
Citation: Palomeras, N.; Ridao, P.

Autonomous Underwater Vehicle

Docking Under Realistic Assumptions

Using Deep Reinforcement Learning.

Drones 2024, 8, 673. https://doi.org/

10.3390/drones8110673

Academic Editors: Daxiong Ji, Asiya

Khan, Pablo Borja, Dena Bazazian and

Mohd Hisham Bin Nordin

Received: 18 October 2024

Revised: 8 November 2024

Accepted: 10 November 2024

Published: 13 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Autonomous Underwater Vehicle Docking Under Realistic
Assumptions Using Deep Reinforcement Learning
Narcís Palomeras * and Pere Ridao

Computer Vision and Robotics Institute, Universitat de Girona (UdG), 17003 Girona, Spain; pere.ridao@udg.edu
* Correspondence: narcis.palomeras@udg.edu

Abstract: This paper addresses the challenge of docking an Autonomous Underwater Vehicle (AUV)
under realistic conditions. Traditional model-based controllers are often constrained by the com-
plexity and variability of the ocean environment. To overcome these limitations, we propose a Deep
Reinforcement Learning (DRL) approach to manage the homing and docking maneuver. First, we
define the proposed docking task in terms of its observations, actions, and reward function, aiming
to bridge the gap between theoretical DRL research and docking algorithms tested on real vehicles.
Additionally, we introduce a novel observation space that combines raw noisy observations with
filtered data obtained using an Extended Kalman Filter (EKF). We demonstrate the effectiveness
of this approach through simulations with various DRL algorithms, showing that the proposed
observations can produce stable policies in fewer learning steps, outperforming not only traditional
control methods but also policies obtained by the same DRL algorithms in noise-free environments.

Keywords: AUV; docking; deep reinforcement learning

1. Introduction

In recent years, the application of underwater robotic technologies has expanded
across various economic sectors [1]. It has become increasingly common to employ Re-
motely Operated Vehicles (ROVs) for Inspection Maintenance and Repair (IMR) tasks
involving manipulation or deployment of structures. Additionally, Autonomous Underwa-
ter Vehicles (AUVs) are also gaining recognition in this domain, evolving into a technology
considered to be reaching maturity [2]. This advancement has spurred the development of
complementary technologies aimed at overcoming some of the existing challenges AUVs
face, such as limited autonomy and low-bandwidth communications. To address these
issues, the concept of Docking Stations (DSs) has been introduced by researchers and
technological companies. Both AUV and ROV technologies are critical for missions that
require sustained autonomy and the development of DS systems plays a vital role in en-
abling continuous operations by providing a secure environment to recharge batteries and
facilitating high-bandwidth data transfer through their infrastructure.

Addressing the challenges of docking with an AUV involves addressing several key
topics. Firstly, accurately determining the DS position relative to the robot is crucial.
The literature has documented a variety of solutions, including vision-based methods using
passive or active markers [3] and acoustic approaches such as sonars or Ultra-Short Baseline
(USBL) acoustic beacons [4,5]. Vision-based methods are highly precise and cost-effective,
but their effectiveness is constrained by underwater visibility, which can be severely limited
in certain environments. In contrast, acoustic methods, although more costly and less
precise, allow estimation of the DSs relative position over longer distances, unaffected
by visibility conditions. A key factor distinguishing the docking systems discussed in
the literature is the control system implemented to execute the docking maneuver. These
systems vary based on the DS’s characteristics, the vehicle used, or the environmental
conditions considered. Focusing on the DS, various forms of DSs exist, including pole-
based [6,7] and landing [8] types, with those featuring a funnel shape [3,5,9–13] being

Drones 2024, 8, 673. https://doi.org/10.3390/drones8110673 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8110673
https://doi.org/10.3390/drones8110673
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-2266-9624
https://orcid.org/0000-0002-1724-3012
https://doi.org/10.3390/drones8110673
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8110673?type=check_update&version=1


Drones 2024, 8, 673 2 of 23

particularly widespread. Regarding the vehicles, while there are holonomic vehicles,
the majority of AUVs are torpedo-shaped. Within torpedo-shaped AUVs, distinctions
can be drawn between those using rudders for orientation or altitude adjustments [14]
and those using only thrusters [15]. Lastly, environmental factors significantly impacting
the docking maneuver include ocean currents and waves if the operation occurs near the
surface as in Launch and Recovery System (LARS)-type systems.

