by optimizing routes to maximize communication reliability, ensuring critical
data are transmitted during periods of strong communication, as outlined in Equation (6).
This often involves adjusting the UAV’s positions and flight paths to maintain connectivity
while meeting the mission objectives and environmental challenges. The communication
component of the path planning model penalizes paths where communication constraints
are violated, ensuring that UAVs maintain stable links throughout their mission. It is
defined as [9,49]:

Jcommunication =
T

∑
k=1

n

∑
i=1

n

∑
k=1,j ̸=i

(
1

dij(k)− dmax
· I
(
dij(k) > dmax

))
(6)

where T is the total number of time steps, dij(k) is the distance between UAV i and UAV
j at time k, dmax is the maximum allowable communication range, and I is the indicator
function that is 1 if the condition is true and 0 otherwise.

(5) Turning angle limitation
The turning angle limitation is a critical constraint in UAV path planning, restricting the

maximum angle at which a UAV can change its direction between consecutive waypoints, as
expressed in Equation (7). This constraint ensures that UAV trajectories remain smooth and
feasible, avoiding abrupt maneuvers that could compromise stability or lead to increased
energy consumption. By integrating this limitation into the path planning algorithm, the
resulting flight paths are more realistic and aligned with the UAV’s physical capabilities,
enhancing both safety and overall mission performance. The turning angle limitation
component penalizes large deviations in the heading angle between consecutive waypoints,
ensuring UAVs avoid sharp turns that could be challenging to execute and potentially
destabilizing. This can be represented as [33]:

Jturning =
n

∑
i=1

mi−2

∑
j=1

(
θi(j+1) − θij

)2
(7)

where θij is the heading angle at waypoint j for UAV i. The objective is to minimize the
sum of squared differences between consecutive heading angles.

(6) Obstacle collision avoidance
Each obstacle is represented as a predefined area or volume within the environment,

and the UAV’s path must be designed to avoid entering these restricted zones. This
constraint is typically enforced by calculating the minimum distance between the UAV
and each obstacle at every point along its path, ensuring that this distance stays above
a predetermined safety margin throughout the flight. This is achieved by defining each
obstacle as a fixed region and imposing the condition that the UAV’s coordinates never fall
within these regions, thereby maintaining a collision-free trajectory. Additionally, paths
that come too close to obstacles are penalized, as described in Equation (8), ensuring safe
navigation throughout the mission. This can be represented as [49]:

Jobstacle =
n

∑
i=1

mi

∑
j=1

(
n

∑
k=1,k ̸=i

mk

∑
l=1

1∥∥(xij, yij, zij
)
− (xkl , ykl , zkl)

∥∥2
+ ϵ

+
O

∑
o=1

1∥∥(xij, yij, zij
)
− (xo, yo, zo)

∥∥2
+ ϵ

)
(8)

where O is the number of obstacles, (x0, y0, z0) are the coordinates of the obstacles, and ϵ is
a small positive constant to avoid division by zero.

Equation (2) highlights several important aspects of the UAV path planning problem.
It demonstrates that the problem is a multi-objective optimization task, where the overall



Drones 2024, 8, 654 8 of 22

objective function comprises multiple weighted cost terms, such as path length, energy
consumption, collision risk, and turning angle limitations. Furthermore, the inclusion of
penalty functions underscores that constraints like obstacle avoidance and UAV kinematic
limitations are integrated into the optimization process. These penalties ensure that the gen-
erated paths are not only optimal concerning the objective function but also feasible and safe
in real-world applications. Moreover, Equation (2) incorporates constraints such as obstacle
avoidance and turning angle limitations via penalty functions, ensuring that the planned
paths maintain both optimality and feasibility. The use of weighted sums enables flexibility
in prioritizing different mission objectives, making the approach adaptable to real-world
scenarios where multiple objectives and constraints must be addressed simultaneously.

