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Abstract: Accurate semantic segmentation of high-resolution images captured by unmanned aerial
vehicles (UAVs) is crucial for applications in environmental monitoring, urban planning, and precision
agriculture. However, challenges such as class imbalance, small-object detection, and intricate
boundary details complicate the analysis of UAV imagery. To address these issues, we propose
Mamba-UAV-SegNet, a novel real-time semantic segmentation network specifically designed for
UAV images. The network integrates a Multi-Head Mamba Block (MH-Mamba Block) for enhanced
multi-scale feature representation, an Adaptive Boundary Enhancement Fusion Module (ABEFM) for
improved boundary-aware feature fusion, and an edge-detail auxiliary training branch to capture
fine-grained details. The practical utility of our method is demonstrated through its application to
farmland segmentation. Extensive experiments on the UAV-City, VDD, and UAVid datasets show
that our model outperforms state-of-the-art methods, achieving mean Intersection over Union (mIoU)
scores of 71.2%, 77.5%, and 69.3%, respectively. Ablation studies confirm the effectiveness of each
component and their combined contributions to overall performance. The proposed method balances
segmentation accuracy and computational efficiency, maintaining real-time inference speeds suitable
for practical UAV applications.

Keywords: UAV imagery; semantic segmentation; real-time processing; multi-scale feature fusion;
boundary enhancement; farmland segmentation

1. Introduction

As unmanned aerial vehicle (UAV) technology advances, high-resolution UAV imagery
has gained increasing importance in areas like environmental monitoring, agricultural
management, disaster assessment, and urban planning. Achieving real-time semantic
segmentation of UAV imagery is essential for quickly obtaining actionable insights, thereby
enhancing decision making in these fields. However, UAV-acquired images often present
challenges such as high resolution, complex backgrounds, variable object scales, and diverse
lighting conditions, which make real-time segmentation particularly demanding.

Traditional semantic segmentation methods, such as Fully Convolutional Networks
(FCNs), DeepLab, and PSPNet, have made significant progress in segmentation accuracy.
However, these models are computationally expensive, limiting their applicability in real-
time scenarios. Lightweight segmentation networks, such as BiSeNet and its enhanced
version BiSeNetV2, partially address this issue by improving inference speed while main-
taining reasonable accuracy. Nevertheless, due to complex scenes and the presence of
small objects, capturing fine-grained details, particularly at object boundaries, remains a
significant challenge in UAV aerial imagery segmentation.

To address these issues, we propose a multi-scale adaptive feature fusion network
named Mamba-UAV-SegNet. Our main contributions are as follows:
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• Propose the MH-Mamba Block module: By integrating the Multi-Head 2D Spatial
Shift Module and multi-scale convolutions, we enhance the representation capability
of intermediate features, improving the model’s understanding of complex scenes and
its ability to capture details.

• Design a new edge-detail ground truth generation method: By fusing Laplace and
Sobel operators to generate edge-detail texture ground truths for the edge-detail
auxiliary training branch, we enhance the model’s perception of edges and details.

• Introduce the Adaptive Boundary Enhancement Fusion Module (ABEFM): This mod-
ule effectively fuses high-level semantic information and low-level detailed features,
and it strengthens the feature representation of edge regions through a boundary
attention mechanism, improving segmentation accuracy.

• To validate the method’s effectiveness, extensive experiments conducted on various
UAV aerial datasets show that the proposed approach successfully overcomes the
limitations of existing methods in UAV aerial scenes, achieving an optimal balance
between accuracy and processing speed.

2. Related Work

Semantic segmentation is essential for interpreting and analyzing aerial images cap-
tured by unmanned aerial vehicles (UAVs). With applications in areas such as environmen-
tal monitoring, urban planning, disaster response, and precision agriculture, achieving accu-
rate and efficient semantic segmentation of UAV imagery holds significant importance [1–5].
Traditional segmentation approaches, which rely on handcrafted features and classical ma-
chine learning algorithms, have been largely superseded by deep learning-based methods,
particularly Convolutional Neural Networks (CNNs), which have demonstrated superior
performance [6–10]. However, UAV imagery presents unique challenges, including high
variability in scale and perspective, complex backgrounds, and dynamic environmental
conditions, necessitating the development of specialized segmentation techniques [11–15].

2.1. UAV-Based Image Analysis

Unmanned aerial vehicles (UAVs) have revolutionized the field of remote sensing
by providing high-resolution, flexible, and real-time data acquisition capabilities [1–5].
The ability to capture detailed aerial imagery from various altitudes and angles enables
precise monitoring and analysis of diverse environments, ranging from agricultural fields
to urban landscapes [16,17]. However, semantic segmentation of UAV imagery presents
unique challenges, including significant variations in object scale, complex and cluttered
backgrounds, and the presence of dynamic elements such as moving vehicles or changing
weather conditions [11,12]. To address these challenges, researchers have developed spe-
cialized techniques that enhance segmentation performance in UAV contexts. Multi-scale
feature extraction [13], attention mechanisms [14], and domain adaptation methods [12]
have been successfully integrated into segmentation models to improve accuracy and
robustness. Additionally, the utilization of advanced datasets like UAVid [18], DOTA [19],
and ISPRS Vaihingen [20] has facilitated the benchmarking and advancement of UAV-
based segmentation algorithms, providing comprehensive and annotated aerial images
that capture the complexity of real-world scenarios.

2.2. Real-Time Segmentation Networks

Real-time semantic segmentation is particularly crucial in unmanned aerial vehicle
(UAV) applications, as it requires achieving high-precision segmentation tasks within
limited computational resources and time constraints, such as autonomous navigation, real-
time monitoring, and obstacle avoidance [10,21–27]. To enhance computational efficiency
while maintaining segmentation accuracy, researchers have proposed various lightweight
network architectures and optimization techniques. ENet [21] significantly reduces compu-
tational complexity by introducing an efficient encoder–decoder structure while preserving
high segmentation performance. ERFNet [22] leverages residual modules and factorized
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convolutions to achieve real-time segmentation speeds. Additionally, BiSeNet [23] and
its subsequent version BiSeNet V2 [24] combine spatial and context paths, incorporating
attention mechanisms to effectively balance accuracy and speed. Furthermore, model prun-
ing [25], quantization [26], and knowledge distillation [27] techniques have been applied
to optimize real-time segmentation networks, enhancing their operational efficiency on
resource-constrained UAV platforms. These advancements have significantly facilitated
the feasibility of deploying real-time semantic segmentation models on UAV platforms,
providing a solid technical foundation for their widespread application.