Most popular control systems employed for docking a non-holonomic AUV into a
funnel-shaped DS, regardless of current presence, include pursuit guidance controllers,
where a crab angle is used to compensate for ocean currents [9]; cross-track error con-
trollers [9,16], where the AUV heading compensates for the cross-track error; fuzzy con-
trollers [17,18], which divide the area close to the DS in various areas with different heading
and linear speeds using fuzzy rules; and side-slip controllers [19], which devise a path that
takes advantage of ocean currents to facilitate the docking process. Among these classical
controllers, model-based ones have proven to be the most capable. However, these meth-
ods have faced difficulties with some control tasks involving AUVs due to the complexity
of accurately modeling underwater dynamics. To avoid this modeling, there have been
attempts to use learned policies through machine learning instead of traditional control
methods. Advances in Deep Reinforcement Learning (DRL) have shown that it is possible
to learn a homing and docking maneuver policy in simulation; however, no DRL-based
systems have been yet demonstrated in real AUVs. Existing methods rely on observations
and actions that frequently differ from those of a real system, and safety constraints, which
are of utmost importance during real operations, sometimes are not considered. Moreover,
most of the articles present noise-free observations that are unrealistic, and some require a
large number of training episodes, which would be unfeasible with a real robot.

This paper aims to bridge the gap between theoretical results using DRL and docu-
mented docking systems tested under real conditions. It includes two main contributions:
(i) the definition of a docking task DRL under realistic assumptions and (ii) the introduction
of a compounded observation space.

The first contribution provides the definition of a docking maneuver task involving
a torpedo-shaped vehicle and a funnel-shaped DS, a challenging problem that, in the
DRL literature, has been addressed by very few authors. The docking maneuver has been
implemented as an open-source environment, based on the popular Gymnasium AI [20],
and is released to the community [21] for future benchmarking. The task includes the
use of realistic control signals, noisy observations, and safety constraints, and it simulates
the effect of ocean currents. A dense reward function that helps the DRL agents learn the
docking maneuver faster has also been designed. Part of this reward function is based on a
metric previously proposed to evaluate docking performance in real systems [22].

The second contribution of this paper is the introduction of a compounded observation
space that combines raw noisy observations with observations filtered using an Extended
Kalman Filter (EKF). This observation space is designed to exploit the benefits of both
types of observations: on one hand, fast but noisy signals unaffected by potential filtering
delays, and on the other, reduced-noise data with improved signal clarity. This compound
mechanism allows the agent to learn to focus its attention on the most relevant elements
at any given moment. This observation space is the main novelty of this paper, as it can
be used with most DRL algorithms, without any further modifications, to solve control
problems where noise is inevitable. To apply it, it is only necessary to implement a custom
filtering strategy and combine its output with the raw observations obtained from the
noisy environment. Results reported in this article show that the proposed compounded
observation is capable of training policies in noisy environments that outperform not only
traditional control methods but also policies obtained by the same DRL algorithms in the
same environment but with noise-free observations.

This paper is organized as follows. Section 2 reviews the literature on reinforcement
learning applied to AUVs, with a particular focus on autonomous docking tasks. Section 3
presents our methodology, including the design of the state and action spaces, the reward
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function, and the development of the Gymnasium environment. Next, a docking controller,
previously demonstrated in real-world applications, is presented as it will be used as a
baseline for comparison and the proposed enhanced observation space is introduced. Fi-
nally, all the scenarios in which the DRL algorithms will be trained are described. Section 4
presents experimental results, comparing the previously introduced controller with the
DRL-obtained policies using three state-of-the-art DRL algorithms: Soft Actor-Critic (SAC),
Proximal Policy Optimization (PPO), and Twin Delayed Deep Deterministic Policy Gra-
dients (TD3). Each of the three algorithms is trained in four different docking scenarios:
without noise in the observations, with noise in the observations, with filtered noisy ob-
servations, and using the proposed observation space that combines both filtered and raw
data. Finally, Section 5 summarizes the study’s contributions.