3. UAV Path Planning Method

In this part, we first review the standard PSO and its variants, including ASPSO and
QPSO, in Sections 3.1–3.3. Then, we introduce a new DLS-SMPSO algorithm in Section 3.4.
Finally, the detailed implementation of the path planning method using DLS-SMPSO is
proposed in Section 3.5.

3.1. PSO Algorithm

The PSO Algorithm [50,51] is an optimization technique inspired by the social behavior
of animals like birds flocking or fish schooling. In this algorithm, a swarm of particles, each
representing a potential solution to an optimization problem, moves through the search
space to find the best solution. Each particle through Equations (9) and (10) has a position
vector xi(k) and a velocity vector vi(k), where i is the particle index and k is the iteration
number. The movement of each particle is influenced by its own experience (personal best
position pi(k)) and the experience of the entire swarm (global best position g(k)).

The velocity of each particle is updated using the formula:

vi(k + 1) = ωvi(k) + c1r1 · (pi(k)− xi(k)) + c2r2 · (g(k)− xi(k)) (9)

where ω is the inertia weight that controls the influence of the previous velocity, balancing
exploration and exploitation. c1 and c2 are cognitive and social coefficients that weigh the
particle’s personal best position and the global best position, respectively. r1 and r2 are
random numbers between 0 and 1, introducing stochastic variability.

The new position of each particle is then calculated by updating its current position
with the new velocity:

xi(k + 1) = xi(k) + vi(k + 1). (10)

At each iteration, the fitness of the new position is evaluated. The personal best position
pi(k + 1) is updated if the current position xi(k + 1) offers a better fitness value. Similarly,
the global best position g(k + 1) is updated if any particle achieves a better fitness than the
current global best.

3.2. APSO Algorithm

In APSO [42], each particle’s position and velocity are represented by an angle or
a set of angles in Equations (11) and (12), rather than by cartesian coordinates or other
conventional representations. The position of a particle is encoded as an angle θi within
a certain range, typically between 0 and 2π. This angle can represent directions, phases,
or any other cyclic variables. The velocity and position updates are conducted in angular
space, which requires modifications to the standard PSO in Equations (9) and (10).

The velocity vi(k) in APSO is an angular velocity that determines how quickly and in
which direction the particle’s angle θi(k) will change:

vi(k + 1) = ωvi(k) + c1r1 ·
(

θpbest,i − θi(k)
)
+ c2r2 ·

(
θgbest − θi(k)

)
(11)

θi(k + 1) = θi(k) + vi(k + 1) (12)
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where θpbest,i is the angle corresponding to the personal best position, θgbest is the angle
of the global best position, and ω, c1, c2 are the inertia and acceleration coefficients as in
standard PSO.

3.3. QPSO Algorithm

In QPSO [41], particles do not have fixed trajectories determined by velocity. Instead
of being directly influenced by velocity and position updates, as in traditional PSO, each
particle’s position in QPSO is governed by a probability distribution derived from quantum
mechanics. This allows particles to have a probabilistic range of positions, enabling a
broader and more diverse exploration of the search space. In QPSO, each particle is
attracted to an “attractor” point, which is a combination of its personal best position and
the global best position. This attractor guides the particle’s probabilistic position updates,
allowing for more flexible and efficient searching within the solution space.

The attractor Pi(k) for a particle i is typically defined as:

Pi(k) = [pi(k) + gi(k)]/2 (13)

where pi(k) is the personal best position of particle i at time k. gi(k) is the global best
position at time k.

Instead of updating the velocity and position directly, QPSO updates the position
using a random number generated from the particle’s probability distribution. The position
of a particle xi(k + 1) is updated according to:

xi(k + 1) = Pi(k)± β · |m(k)− xi(k)| · ln
(

1
u

)
(14)

where m(k) is the mean best position of all particles at time k. β is a parameter controlling
the convergence speed. u is a uniformly distributed random number in the interval (0, 1).
The ± sign indicates that the particle can move towards or away from the attractor, intro-
ducing exploration.