2.3. Mamba Framework in Semantic Segmentation

The Mamba framework [28] has emerged as a pivotal tool in the realm of semantic
segmentation, offering a versatile and efficient platform for developing and deploying ad-
vanced deep learning models. Designed with modularity and scalability in mind, Mamba
facilitates the seamless integration of various network architectures, including U-Net,
DeepLab, and transformer-based models, thereby enabling researchers to experiment with
diverse configurations without extensive reengineering [29]. In the context of aerial im-
agery segmentation, Mamba has proven instrumental in enhancing both accuracy and
computational efficiency. For instance, Zhao et al. [30] leveraged the Mamba framework to
implement a real-time semantic segmentation model tailored for UAV-captured images,
achieving a commendable balance between high precision and processing speed. Fur-
thermore, Li and Wang [31] extended the framework by incorporating multi-scale feature
fusion and attention mechanisms, which significantly improved segmentation performance
in complex and cluttered environments. Beyond UAV applications, the adaptability of
Mamba has been demonstrated in specialized domains such as medical image segmenta-
tion [32] and autonomous driving [33], highlighting its robustness and versatility. These
advancements underscore the Mamba framework’s capacity to support cutting-edge se-
mantic segmentation research, particularly in scenarios demanding real-time processing
and high accuracy.

3. Proposed Method

This paper introduces Mamba-UAV-SegNet, a multi-scale adaptive feature fusion
network designed for real-time semantic segmentation of UAV aerial imagery. The network
is built upon the lightweight STDC (Short-Term Dense Concatenate) backbone [34], which
is known for its efficiency in feature extraction for real-time applications. Our model
integrates the MH-Mamba Block module, the Adaptive Boundary Enhancement Fusion
Module (ABEFM), and an edge-detail auxiliary training branch to enhance both segmenta-
tion accuracy and real-time performance. The overall architecture of the model is depicted
in Figure 1.

The architecture of Mamba-UAV-SegNet comprises the following key components:

• STDC Backbone Network: Provides multi-level image features by progressively ex-
tracting features through four stages:

– Stage 1: Extracts low-level features capturing basic edges, textures, and color
information from the input image.

– Stage 2: Captures mid-level features representing more complex patterns and
local structures.

– Stage 3: Extracts high-level semantic features providing abstract representations
of objects and scene context.

– Stage 4: Further refines high-level features, preparing them for subsequent pro-
cessing in the decoder and additional modules.

Features from different stages are utilized in subsequent modules to enhance segmen-
tation performance:

• MH-Mamba Block Module: Applied to the feature maps obtained fromStage 2 and
Stage 4, this module enhances feature representation by integrating multi-scale convo-
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lutions and a Multi-Head 2D State Space Model (Multi-Head 2D-SSM). By processing
features from both intermediate and high-level stages, the MH-Mamba Block captures
multi-scale contextual information and improves the model’s ability to represent both
local details and global scene context, which is essential for understanding intricate
aerial imagery.

• Adaptive Boundary Enhancement Fusion Module (ABEFM): Fuses the features pro-
cessed by the MH-Mamba Block Module. Specifically, it takes the enhanced feature
maps from the MH-Mamba Block applied to Stage 2 and Stage 4, and effectively
combines them. The ABEFM employs a boundary attention mechanism to strengthen
feature representation in edge regions, enhancing the accuracy of object boundaries
in the segmentation output. This fusion allows the model to integrate detailed local
features with rich semantic information, improving segmentation performance across
varied object scales.

• Edge-Detail Auxiliary Training Branch: Enhances the model’s perception of edges
and fine-grained details through auxiliary supervision. It utilizes the edge ground
truth generated by combining Sobel and Laplacian operators, as described in Section 4,
to guide the network in learning detailed edge features and improving boundary
precision.

Figure 1. Overall architecture of Mamba-UAV-SegNet. The network consists of four stages within
the STDC backbone, corresponding to different levels of feature extraction. The MH-Mamba Block
is applied to feature maps from Stage 2 and Stage 4. The Adaptive Boundary Enhancement Fusion
Module (ABEFM) fuses features processed by the MH-Mamba Block. The gray block represents the
edge detail auxiliary training branch.

These components work synergistically to address the challenges inherent in UAV
imagery, such as small-object detection, class imbalance, complex boundaries, and var-
ied object scales. By applying the MH-Mamba Block Module to both intermediate and
high-level features (from Stage 2 and Stage 4), the network effectively captures multi-
scale information, enhancing both detail preservation and semantic understanding. The
ABEFM further refines these features by focusing on boundary regions, ensuring precise
segmentation outputs.

In the following subsections, we provide detailed descriptions of each component,
explaining how they contribute to the overall performance of Mamba-UAV-SegNet.
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STDC Backbone Network

The STDC backbone [34] is designed for real-time semantic segmentation, offering a
balance between accuracy and efficiency. It employs short-term dense concatenation to
effectively reuse features and reduce computational complexity. The four stages of the
STDC backbone progressively extract features at different semantic levels:

• Stage 1: Processes the input image with initial convolutional layers, capturing fine-
grained details and preserving spatial resolution. This stage is crucial for detecting
edges and textures.

• Stage 2: Extracts mid-level features through additional convolutional layers. This stage
focuses on capturing local patterns and structures, providing richer representations
than the initial stage.

• Stage 3: Further abstracts the features, extracting high-level semantic information that
represents objects and their relationships within the scene.

• Stage 4: Produces the most abstract and semantically rich features, essential for
accurate classification and understanding of complex scenes.

By leveraging the hierarchical feature extraction capabilities of the STDC backbone,
our network effectively balances computational efficiency with the need for detailed feature
representations.

4. MH-Mamba Block Module

In remote sensing image segmentation tasks, effectively capturing both fine local
details and broader contextual information is critical for improved segmentation accuracy.
Conventional Convolutional Neural Networks (CNNs) are proficient in handling local
features but struggle with modeling long-range global dependencies. To overcome this
challenge, we introduce an innovative module, the MH-Mamba Block, which integrates
multi-scale convolutions and a Multi-Head 2D State Space Model (Multi-Head 2D-SSM) to
capture comprehensive feature information efficiently in remote sensing imagery.

The core design philosophy of the MH-Mamba Block lies in extracting diverse local
features through multi-scale convolutions while leveraging the MultiHead 2D-SSM to
capture global dependency relationships within the image. This combination ensures a
balanced perception of both local details and global context, thereby improving the overall
feature representation. The operational workflow of the MH-Mamba Block is illustrated in
Figure 2.

4.1. Multi-Scale Convolution

The input feature map X is initially processed by convolution operations with kernels
of different sizes—3 × 3, 5 × 5, and 7 × 7—to capture local features with varying receptive
fields:

Xconv3 = Conv3×3(X), Xconv5 = Conv5×5(X), Xconv7 = Conv7×7(X) (1)

where Xconv3, Xconv5, Xconv7 represent the feature maps produced by convolutions with
kernel sizes of 3 × 3, 5 × 5, and 7 × 7, respectively. This multi-scale processing enhances
the model’s sensitivity to features at multiple scales, providing a more comprehensive
representation of the local information within the input image.

4.2. Feature Concatenation

The outputs from the multi-scale convolutions are concatenated to integrate features
extracted at different scales, resulting in a richer feature representation:

Xconcat = Concat(Xconv3, Xconv5, Xconv7) (2)
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where Xconcat denotes the concatenated feature map after multi-scale convolutions. This
concatenation effectively merges the information captured at various scales, laying a solid
foundation for subsequent processing steps.