2. Related Work

DRL has been applied to a variety of tasks involving AUVs, such as path tracking and
trajectory control [23–28], even in the presence of unknown and time-varying dynamics [29],
five-Degree-of-Freedom waypoint navigation [30], depth control [31], path planning with
obstacle avoidance [32–34], and beam alignment control within a cluster of AUVs for optical
communication [35].

While path planning is a complex task where a vehicle must not only reach a position
but also avoid surrounding obstacles, the tasks of path planning or trajectory control differ
from docking in several key aspects. First, the target in path planning is typically defined by
position alone, whereas in docking, it is defined by both position and orientation. Secondly,
the acceptance radius required by a trajectory control or path tracking algorithm usually
ranges from 2 to 5 m, while in docking, it is much smaller, typically between 0.5 and 1 m.
Finally, during docking, the vehicle’s speed at the moment of arrival at the target must be
kept within safety limits, as arriving at high velocity could cause damage to both the vehicle
and the docking station. These constraints make docking a very complex control problem,
especially when using an underactuated vehicle and in the presence of disturbances such
as ocean currents.

In the context of docking, different approaches have been studied. In [36], a Convolu-
tional Neural Network (CNN) was used to guide and control an AUV into the entrance
of a docking station by mapping the images of a camera to an error signal. However,
a more common approach has been to use DRL to automatically obtain a policy that guides
the AUV inside a funnel-shaped DS. In this context, Anderlini et al. [37] presented two
different DRL algorithms: a continuous Deep Deterministic Policy Gradient (DDPG) [38]
and a discrete Deep Q-Networks (DQN) [39]. Both algorithms were used to control the
surge, heave, and pitch of a torpedo-shaped AUV while docking in a fixed funnel-shaped
structure. The agent observations include the perfect positions and velocity of the robot,
as well as the thruster speed with the DS pose always fixed. The action space contains
the fin angle and the propeller thrust. The reward function combines action, position,
and velocity costs with high penalties for boundary breaches and high rewards for suc-
cessful docking. The hydrodynamics equations of the system are used to simulate the
docking task and no disturbances are considered. The DRL algorithm is compared to a
classical PID-based approach and an optimal controller. Patil et al. [40] propose a system
to dock a torpedo-shaped vehicle in a funnel-shaped DS assuming that the DS depth is
known and, therefore, only the Surge and Yaw velocities must be controlled. The agent
observations include the perfect positions and velocity of the robot, as well as the thruster
speed, with the DS pose always fixed. The action space is formed by the rotational speed of
each thruster. No environmental effects such as waves or ocean currents are considered.
The reward function includes three elements: distance and orientation between the AUV
and the DS and the utilization of the thrusters. The system is trained and evaluated using
the UUV simulator [41], a physics simulator, by means of several DRL algorithms: PPO [42],
TD3 [43], and SAC [44]. Zhang et al. [14] present another DRL-based docking controller
based on the popular PPO algorithm. To improve the performance of PPO, the authors
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propose including an adaptive rollback clipping mechanism and a self-generated demon-
stration replay. In contrast to traditional methods, this approach considers both wave and
ocean current disturbances. The action space contains the propeller speed and the angle of
two rudders and the observation space includes this information and the AUV pose with
respect to the DS encoded using the distance (∆dr), the distance to the central axis (∆dy),
the difference in angle (∆ψc), and the navigation angle to the final endpoint (∆ψg). A dense
reward function composed by six different elements is used.

The DRL approaches for trajectory control, path planning, and docking presented
here share several elements. They assume perfect knowledge of the relative position and
orientation between the AUV and the target position or DS, with no noise or uncertainty
present in the observations. In fact, very few authors have studied how noisy state obser-
vations influence the performance of DRL algorithms, limiting their success in real-world
applications. One relevant work in this area focuses on multi-agent systems and examines
how an agent determines whether its private observations are informative enough to be
shared with others despite high observation noise in the environment [45]. A more recent
study on this topic explores the training robustness of distributional reinforcement learning
algorithms when exposed to noisy state observations [46]. Despite these examples, it is
challenging to find studies that specifically examine the impact of noisy observations on
control tasks and methods to mitigate their adverse effects on policy performance.