The mean best position m(k) is calculated as:

m(k) =
1
N

N

∑
i=1

pi(k) (15)

where N is the number of particles in the swarm. This position helps determine the overall
direction of the swarm’s movement. The particles evolve according to Equations (13)–(15)
to converge to the optimal path.

3.4. The Proposed DLS-SMPSO Algorithm

The DLS-SMPSO algorithm extends the traditional PSO by encoding the position of
each particle as a series of motion paths, with each path represented by a set of directional
vectors. Specifically, if a path consists of waypoints w1, w2, . . . , wn, then the motion vector
Vk for the k-th segment of the path is defined as:

Vk = wk+1 − wk (16)

where k = 1, 2, . . . , n − 1. Each waypoint in the path is defined by spherical coordinates:
wk = (rk, θk, ϕk). Radial distance from the origin rk ∈ (0, pathlength), azimuthal angle
θk ∈ (−π, π) in the xy-plane from the x-axis and polar angle ϕk ∈ (−π/2, π) from
the z-axis.

From Equation (16), one gets that

Vk = (∆rk, ∆θk, ∆ϕk). (17)
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According to Equation (17), we can deduce velocity update Equations (18)–(20):

vi
rk
(k + 1) = w · vi

rk
(k) + c1 · r1 · (pi

rk
− wi

rk
(k)) + c2 · r2 · (grk − wi

rk
(k)) + di

rk
(k) (18)

vi
θk
(k + 1) = w · vi

θk
(k) + c1 · r1 · (pi

θk
− wi

θk
(k)) + c2 · r2 · (gθk − wi

θk
(k)) + di

θk
(k) (19)

vi
ϕk
(k + 1) = w · vi

ϕk
(k) + c1 · r1 · (pi

ϕk
− wi

ϕk
(k)) + c2 · r2 · (gϕk − wi

ϕk
(k)) + di

ϕk
(k). (20)

The DLS adjustment is:

di
dk
(k) = λ · (gdk

− wi
dk
(k)) (21)

where dk represents each spherical component (rk, θk, ϕk). w is the inertia weight, control-
ling exploration and exploitation. c1 and c2 are cognitive and social coefficients. r1 and r2
are random values between 0 and 1. pi is the personal best position of particle i. g is the
global best position among all particles. λ is the DLS learning rate influencing the degree
of adjustment.

Updated velocities are used to compute new positions:

wi
rk
(k + 1) = wi

rk
(k) + vi

rk
(k + 1) (22)

wi
θk
(k + 1) = wi

θk
(k) + vi

θk
(k + 1) (23)

wi
ϕk
(k + 1) = wi

ϕk
(k) + vi

ϕk
(k + 1). (24)

To evaluate the associated costs, we will convert Equations (22)–(24) to cartesian coordinates:

xk = wi
rk
· sin(wi

ϕk
) · cos(wi

θk
) (25)

yk = wi
rk
· sin(wi

ϕk
) · sin(wi

θk
) (26)

zk = wi
rk
· cos(wi

ϕk
). (27)

The DLS-SMPSO algorithm is an advanced optimization technique that enhances
traditional PSO by encoding particle positions as motion paths, making it particularly
effective for trajectory optimization problems like UAV path planning. By incorporating
spherical vector-based representation and the DLS, the algorithm significantly improves
exploration capabilities, convergence speed, and overall solution quality. Algorithm 1
provides a summary of the implementation details for the DLS-SMPSO algorithm.