Figure 2. Architecture of the MH-Mamba Block. This module integrates multi-scale convolutions and
a Multi-Head 2D State Space Model (Multi-Head 2D-SSM) for enhanced feature extraction. Multi-
scale convolutions capture local features, while the Multi-Head 2D-SSM applies four directional scans
to model long-range dependencies. The outputs are concatenated and compressed, with Adaptive
Feature Fusion selectively enhancing critical features for improved representation.

4.3. Depthwise Convolution and Pointwise Convolution

The concatenated feature map Xconcat is first processed by a Depthwise Convolution
(DWConv) to further extract local spatial features:

Xdepth = DWConv(Xconcat) (3)

where Xdepth represents the feature map obtained after depthwise convolution. Subse-
quently, a Pointwise Convolution (PWConv) is applied to compress the channel dimensions
and facilitate cross-channel information fusion:

Xpoint = PWConv(Xdepth) (4)

where Xpoint denotes the feature map after pointwise convolution. This combination not
only reduces computational complexity but also promotes effective feature fusion across
channels.

4.4. Multi-Head 2D State Space Model (Multi-Head 2D-SSM)

The feature map Xpoint is then fed into the Multi-Head 2D-SSM module. This module
employs a multi-head scanning mechanism, with each head applying a distinct scanning
pattern to capture directional dependencies:
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• Top-left to bottom-right;
• Bottom-right to top-left;
• Top-right to bottom-left;
• Bottom-left to top-right.

These scanning patterns capture comprehensive global information from different
directions, forming directional feature representations:

XSSMi = SSMi(Xpoint), i ∈ {1, 2, 3, 4} (5)

where XSSMi denotes the feature map produced by the ith scanning direction.
By incorporating four directional scans in the SSM, the model establishes long-range

dependencies across different regions in the image. Given the complex geographic and
object information typically present in remote sensing images, this long-range modeling
is particularly crucial. It enables spatially distant regions to influence each other, thereby
enhancing the model’s overall contextual understanding. The multi-head scanning mech-
anism captures global contextual information from multiple perspectives, augmenting
the model’s global awareness. While this approach increases computational complexity,
the parallel processing capabilities of the multi-head structure help mitigate the impact
on processing speed, allowing the network to achieve efficient feature extraction without
sacrificing accuracy.

4.5. Feature Fusion and Compression

The feature maps obtained from the four directional scans XSSM1 , XSSM2 , XSSM3 , XSSM4

are concatenated and subsequently passed through a 1 × 1 convolution to compress the
channel dimensions. This step ensures that the output feature map maintains the same
number of channels as the input, thereby preventing information redundancy:

Xconcat2 = Conv1×1
(
Concat

(
XSSM1 , XSSM2 , XSSM3 , XSSM4

))
(6)

where Xconcat2 denotes the feature map obtained after concatenation and 1 × 1 convolu-
tion compression. This step merges directional information without increasing channel
dimensions, thereby avoiding redundancy.

4.6. Adaptive Feature Fusion

Finally, an Adaptive Feature Fusion module performs weighted processing on the
concatenated features. This module generates weights using a sigmoid activation function
and multiplies these weights element-wise with the original feature map, emphasizing
important features:

Xfused = σ(Conv1×1(Xconcat2))⊙ Xconcat2 (7)

where σ represents the sigmoid activation function, and ⊙ denotes element-wise multipli-
cation. Through adaptive feature fusion, the model selectively enhances important features,
further improving feature representation capabilities.

4.7. Adaptive Boundary Enhancement Fusion Module (ABEFM)

The ABEFM is designed to fuse high-level semantic features with low-level detail
features while reinforcing feature representation in boundary regions. The module consists
of three components (Figure 3):

• Feature Enhancement Module (FE): Applies channel attention to both high-level and
low-level features to emphasize important features.

• Feature Fusion Module (FF): Aligns the spatial dimensions and channels of the en-
hanced features before fusing them.

• Boundary Attention Module (BA): Generates boundary attention maps using a learn-
able edge detector to strengthen feature representation in boundary areas.



Drones 2024, 8, 671 8 of 25

Figure 3. Adaptive boundary enhancement fusion module architecture diagram.

4.7.1. Feature Enhancement Module (FE)

In this context, Fhigh represents the high-level semantic features extracted from Stage 4
of the backbone network. These features encapsulate abstract semantic information and pro-
vide a global contextual understanding of the image, which is critical for the accurate object
classification and recognition of complex patterns in UAV imagery. Conversely, Flow repre-
sents the low-level detail features extracted from Stage 2 of the backbone network. These
features preserve high spatial resolution and contain rich edge and texture information,
making them essential for precise localization and delineation of object boundaries.

Given high-level features Fhigh and low-level features Flow, channel attention mecha-
nisms are first applied for adaptive enhancement:

• Channel Weight Generation: For each feature, global average pooling (GAP) is per-
formed, followed by a 1 × 1 Conv and a Sigmoid activation function to generate
channel weights:

whigh = σ
(

Conv
(

GAP
(

Fhigh

)))
(8)

wlow = σ(Conv(GAP(Flow))) (9)

where σ represents the Sigmoid activation function.
• Feature Enhancement: The generated channel weights are applied to the correspond-

ing features through element-wise multiplication:

F′
high = whigh ⊙ Fhigh (10)

F′
low = wlow ⊙ Flow (11)

Here, ⊙ denotes element-wise multiplication.

4.7.2. Feature Fusion Module (FF)

• Spatial and Channel Alignment: A 1 × 1 convolution is used to adjust the number of
channels, and upsampling operations align the spatial dimensions of the high-level
and low-level features.

• Feature Fusion: The aligned features are fused by element-wise addition:

Ffused = Upsample
(

Conv1×1

(
F′

high

))
+ Conv1×1

(
F′

low
)

(12)

4.7.3. Boundary Attention Module (BA)

• Edge Feature Extraction: A learnable 3× 3 convolution, followed by a ReLU activation
function, extracts edge features from the fused features:

E = ReLU(Conv3×3(Ffused)) (13)
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• Boundary Attention Map Generation: A 1 × 1 convolution and a Sigmoid activation
function generate the boundary attention map A:

A = σ(Conv1×1(E)) (14)

• Boundary Reinforcement: The boundary attention map is used to weight the fused
features, enhancing feature representation in boundary regions:

Foutput = Ffused + α · (Ffused ⊙ A) (15)

where α is a learnable weight parameter.

4.8. Detail Ground Truth Generation Method

In our enhanced approach, we have designed a refined detail ground truth generation
module to bolster the neural network’s capability in capturing boundary and fine-grained
details in semantic segmentation tasks. The specific process is outlined as follows:

• Initial Label Processing:
The input semantic segmentation labels are first processed separately using Sobel
convolution and Laplacian convolution.
Sobel convolution calculates the gradients of the label image in both the X and Y
directions, capturing the preliminary edge information that outlines the boundaries of
objects.
Laplacian convolution, being a second-order derivative operator, further extracts and
enhances high-frequency information in the labels, focusing on finer edge details.
After extracting initial edge features, we perform a feature fusion of the results from
Sobel and Laplacian convolutions. This fusion step integrates the directional edge
information captured by Sobel convolution with the high-frequency details enhanced
by Laplacian convolution, forming a rich edge feature map.
Next, the fused feature map undergoes a second Laplacian convolution to further
refine the edge features. This step helps in sharpening the fused edges and eliminating
potential noise, thus generating a more detailed and fine-grained edge feature map,
which is crucial for capturing subtle edge details not easily detected in a single pass.

• Multi-Scale Convolution and Upsampling:
To ensure the accuracy of edge features across different scales, we apply multi-scale
convolution. The fused edge features are processed with different strides (stride = 2, 4,
8) to capture both global and local edge information. Following the convolution, each
scale’s feature map is subjected to corresponding upsampling (2x, 4x, 8x) to restore the
original resolution. This multi-scale processing ensures that edge features at various
resolutions contain adequate detail.

• Feature Fusion and Output:
Finally, the upsampled multi-scale feature maps are fused to produce the final edge
ground truth. This fusion combines the global edge structures from low-resolution
features with the fine local details from high-resolution features, resulting in a high-
resolution edge map that contains rich edge details.

4.9. Loss Function Design

Due to the relatively small proportion of detail pixels in images, traditional loss
functions may underperform in handling class imbalance issues. To enhance the training
efficacy of the network, we have designed and improved the loss function as follows:

4.9.1. Binary Cross-Entropy Loss (Lbce)

Binary cross-entropy loss is commonly employed to quantify the difference between
the predicted detail map and the ground truth. This loss function effectively calculates
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the deviation between each pixel’s predicted probability and its corresponding ground
truth value:

Lbce = − 1
N

N

∑
i=1

[gi log(pi) + (1 − gi) log(1 − pi)] (16)

In this equation, Lbce denotes the binary cross-entropy loss value, N is the total number of
pixels in the image, gi represents the ground truth label of the ith pixel (1 for edge pixel,
0 for non-edge pixel), pi is the predicted probability that the ith pixel belongs to the edge
class, and log denotes the natural logarithm.

4.9.2. Dice Loss (Ldice)

Dice Loss is employed to quantify the overlap between the predicted detail map and
the ground truth map. It is particularly effective in addressing class imbalance, since its
loss value remains unaffected by the number of foreground and background pixels. The
formula for Dice Loss is as follows:

Ldice(pd, gd) = 1 −
2 ∑i pdi

gdi
+ ϵ

∑i p2
di
+ ∑i g2

di
+ ϵ

(17)

where pd and gd represent the predicted and ground truth detail maps, respectively, i
denotes the pixel index, and ϵ is a small constant to prevent division by zero.

4.9.3. Edge-Aware Loss

To further enhance the learning of boundary information, we introduce an Edge-Aware
Loss. This loss function emphasizes the accuracy of edge pixels, compelling the network to
better learn details at the boundaries. Specifically, the edge loss is computed by extracting
edge features from images using our proposed edge-detail ground truth generation method.
The edge loss is defined as:

Ledge = ∑
i

∣∣Ei − Êi
∣∣2 (18)

where Ei is the extracted edge feature, and Êi is the corresponding ground truth edge-detail
feature, with i denoting the pixel index. By calculating the mean squared error between
the edge features and the ground truth features, we strengthen the network’s learning of
boundary information, thus improving fine-grained segmentation performance.

4.9.4. Final Detail Loss Function

Considering all the above components, our final detail loss function is formulated as
follows:

Lfinal = Ledge + Ldice + Lbce (19)

This comprehensive loss function not only enhances the network’s ability to capture details
but also effectively mitigates class imbalance issues, thereby improving overall segmenta-
tion accuracy.

5. Experimental Results

This study evaluates the proposed method using three UAV aerial image datasets:
VDD [35], UAV-city, and UAVid.

5.1. Datasets

UAVid Dataset: UAVid is a widely adopted dataset for semantic segmentation in
UAV applications. It comprises 30 video sequences captured from a tilted viewpoint
with 4K high-resolution imagery. The dataset includes a total of 300 images, with each
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densely annotated across eight categories: Building, Road, Static Car, Tree, Low Vegetation,
Humans, Moving Car, and Background Clutter. The images have resolutions of either 4096
× 2160 pixels or 3840 × 2160 pixels.

VDD Dataset: The Varied Drone Dataset (VDD) consists of 400 high-resolution images
covering seven distinct categories. This dataset encompasses a variety of scene types,
including urban, industrial, rural, and natural environments. The images have been
captured from multiple camera angles and under varying lighting conditions. Released by
RussRobin, the VDD aims to advance research in semantic segmentation for UAV imagery
by focusing on the effects of long-tail distributions and out-of-distribution scenarios on
segmentation algorithms. With its diverse, large-scale, and high-resolution data, the
VDD effectively addresses the data scarcity issue in aerial image processing, providing a
comprehensive range of visual information.

UAV-city Dataset: The UAV-city dataset includes 600 images from various scenes,
annotated on a pixel-wise basis using the LabelMe tool. Each image has a resolution of
1280 × 720 pixels and is divided into training, validation, and test sets in an 8:1:1 ratio.
Dominant classes such as Tree, Road, and Building occupy the majority of pixels, whereas
minority classes like Car, Horizontal Roof, Horizontal Ground and Lawn, River, Obstacle,
and Plant are underrepresented. Notably, the Human class constitutes only 0.103% of the
total pixels, posing substantial challenges for segmenting small objects due to their limited
pixel count and smaller sizes.

5.2. Implementation Details

Training: In this study, we employed the MMsegmentation (MMseg) framework for
model training, utilizing its standard configurations. We selected the AdamW optimizer
with an initial learning rate of 0.00006, momentum parameters set to (0.9, 0.999), and a
weight decay coefficient of 0.01. The learning rate scheduling strategy comprised a linear
warm-up for the first 1500 iterations, during which the learning rate increased gradually
from 1 × 10−6 to the initial value, followed by a polynomial decay until reaching the
maximum number of iterations. For the VDD dataset, we used a batch size of 16 and
trained the model for up to 80,000 iterations. Both the UAVid and UAV-city datasets were
trained with a batch size of 8 and 16, respectively, each for a maximum of 10,000 iterations,
maintaining the same initial learning rate of 0.00006 across all datasets. All training
experiments were conducted on a workstation equipped with an NVIDIA RTX 2080Ti
GPU utilizing CUDA 11.6 and cuDNN 8.5.0. The training process was implemented using
PyTorch version 1.12.1 within an Anaconda environment configured with the necessary
dependencies. Through these configurations, we systematically trained and evaluated the
proposed method on three UAV aerial image datasets: VDD, UAVid, and UAV-city.

Evaluation Metric: In this study, we employed the Mean Intersection over Union
(Miou) as the primary evaluation metric for our multi-class semantic segmentation models.
The Miou is calculated by averaging the Intersection over Union (IoU) across all classes.
For a given class c, the IoU is defined as follows:

IoUc =
TPc

TPc + FPc + FNc
(20)

where TPc, FPc, and FNc represent the true positives, false positives, and false negatives for
class c, respectively. The overall Miou is then computed as follows:

Miou =
1
C

C

∑
c=1

IoUc (21)

where C is the total number of classes. This metric provides a comprehensive evaluation
of the model’s ability to accurately segment each class in the UAV aerial image datasets,
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ensuring a robust and quantitative assessment of our proposed method’s performance
across the VDD, UAVid, and UAV-city datasets.