3.5. Implementation of the UAV Path Planning Method Using DLS-SMPSO

The encoding process in the DLS-SMPSO algorithm is crucial for representing and
manipulating the paths or trajectories in the solution space. Here, we present a detailed
description of how the search trajectory is encoded as a series of motion paths and how each
path is further encoded as a set of vectors. In DLS-SMPSO, each solution is interpreted as a
path or trajectory that, like a UAV, follows through the environment. This path is encoded
as a series of motion vectors, each of which represents a movement from one waypoint to
another. Additionally, the DLS is incorporated to address the oscillation of particles during
the evolution process. By using DLS, each particle assimilates advantageous information
from the global optimal solution on a dimension-by-dimension basis. This approach helps
to minimize the degradation of particles throughout the evolution and ensures a more
robust optimization process.
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Algorithm 1 Pseudo code of DLS-SMPSO for UAV path planning.
Initialize: Dimension ( f ); inertia weight (w); acceleration coefficients (c1, c2); max iterations
(itermax); swarm size (nPop); nonupdating number (ci); position (xi); velocity (vi);
Iterate:

1: for each particle in swarm do
2: Create random motion-encoded paths wk;
3: Get a set of directional vectors Vk;
4: The fitness value of xi is calculated by Equation (2);
5: Calculate pi based on current fitness values;
6: end for
7: Set g to the best fit particle;
8: for i = 1 : itermax do
9: for each particle in swarm do

10: Compute velocity vi using Equations (18)–(20);
11: Compute new position xi using Equations (25)–(27);
12: Calculate the fitness value J by Equation (2);
13: Update personal best position pi;
14: end for
15: if J(xi) > pi then
16: ci = ci + 1;
17: if ci > d then
18: ci = 0;
19: else
20: for j = 1 : f do
21: Substitute the the j-th dimension of xi with the corresponding j-th
22: dimension of g, referred to as S;
23: if J(S) < J(xi) then
24: S = xi;
25: end if
26: end for
27: end if
28: end if
29: Update global best position g;
30: end for

The encoding process in the DLS-SMPSO algorithm plays a critical role in representing
and optimizing paths or trajectories in the solution space. Specifically, the algorithm
encodes each search trajectory as a series of motion paths, where each path is represented
by a set of vectors. These vectors correspond to movements from one waypoint to another.
To further enhance the optimization process, the DLS is incorporated, addressing the
common issue of particle oscillation during evolution. DLS allows each particle to assimilate
beneficial information from the global best solution on a dimension-by-dimension basis.
This method reduces the risk of particle degradation during evolution and ensures a more
robust and effective optimization process.

Step 1: Randomly generate initial positions and velocities for all particles in spherical
coordinates. Evaluate initial fitness and set personal and global bests.

Step 2: Compute new velocities using the above Equations (18)–(20), integrating DLS
adjustments (Equation (21)). Update particle positions based on new velocities. Adjust
positions and velocities to satisfy all constraints in Equation (2), compute fitness for up-
dated positions in Equations (25)–(27). Update personal and global bests based on new
fitness evaluations.

Step 3: Repeat iteration until convergence criteria are met (e.g., maximum iterations,
acceptable fitness level).

Step 4: The global best position represents the optimal or near-optimal solution to the
optimization problem.
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4. Experiments and Analysis

In this section, we begin by introducing the experimental setups for UAV path planning
in Section 4.1. Following this, Section 4.2 presents the performance evaluation criteria.
Finally, Section 4.3 provides a comparative analysis based on the planned paths within the
experimental setups. This is followed by further discussion in Section 4.4.

4.1. Experimental Setups

In the designed scenario for UAV path planning, several key parameters are established
to ensure the simulation closely mirrors real-world conditions. Each UAV is set to operate
within a speed range of 5 m/s to 25 m/s, balancing agility with stability. The UAVs are
constrained by a minimal turning radius of 50 m, which corresponds to a maximal turning
angle θ of 45 degrees, ensuring that maneuvers are smooth and within safe limits. The
environment is modeled using a Digital Elevation Model (DEM), accurately representing
terrain features. All five UAVs depart simultaneously from point (200, 100, 150) and proceed
toward the UGV0 at point (800, 800).