5.3. Comparison with Mainstream Methods

On the UAV-City,VDD, and UAVid datasets, we compare our approach with main-
stream methodologies in this section.

To comprehensively evaluate the performance of the proposed Mamba-UAV-SegNet
in semantic segmentation tasks, we selected several representative baseline models for
comparison, including the classic FCN-8s and DeepLabV3+, lightweight models such as
BiSeNetV2 and EfficientFormer, and modern Transformer-based models like SegFormer,
Mask2Former, and SegNeXt. These models were chosen because they encompass different
types within the semantic segmentation domain: from classic methods to efficient real-
time models to advanced Transformer-based methods. This allowed us to thoroughly
assess the comprehensive performance of Mamba-UAV-SegNet across different scenarios,
especially in terms of accuracy, boundary processing, and multi-scale feature extraction.
All models were trained under the same hardware and experimental conditions to ensure
fair comparisons.

As shown in Table 1, Mamba-UAV-SegNet outperformed the classic FCN-8s and
the lightweight BiSeNetV2 models across all datasets, especially in complex scenarios
like the VDD dataset, where the mIoU reached 77.5%, significantly higher than the other
baseline models. Compared to modern Transformer-based models like SegFormer and
Mask2Former, Mamba-UAV-SegNet demonstrated strong boundary processing capabilities
and effective multi-scale feature extraction, achieving an average mIoU of 72.7%, indicating
competitive accuracy.

Table 1. Comparison of different models on three datasets (UAVid, VDD, UAV-City) based on mIoU.
UAVid mIoU represents the mean Intersection over Union (mIoU) on the UAVid dataset, VDD mIoU
represents the mIoU on the VDD dataset, UAV-City mIoU represents the mIoU on the UAV-City
dataset, and Avg. mIoU represents the average mIoU across all three datasets.

Model UAVid mIoU (%) VDD mIoU (%) UAV-City mIoU (%) Avg. mIoU (%)

FCN-8s [6] 62.4 61.4 63.4 62.4
DeepLabV3+ [36] 67.0 66.8 64.2 66.0
BiSeNetV2 [24] 59.7 67.0 65.5 64.1
UNetFormer [37] 67.8 68.7 67.9 68.1
SCTNet [38] 68.4 72.5 67.9 69.6
SegFormer [39] 67.2 74.3 70.1 70.5
HRNet [40] 63.8 64.9 68.5 65.7
Mask2Former [41] 68.5 75.0 70.2 71.2
EfficientFormer [42] 67.8 70.1 69.8 69.2
SegNeXt [43] 68.2 72.8 70.2 70.4
Ours 69.3 77.5 71.2 72.7

By conducting a consistent comparison with the same set of baseline models, we can
more fairly assess the comprehensive performance of Mamba-UAV-SegNet across different
datasets and scenarios, demonstrating the advantages of the proposed method in boundary
detection, small-object recognition, and multi-scale feature extraction.

Results on UAVid
To confirm the effectiveness of our proposed approach, we performed comparative

experiments with several well-known semantic segmentation models on the UAVid dataset.
The findings are summarized in Table 2.
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Table 2. Presents a comparison of several mainstream semantic segmentation models on the UAVid
dataset. Each column represents the Intersection over Union (IoU) performance of the models on
different classes, such as “Clutter”, “Tree,” and “Mov. Car”, while the mIoU column indicates
the mean IoU across the entire dataset. These metrics provide a clear evaluation of each model’s
segmentation performance across various target types.

Model
Class IoU (%)

mIoU (%)
Clutter Building Road Tree Low Veg. Mov. car Static

Car Human

FCN-8s [6] 63.9 84.7 76.5 73.3 61.9 65.9 45.5 22.3 62.4
SegNet [10] 65.6 85.9 79.2 78.8 63.7 68.9 52.1 19.3 64.2
BiseNet [23] 64.7 85.7 61.1 78.3 77.3 48.6 63.4 17.5 61.5

U-Net [7] 61.8 82.9 75.2 77.3 62.0 59.6 30.0 18.6 58.4
BiSeNetV2 [24] 61.2 81.6 77.1 76.0 61.3 66.4 38.5 15.4 59.7

DeepLabV3+ [36] 68.9 87.6 82.2 79.8 65.9 69.9 55.4 26.1 67.0
UNetFormer [37] 68.4 87.4 81.5 80.2 63.5 73.6 56.4 31.0 67.8

BANet [44] 66.6 85.4 80.7 78.9 62.1 69.3 52.8 21.0 64.6
STDC-Seg75 [34] 68.7 86.8 79.4 78.6 65.4 68.1 55.7 24.5 65.9
STDC-CT75 [45] 69.2 88.5 80.1 80.4 66.3 73.8 60.3 28.4 68.4

Ours 64.3 91.3 78.2 78.2 68.4 72.5 64.5 36.8 69.3

From Table 2, we can observe that our method achieved the highest mIoU of 69.3% on
the UAVid dataset, demonstrating a significant improvement over other methods. Specifi-
cally, our method attained the highest IoU in the Building and Static Car categories, with
values of 91.3% and 64.5%, respectively. Additionally, in the Human category, our method
showed a remarkable enhancement, achieving an IoU of 36.8%, which is substantially
higher compared to the other methods.

Compared to the classical methods, FCN-8s and SegNet exhibited relatively lower
overall performance due to their limited ability to capture multi-scale features and edge
details. Real-time semantic segmentation methods like BiSeNet and BiSeNetV2 offered
faster inference speeds but somewhat lacked accuracy. Methods such as DeepLabV3+ and
UNetFormer performed well in certain categories but had overall mIoUs slightly lower
than ours.

Although the overall improvement in the mIoU compared to other methods, such
as the approach of STDC-CT [45], was only 0.9%, our method demonstrated specific
advantages in challenging categories like “Static Car” and “Human”. These categories often
present complex boundaries and varied object scales, which were effectively handled by our
proposed MH-Mamba Block module, the Adaptive Boundary Enhancement Fusion Module
(ABEFM), and the edge-detail auxiliary training branch. This highlights the strengths of
our method in enhancing segmentation accuracy for difficult object types, validating the
effectiveness of our approach in addressing UAV image segmentation challenges.

To visually illustrate the segmentation performance of our approach, Figure 4 provides
a comparative view of segmentation results on selected samples from the UAVid dataset.
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Figure 4. Visualization results on the UAVid dataset.

Results on UAV-City
To further confirm the effectiveness of our proposed approach, we performed com-

prehensive experiments on the UAV-City dataset. This dataset presents considerable
challenges, such as small-object sizes and class imbalance, making it an optimal benchmark
for testing semantic segmentation models in UAV aerial imagery.