Additionally, communication limitations are considered, as noted in Ref. [9]. The
path planning algorithm is configured with specific values for the DLS-SMPSO method,
including a population size of 50 particles, a maximum of 200 iterations, and parameter
settings such as an inertia weight w of 1 and both cognitive c1 and social c2 coefficients set
to 1.5. For consistency in comparison, all algorithms are implemented using the same set of
parameters. The simulation environment is divided into two parts, Case 1 and Case 2, and
the parameters are shown in Table 2 and Table 3, respectively.

Table 2. Environment parameter setting: simple environment.

NO. x/m y/m z/m r/m

1 400 500 100 80
2 600 200 150 70
3 500 350 150 80
4 350 200 150 70
5 700 550 150 70
6 650 750 150 80

Table 3. Environment parameter setting: complex environment.

NO. x/m y/m z/m r/m

1 450 550 100 80
2 500 350 150 80
3 300 200 150 50
4 650 650 150 70
5 200 300 150 70
6 300 450 150 70
7 450 150 150 70
8 650 250 150 55
9 750 400 150 75
10 850 650 150 70

4.2. Performance Evaluation Criteria

When assessing the performance of UAV path planning algorithms, several essential
criteria are typically taken into account to evaluate the effectiveness and efficiency of the
proposed solutions. These criteria include the following:

Feasibility Ratio (FR): FR measures the proportion of solutions produced by a UAV
path planning algorithm that satisfies all specified constraints, such as obstacle avoidance,
compliance with turning angle restrictions, and adherence to energy consumption limits. A
higher FR indicates that the algorithm is more effective in generating feasible paths that
meet mission-critical requirements.
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Best Cost: The best cost metric is a critical evaluation criterion in optimization al-
gorithms, especially for UAV path planning. It reflects the most optimal solution found
during the search process, representing the path with the lowest possible cost. This metric
is often presented alongside the “Optimal”, “Worst”, and “Mean” values for a more holistic
assessment of the algorithm’s performance. The “Worst” cost highlights the least favorable
solution encountered, offering valuable insights into the algorithm’s robustness and its
ability to consistently generate high-quality solutions.

4.3. Comparison Analysis

(1) Case 1: In this section, we present the experimental results obtained from testing
the proposed UAV path planning algorithm in a simple and complex flight environment.
The aim is to validate the feasibility and effectiveness of the path planning method under
controlled conditions with limited obstacles and forward terrain.

Figures 1 and 2 present the top and three-dimensional views, respectively, of the flight
path for Case 1. From these images, it is evident that the DLS-SMPSO algorithm effectively
designed a path that minimizes the risk of collision and ensures the safety of each UAV
by avoiding potential threats. In contrast, the paths generated by the PSO, APSO, QPSO,
GWO, and ABC algorithms exhibit shortcomings in terms of safety and communication
interference, highlighting the superior performance of DLS-SMPSO in these aspects.

In addition, Figure 3 illustrates the convergence curves of the six algorithms in Case 1.
The convergence curve reveals that the DLS-SMPSO algorithm quickly identifies an optimal
solution in the early stages. As the search progresses, the DLS-SMPSO algorithm adapts
to stricter constraints and gradually converges toward the feasible region, demonstrating
excellent convergence performance and the ability to find superior paths. Although it may
not appear advantageous compared to the PSO, APSO, QPSO, GWO, and ABC algorithms
at first glance, a closer examination of Figure 1a–f in Figure 3 reveals a key distinction:
most of the optimizations in Figure 1a–e involve the continuous refinement of a single
UAV’s path. In contrast, the DLS-SMPSO algorithm, depicted in Figure 1f, excels in
collaborative path planning. Notably, in Figure 1f, it can be observed that UAV2 is able to
maintain a stable flight path with the assistance of other UAVs, even when communication
is interrupted. This underscores the significant advantages of the DLS-SMPSO algorithm
in fostering cooperation among UAVs.

Table 4 presents the statistical results of all algorithms under Case 1, with boldface
indicating the results of our algorithm. As observed in Table 4, the DLS-SMPSO algorithm
outperformed other algorithms in terms of average, worst, and best values; it achieved
the highest FR. This suggests that the DLS-SMPSO algorithm is more effective in finding
feasible solutions. However, it is important to note that the path selected by UAVs using
the DLS-SMPSO algorithm may not always be optimal regarding cooperative cost. This
observation leads us to infer that cooperative path planning for multi-UAVs prioritizes
relatively optimal flight decisions that align with coordination constraints rather than
focusing on achieving an individually optimal path for each UAV.

The experimental results show that the proposed path-planning algorithm successfully
guided all UAVs to their targets in a simple environment. The total path length was
optimized for each UAV, with the algorithm achieving a high FR across all test cases. The
execution time remained within acceptable limits, even as the number of UAVs increased,
demonstrating the scalability of the method.

(2) Case 2: In this section, we present the experimental results obtained from testing
the proposed UAV path planning algorithm in a complex flight environment. The objective
is to evaluate the algorithm’s performance under more challenging conditions, which
include a higher density of obstacles and elements that simulate real-world scenarios.

Figure 4 provides a detailed 3D view of the best flight paths achieved by the various
algorithms in operation, while Figure 5 offers a top view of these corresponding paths.
As observed in Figures 4 and 5, when the flight environment becomes more complex, the
DLS-SMPSO algorithm enables the UAV to successfully avoid obstacles and complete the
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path planning task. The convergence curve depicted in Figure 6 indicates that, although the
convergence speed of the DLS-SMPSO algorithm may be slower at times, its performance
remains consistent with the results obtained in simpler environments. Notably, our algo-
rithm demonstrates a significant advantage in collaborative path planning. Furthermore,
the DLS-SMPSO algorithm leverages DLS to learn beneficial information dimension by
dimension from the global optimal solution, thereby improving the feasible ratio of the
paths. As shown in Table 5, the FR of the DLS-SMPSO algorithm is the best, which verifies
the feasibility and superiority of the algorithm.

The experimental results revealed that the proposed path planning algorithm was able
to effectively navigate the UAVs through challenging scenarios. The algorithm maintained
a high FR, with most UAVs successfully reaching their targets while avoiding obstacles.
The results suggest that the proposed UAV path planning algorithm is robust and adaptable
to real-world scenarios.

(a) (b)

(c) (d)

(e) (f)

Figure 1. Top view of flight paths for five UAVs in Case 1: (a) QPSO; (b) GWO; (c) ABC; (d) PSO;
(e) APSO; (f) DLS-SMPSO.
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Figure 2. A 3D view of flight paths for five UAVs in Case 1: (a) QPSO; (b) GWO; (c) ABC; (d) PSO;
(e) APSO; (f) DLS-SMPSO.
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Figure 3. Convergence curves of five UAVs in Case 1: (a) QPSO; (b) GWO; (c) ABC; (d) PSO; (e) APSO;
(f) DLS-SMPSO.

Table 4. Result comparison after 200 repetitions in a simple environment.

NO. 1 2 3 4

Indicators Worst Optimal Mean FR(%)
QPSO 5.4316 × 103 5.2311 × 103 5.3968 × 103 93
GWO 6.1404 × 103 5.3821 × 103 5.8103 × 103 88
ABC 6.0464 × 103 5.4693 × 103 5.7223 × 103 89
PSO 5.8903 × 103 5.1473 × 103 5.8103 × 103 90

APSO 5.8136 × 103 5.2198 × 103 5.8103 × 103 92
DLS-SMPSO 5.3804 × 103 5.1142 × 103 5.2286 × 103 97
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Top view of flight paths for five UAVs in Case 2: (a) GWO; (b) QPSO; (c) APSO; (d) PSO;
(e) ABC; (f) DLS-SMPSO.

Table 5. Result comparison after 200 repetitions in a simple environment.