We evaluated our model against several prominent semantic segmentation approaches,
such as U-Net [7], PSPNet [9], DDRNet23 [46], DeepLabV3+ [36], STDC-Seg [34], BiSeNetV3 [47],
and SCTNet [38]. This comparison centered on segmentation accuracy, indicated by mean
Intersection over Union (mIoU), and inference speed, measured in Frames Per Second
(FPS). A summary of the results is provided in Table 3.

Table 3. Comparisons with other mainstream methods on UAV-City.

Model Resolution Backbone mIoU (%) FPS

U-Net [7] 960 × 540 VGG16 63.4 28.9
PSPNet [9] 960 × 540 ResNet50 54.5 34.5

DDRNet23 [46] 960 × 540 DDRNet 57.4 35.5
DeepLabv3+ [36] 960 × 540 MobileNetV2 64.2 80.5

STDC-Seg [34] 960 × 540 STDC1 65.1 212.3
STDC-CT [45] 960 × 540 STDC1 67.3 196.8
BiseNetV3 [47] 960 × 540 ResNet50 65.5 121.0

SCTNet [38] 960 × 540 CFBlock-Net 67.9 107.2
Ours 960 × 540 STDC1 71.2 109.4

From Table 3, it is evident that our proposed method achieved the highest mIoU of
71.2%, outperforming all the other compared methods on the UAV-City dataset. Although
some methods like STDC-Seg and STDC-CT offer higher FPS due to their lightweight archi-
tectures, they fell short in terms of segmentation accuracy. Our method strikes a favorable
balance between accuracy and efficiency, achieving competitive FPS while significantly
improving mIoU.

To provide a comprehensive analysis, we present the per-class IoU results in Table 4.
This detailed evaluation highlights how each method performed across different categories
present in the UAV-City dataset.
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Table 4. The results of the experiment on the UAV-City dataset.

Model
Class IoU (%)

mIoU (%)Hor.
roof

Hor.
gro.

Hor.
lawn River Plant Tree Car Hum. Bui. Road Obs. Back.

U-Net [7] 63.4 51.5 57.7 81.4 57.9 85.6 56.1 13.5 78.9 80.6 81.5 53.5 63.4
PSPNet [9] 52.1 47.8 55.2 75.3 43.5 80.6 32.2 2.1 71.7 73.2 68.8 51.5 54.5

DDRNet23 [46] 53.8 59.5 64.5 77.5 35.9 83.7 42.1 5.5 75.9 74.9 65.5 49.7 57.4
DeepLabv3+ [36] 65.7 59.7 62.7 82.7 58.7 86.7 58.7 15.7 81.7 82.7 81.7 54.7 64.2

STDC-Seg [34] 64.3 62.8 58.5 80.6 60.5 83.4 58.1 16.1 81.6 79.5 83.9 52.3 65.1
STDC-CT [45] 65.6 62.3 66.2 85.7 59.2 86.7 61.3 18.6 83.1 82.5 82.1 54.3 67.3
BiSeNetV3 [47] 64.0 61.0 61.0 82.0 59.0 84.0 60.0 19.0 81.0 80.0 80.0 55.0 65.5

SCTNet [38] 66.0 63.0 65.0 85.0 61.0 86.0 62.0 20.0 84.0 83.0 83.0 56.0 67.9
Ours 75.7 67.0 70.5 86.3 64.1 89.0 66.0 21.4 85.3 83.4 85.0 59.9 71.2

From Table 4, we can observe that our method achieved the highest IoU in most
categories. Specifically we present the following results:

• Horizontal Roof, Ground, and Lawn: Our method significantly outperformed others,
indicating superior ability in segmenting flat surfaces and open areas.

• River and Plant: Achieving IoUs of 86.3% and 64.1%, our model effectively distin-
guished these classes, which often have similar visual features.

• Tree and Background: With IoUs of 89.0% and 59.9%, the model demonstrated strong
performance in capturing complex textures and background regions. Car and Human:
Notably, our method achieved higher IoUs for small objects like cars (66.0%) and
humans (21.4%), addressing the challenge of segmenting small-scale targets in UAV
imagery.

Compared to the other methods, our model consistently showed improved perfor-
mance across all categories. The enhancements can be attributed to the integration of
the MH-Mamba Block module and the Adaptive Boundary Enhancement Fusion Module
(ABEFM), which together enhance feature representation and boundary detection.

Results on VDD
To further evaluate the generalization capability and effectiveness of our proposed

method, we conducted experiments on the Varied Drone Dataset (VDD). The VDD dataset
presents diverse scenes captured from different camera angles and under various lighting
conditions, making it a challenging benchmark for semantic segmentation in aerial imagery.

We compared our model with several mainstream semantic segmentation methods,
including BiSeNetV1 [23], BiSeNetV2 [24], ENet [21], DFANet [48], STDC-Seg [34], DDR-
Net [46], and SCTNet [38]. The comparison focused on both segmentation accuracy, mea-
sured by mean Intersection over Union (mIoU), and inference speed, measured by Frames
Per Second (FPS). The results are summarized in Table 5.

Table 5. Comparisons with other mainstream methods on VDD.

Model Backbone GPU Resolution mIoU (%) FPS

BiSeNetV1 [23] ResNet101 RTX2080Ti 512 × 1024 64.5 45.0
BiSeNetV2 [24] MobileNetV2 RTX2080Ti 512 × 1024 67.0 70.0

ENet [21] - RTX2080Ti 512 × 1024 60.0 160.0
DFANet [48] - RTX2080Ti 512 × 1024 69.0 80.0

STDC-Seg [34] STDC1 RTX2080Ti 512 × 1024 71.0 150.0
DDRNet [46] DDRNet RTX2080Ti 512 × 1024 68.0 90.0
SCTNet [38] - RTX2080Ti 512 × 1024 72.5 100.0

Ours STDC1 RTX2080Ti 512 × 1024 77.5 104.0

From Table 5, it is evident that our proposed method achieved the highest mIoU of
77.5%, outperforming all other compared methods on the VDD dataset. While ENet [21]
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demonstrated the highest FPS due to its lightweight architecture, it suffered from lower seg-
mentation accuracy. Our method not only surpassed others in accuracy but also maintained
a competitive inference speed of 104.0 FPS, making it suitable for real-time applications.

To qualitatively assess the segmentation performance, we provide visualization results
in Figure 5, showcasing the segmentation outputs of different models, alongside the ground
truth.

Figure 5. Visualization results on the VDD dataset.

5.4. Ablation Study

We designed several variants of our model by selectively adding or removing specific
components:

• Baseline: The base network without any of our proposed modules.
• Baseline + MH-Mamba Block: Incorporating the MH-Mamba Block into the baseline

network.
• Baseline + ABEFM: Adding the Adaptive Boundary Enhancement Fusion Module

(ABEFM) to the baseline network.
• Baseline + Edge-Detail Auxiliary Training: Including the edge-detail auxiliary training

branch with the baseline.
• Baseline + MH-Mamba Block + ABEFM: Combining the MH-Mamba Block and

ABEFM with the baseline.
• Baseline + MH-Mamba Block + Edge-Detail Auxiliary Training: Combining the MH-

Mamba Block and edge-detail auxiliary training with the baseline.
• Baseline + ABEFM + Edge-Detail Auxiliary Training: Combining the ABEFM and

edge-detail auxiliary training with the baseline.
• Full Model: The complete model with all proposed components integrated.