NO. 1 2 3 4

Indicators Worst Optimal Mean FR(%)
PSO 5.9557 × 103 5.4611 × 103 5.7140 × 103 88

QPSO 5.5405 × 103 5.3727 × 103 5.4199 × 103 91
APSO 5.8203 × 103 5.6814 × 103 5.7140 × 103 90
GWO 7.4486 × 103 6.0255 × 103 6.8329 × 103 85
ABC 6.1732 × 103 5.5040 × 103 5.8287 × 103 87

DLS-SMPSO 5.3878 × 103 5.1790 × 103 5.2391 × 103 96
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Figure 5. A 3D view of flight paths for five UAVs in Case 2: (a) GWO; (b) QPSO; (c) APSO; (d) PSO;
(e) ABC; (f) DLS-SMPSO.
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Figure 6. Convergence curves of five UAVs in Case 2: (a) GWO; (b) QPSO; (c) APSO; (d) PSO;
(e) ABC; (f) DLS-SMPSO.

4.4. Discussion

Extensive simulations and comparative analyses demonstrate that DLS-SMPSO excels
in generating safe, feasible, and optimal paths for multi-UAV operations. The proposed
algorithm performs exceptionally well in complex environments with numerous obstacles,
as evidenced by its consistently low fitness values. This effectiveness is driven by the
transformation of the search space from cartesian to spherical coordinates, enabling more
intuitive and flexible exploration. Furthermore, constraints on UAV dynamics, such as
turning and climbing angles, are seamlessly integrated into the DLS-SMPSO variables,
refining the search space and yielding high-quality solutions.

However, this paper encounters challenges with complex wind patterns and intricate
obstacle geometries, which may delay UAV progress or cause them to miss waypoints.
Refs. [52,53] explore the modeling of wind and obstacle disturbances to assess UAV swarm
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resilience, emphasizing performance and adaptability under challenging environmental
conditions. These studies offer valuable insights into how dynamic environmental factors
impact UAV swarm behavior, which may aid in addressing the issues posed by complex
wind patterns and obstacle geometries.

5. Conclusions

In this paper, we tackled the complex issue of cooperative path planning for multi-UAV
systems under time-varying communication constraints using the DLS-SMPSO algorithm.
The DLS-SMPSO method provides a robust solution by introducing an innovative approach
that encodes particle positions as motion paths in spherical coordinates. This, coupled with
the DLS, significantly enhances the algorithm’s ability to plan cooperative paths, minimizes
oscillations during the optimization process, and improves overall stability. The simulation
results confirm the feasibility and effectiveness of the proposed approach, demonstrating
its potential for real-world applications.

While the proposed approach demonstrates effective path planning capabilities, sev-
eral limitations highlight opportunities for future enhancement. First, this study evaluates
the algorithm with a limited number of agents (five UAVs), constraining the assessment
of scalability and collaborative effectiveness in larger, multi-agent scenarios. Future work
will focus on extending the algorithm to accommodate a greater number of UAVs, en-
abling a comprehensive evaluation of its robustness and scalability in more complex
swarm configurations.

Furthermore, this study does not account for environmental factors such as complex
wind patterns and diverse obstacle geometries, both of which could significantly impact
path feasibility and necessitate adaptive re-planning to maintain safe and efficient trajecto-
ries. For instance, intricate wind dynamics may alter UAV paths and demand continuous
adjustments, while complex obstacle geometries could trap UAVs in confined spaces, test-
ing the limits of the pathfinding strategy. Future research will incorporate these dynamic
environmental variables to enhance the algorithm’s resilience. Additionally, embedding
comprehensive UAV dynamics and considering aspects like inertia and aerodynamics
directly into the optimization framework will allow for a more realistic representation of
physical constraints, enabling adaptable and accurate path planning. Addressing these
factors will help validate and refine the algorithm for a wider range of applications, thereby
improving its efficacy in dynamic and unpredictable environments.
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