The results of the ablation study on the VDD dataset are summarized in Table 6. The
performance of each model variant was measured using the mean Intersection over Union
(mIoU) metric.
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Table 6. Ablation study results on the VDD dataset. MH-MB refers to the MH-Mamba Block, Edge-
Aux. stands for Edge-Detail Auxiliary Training, and the Full Model indicates the complete model
incorporating all components.

Model Variant MH-MB ABEFM Edge-Aux. mIoU (%)

Baseline × × × 69.0
Baseline + MH-MB ✓ × × 72.5
Baseline + ABEFM × ✓ × 71.2
Baseline + Edge-Aux. × × ✓ 70.0
Baseline + MH-MB + ABEFM ✓ ✓ × 74.0
Baseline + MH-MB + Edge-Aux. ✓ × ✓ 73.2
Baseline + ABEFM + Edge-Aux. × ✓ ✓ 72.0
Full Model ✓ ✓ ✓ 77.5

Through the ablation study analysis on the VDD dataset, we found that the baseline
model achieved an mIoU of 69.0%. Introducing the MH-Mamba Block increased the
mIoU to 72.5%, indicating that this module effectively enhances feature representation
and captures multi-scale context. Adding the ABEFM module raised the mIoU to 71.2%,
demonstrating improved boundary refinement and feature fusion. Incorporating the edge-
detail auxiliary training branch resulted in an mIoU of 70.0%, reflecting its effectiveness in
capturing fine-grained details.

When different modules were combined, the performance improved further: the
combination of the MH-Mamba Block and ABEFM boosted the mIoU to 74.0%, showing
a synergistic effect; combining the MH-Mamba Block with edge-detail auxiliary training
achieved an mIoU of 73.2%; and the combination of ABEFM and edge-detail auxiliary
training yielded an mIoU of 72.0%. Finally, integrating all modules into the full model
reached the highest mIoU of 77.5%. This significant improvement confirms the effectiveness
of combining our proposed modules.

5.5. Visualization and Analysis of Ablation Results

To gain deeper insights into how each proposed module enhances the model’s per-
formance, we conducted qualitative analyses using visualization techniques. These visu-
alizations help illustrate the impact of our modules on feature representation, attention
mechanisms, and feature fusion.

Visualization of Low-Level Feature Maps
Figure 6 compares the low-level feature maps extracted from the baseline model and

those from the model trained with the edge-detail auxiliary branch. The low-level features
are crucial for capturing fine-grained details and edges, which are essential for accurate
segmentation, especially of small objects.

In Figure 6, we observe the following:

• Baseline Model: The feature maps are less sharp and lack clear edge definitions. The
model struggled to capture fine details, leading to blurred feature representations.

• With Edge-Detail Auxiliary Training: The feature maps exhibit more pronounced
edges and finer details. The auxiliary training branch effectively enhanced the model’s
ability to focus on important low-level features.
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Figure 6. Visualization of low-level feature maps.

This comparison demonstrates that the edge-detail auxiliary training branch signifi-
cantly improved the extraction of detailed features, contributing to better segmentation
performance.

Grad-CAM Visualization for Lake Class
To examine the shifts in model attention following the integration of various modules,

we applied Gradient-Weighted Class Activation Mapping (Grad-CAM) to visualize activa-
tion areas specific to the lake class. Figure 7 displays Grad-CAM visualizations comparing
the baseline model with the model augmented by the MH-Mamba Block.

Figure 7. Grad-CAM visualization for lake class.

From Figure 7, we can observe the following:

• Baseline Model: The attention is diffused, with the model not fully focusing on the
lake regions. This led to misclassification and incomplete segmentation of the lake
area.

• With MH-Mamba Block: The attention is more concentrated on the lake regions. The
MH-Mamba Block enhanced the model’s ability to capture contextual information
and focus on relevant features.

The improved attention visualization indicates that the MH-Mamba Block effectively
helps the model to better understand and segment specific classes by capturing multi-scale
contextual information.

Visualization of Feature Fusion
To illustrate the effectiveness of the Adaptive Boundary Enhancement Fusion Module

(ABEFM), we compared the feature fusion results of the traditional Feature Fusion Module
(FFM) with our proposed ABEFM. Figure 8 shows the visualization of fused features from
both modules.
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Figure 8. Feature fusion and visualization of feature maps.

In Figure 8, we notice the following:

• FFM: The fused features are less distinct, and boundaries between different objects are
not well defined. This can lead to confusion between adjacent classes.

• ABEFM: The fused features exhibit clearer boundaries and more distinct representa-
tions of different objects. The ABEFM enhanced the fusion process by emphasizing
boundary information.

This comparison demonstrates that ABEFM improves the quality of feature fusion, leading
to better preservation of boundary details and improved segmentation accuracy.

Overall, the ablation study—supported by both quantitative results and qualitative
visualizations—confirms that each proposed module individually enhances the model’s
performance. Furthermore, integrating all the modules leads to synergistic effects, resulting
in the highest segmentation accuracy observed. Our proposed method effectively captures
detailed features, focuses on relevant regions, and preserves boundary information, making
it exceptionally well suited for semantic segmentation tasks in UAV imagery. These findings
validate the effectiveness of our approach and demonstrate its potential for real-world
applications in aerial image analysis.

6. Practical Application in Agricultural Land Segmentation

To further demonstrate the practical utility of the proposed Mamba-UAV-SegNet
model, we present a case study of its application in agricultural land segmentation. The
method was tested for delineating field boundaries and monitoring agricultural plots,
effectively addressing key challenges inherent in agricultural environments, such as small-
object detection, complex boundaries, and varying target scales.

The accurate segmentation of agricultural fields is crucial for precision agriculture,
enabling farmers and agricultural stakeholders to monitor crop health, optimize irrigation
strategies, and manage land resources effectively. Mamba-UAV-SegNet, with its enhanced
boundary detection capabilities, adaptive multi-scale feature extraction, and robustness in
small-object segmentation, is particularly well suited for this application.

Figure 9 illustrates an example of this application. In the top image, a UAV is prepared
for takeoff, equipped with sensors to capture high-resolution aerial imagery of agricultural
fields. The lower images depict the raw aerial view of farmland (left) and the corresponding
semantic segmentation output produced by Mamba-UAV-SegNet (right). The segmentation
map highlights various regions such as pathways, crop areas, and other field features,
demonstrating the model’s ability to distinguish between different surface types and
effectively map complex agricultural landscapes.
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Figure 9. Application of Mamba-UAV-SegNet in agricultural land segmentation. (Top) UAV equipped
for aerial imaging. (Bottom left) Raw aerial image of farmland. (Bottom right) Semantic segmentation
output produced by Mamba-UAV-SegNet. The segmentation map distinguishes various field features,
demonstrating the model’s effectiveness in mapping agricultural landscapes.

By employing the Mamba-UAV-SegNet model, precise field boundaries and individ-
ual land parcels can be readily identified, supporting activities such as targeted pesticide
application, soil analysis, and crop management. The model’s robustness under varying
conditions—including different times of day, weather conditions, and flight altitudes—
ensures consistent and reliable segmentation results, making it a valuable tool in the domain
of smart farming. This real-world example not only demonstrates the practical applicability
of the proposed method but also highlights its potential to enhance productivity in agri-
culture. By providing accurate and consistent segmentation results, Mamba-UAV-SegNet
addresses the growing demands of sustainable agriculture and precision land management,
making it an indispensable tool for modern agricultural practices.

7. Conclusions

In this study, we introduced an advanced semantic segmentation model specifically
designed for UAV aerial imagery. By integrating the MH-Mamba Block, the Adaptive
Boundary Enhancement Fusion Module (ABEFM), and an edge-detail auxiliary training
branch, our model effectively addresses challenges such as class imbalance, small-object
detection, and boundary refinement inherent in UAV data. Comprehensive experiments
conducted on multiple datasets—including the UAV-City, VDD, and UAVid—validate the
superiority of our approach in terms of segmentation accuracy and efficiency, achieving
higher mIoU scores and exhibiting strong generalization capabilities.

Our method significantly enhances feature representation by employing the MH-
Mamba Block, which improves the model’s ability to capture multi-scale features essential
for accurately segmenting objects of different sizes in aerial images. The ABEFM module
enhances boundary refinement and feature fusion by incorporating boundary information,
resulting in more precise segmentation maps with well-defined object boundaries. Addi-
tionally, the edge-detail auxiliary training branch allows the model to focus on intricate
details, improving the segmentation of small and complex objects. The consistent improve-
ments across the various datasets demonstrate the robustness and generalization capability
of our method.

The ablation studies confirm that each module contributes significantly to performance
improvement, and visual analyses further support these findings by displaying improved
feature maps, focused attention, and better boundary preservation. Our method achieves a



Drones 2024, 8, 671 21 of 25

good balance between accuracy and efficiency, maintaining inference speeds suitable for
real-time applications.

The findings of this research contribute to the field of semantic segmentation in UAV
imagery, providing a robust and efficient solution that can be leveraged in various real-
world applications, including agricultural management, environmental monitoring, and
crisis management. By addressing key challenges and demonstrating strong performance
across multiple datasets, our model offers a valuable tool for advancing UAV-based image
analysis.

8. Discussion

While Mamba-UAV-SegNet demonstrates strong performance across multiple UAV
datasets, it is important to acknowledge potential limitations and consider areas for future
improvement. This section discusses possible challenges the model may face under varying
conditions and outlines strategies to enhance its versatility and robustness.

8.1. Performance Under Different Environmental Conditions

Although our experiments cover diverse urban and rural scenes, the datasets used
predominantly feature images captured under favorable conditions with consistent lighting,
weather, and flight altitudes. In real-world applications, UAV imagery can be subject to
significant variability due to factors such as time of day, weather changes, and varying
flight heights. These factors can affect image quality and, consequently, the performance of
semantic segmentation models.

8.1.1. Time of Day Variations

Changes in illumination throughout the day can lead to shadows, glare, or low-light
conditions, potentially impacting the model’s ability to accurately segment objects. For
instance, strong shadows during sunrise or sunset may obscure features, while low-light
conditions at dusk can reduce image contrast.

Potential Impact: The model may experience decreased accuracy in edge detection
and object recognition due to altered pixel intensities and contrast levels.

Future Improvement Strategies: Incorporating data augmentation techniques that
simulate different lighting conditions can help the model generalize better. Additionally,
training with datasets captured at various times can enhance robustness to illumination
changes.

8.1.2. Weather Conditions

Adverse weather conditions such as rain, fog, or snow introduce noise and distortions
in aerial images. Rain droplets can blur images, fog can obscure details, and snow can alter
the appearance of surfaces.

Potential Impact: The presence of weather-induced artifacts may lead to misclassifica-
tion or missed detections, particularly for small objects or subtle features.

Future Improvement Strategies: Developing preprocessing methods to mitigate weather
effects, such as image dehazing or denoising algorithms, can improve image quality be-
fore segmentation. Training the model on weather-diverse datasets can also enhance its
adaptability.

8.1.3. Flight Altitude Variations

Variations in flight altitude affect the ground sampling distance (GSD) and the scale
of objects in the image. Higher altitudes result in lower-resolution images with smaller
object representations, which can challenge the model’s ability to detect and segment
small objects.

Potential Impact: The model’s performance in detecting small-scale features or objects
may decrease with increasing altitude due to reduced detail and pixel representation.
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Future Improvement Strategies: Integrating multi-resolution feature extraction tech-
niques or scale-invariant methods can help maintain performance across different altitudes.
Utilizing super-resolution algorithms to enhance image detail may also be beneficial.

8.2. Analysis of Failure Cases

Understanding scenarios where the model underperforms is crucial for identifying
weaknesses and guiding future enhancements.

8.2.1. Complex Occlusions

In environments with heavy occlusions, such as dense foliage or urban structures
overlapping, the model may struggle to accurately segment obscured objects.

Potential Impact: Occlusions can lead to fragmented segmentation masks or incorrect
classifications, reducing overall accuracy.

Future Improvement Strategies: Incorporating contextual reasoning modules or em-
ploying attention mechanisms that consider surrounding areas may improve segmentation
in occluded regions.

8.2.2. Class Imbalance

Classes with fewer training examples, such as rare objects or minority land cover
types, may be underrepresented in the model’s predictions.

Potential Impact: The model may exhibit a bias towards dominant classes, leading to
lower accuracy for underrepresented categories.

Future Improvement Strategies: Implementing class balancing techniques, such as
weighted loss functions or oversampling minority classes, can mitigate this issue. Collecting
more representative datasets may also enhance performance.

8.3. Future Work

Building upon the insights from this discussion, future research directions include the
following:

• Enhanced Data Augmentation: Employing advanced augmentation strategies to
simulate a wider range of environmental conditions, thereby improving the model’s
generalization capabilities.

• Adaptive Learning Mechanisms: Developing algorithms that allow the model to
adaptively adjust to varying conditions in real time, such as dynamic parameter
tuning based on input image characteristics.

• Integration with Other Modalities: Combining RGB imagery with other data sources
like thermal imaging or LiDAR could provide additional context, improving segmen-
tation accuracy under challenging conditions.

• Real-World Deployment Testing: Conducting extensive field tests to evaluate model
performance in diverse operational scenarios, providing valuable feedback for iterative
improvement.

8.4. Conclusion of Discussion

Addressing the aforementioned challenges is essential for advancing the practical
applicability of Mamba-UAV-SegNet in real-world UAV operations. By proactively identi-
fying potential limitations and proposing concrete strategies for improvement, we aim to
guide future efforts towards developing more robust and versatile semantic segmentation
models for UAV imagery.
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