Focusing again on papers addressing DRL tasks involving AUVs, nearly all cited
works exert low-level control over the vehicle by directly actuating the propellers and/or
rudders. Additionally, the proposed reward functions often employ multiple terms to guide
the robot toward the goal. Frequently, essential safety constraints, such as limiting maxi-
mum velocity at the goal or ensuring stability during learning, both critical considerations
for real AUV applications, are overlooked. Furthermore, some DRL methods proposed
in the literature require a substantial number of training episodes for the policy to learn,
resulting in potentially prohibitive training times on real systems. This last consideration
does not receive the attention it deserves in the literature despite being crucial for real
applications where the time available for training is limited.

The system we propose builds on previous work, introducing changes to align it
more closely with real-world underwater docking practices. First, we study the effect of
incorporating sensor noise into the agent observations. This is more realistic as no sensor is
perfect and it is therefore worthwhile to evaluate how the agent performs when the state
observation is affected by noise and how this noise affects the learned policy. Second, we
control the vehicle at a higher level, using linear and angular velocity commands. This
is a common in practice as higher-level behaviors, such as a trajectory controller or a
docking maneuver controller, do not usually have direct access to the lower-level controls;
instead, a safety system takes over (e.g., a front-seat and back-seat dual-layer architecture).
Furthermore, this allows for a certain degree of decoupling between the control policy and
the vehicle dynamics as the intermediate controller is responsible for achieving the desired
set-points. We use a similar reward function to previous DRL docking algorithms but
based on a geometric measure of docking performance used in a real application with an
AUV [47]. Finally, some constraints that affect only real systems, such as maximum contact
velocity, number of episodes to learn, and agent stability while learning, are also considered.

3. Learning to Dock Under Realistic Assumptions

We define the control problem of docking an under-actuated AUV into a funnel-shaped
DS influenced by constant and bounded ocean currents yet positioned far enough from the
surface to avoid wave disturbances. The primary localization system considered involves
an inverted Ultra-Short Baseline (USBL) that enables the AUV to estimate the range and
bearing for the DS. This system is resilient to water turbidity and allows us to estimate the
DS pose from distances extending to several tens of meters, at the cost of being noisier than
a vision-based system. The AUV is also equipped with an Inertial Measurement Unit (IMU),
a Doppler Velocity Log (DVL), and a pressure sensor for estimating its linear and angular



Drones 2024, 8, 673 5 of 23

velocity, attitude (i.e., orientation in 3D space), and depth. All sensor measurements,
both the USBL and the onboard navigation sensors, are considered noisy. The orientation
and depth of the DS can either be pre-assumed by the AUV or be measured and then
acoustically transmitted by the DS. Therefore, it is assumed that the vehicle only needs
to control its linear and angular velocity but not its roll, pitch, or depth. This approach is
inspired by real trials conducted with the Sparus II AUV [48], under the Loon-Dock [3]
and the ATLANTIS H2020 projects [47]. The proposed system must effectively execute the
docking maneuver, even in the presence of ocean currents, while ensuring that the contact
to the DS is executed at a reduced speed (i.e., around 0.3 m/s, preventing any harm to
either the AUV or the DS). Additionally, the maneuver should minimize both the duration
and energy used.

3.1. State Space and Action Space

The docking problem can be modeled as a Partially Observable Markov Decision
Process (POMDP) defined with the tuple (S ,A,O, T ,R, γ), where S denotes the state
space, A represents the action space, O is the observation space, T : S × A → P(S)
defines the state transition probabilities (where P(S) indicates the probability distribution
over the subsequent state s′ given the current state s and action a), R : S → R specifies
the reward received in state s, and γ ∈ [0, 1) is the discount factor which influences the
importance of future rewards.

Given that the state S is indirectly observable, we focus on learning a policy π(a|o)
based on observations o ∈ O, rather than on the underlying states s ∈ S . An agent
following the policy π will, at time t, perceive an observation ot, undertake an action
at, and consequently receive an immediate reward rt along with a new observation ot+1.
Assuming the policy π is parameterized by θ, a policy gradient method seeks to adjust θ to
maximize the expected cumulative reward:

θ∗ = argmax
θ

J(θ) = argmax
θ

Eπ

[
∑

t
γtrt

]
(1)

3.1.1. Observations

For the proposed docking task, the observation an agent can make from a particular
state, considering a realistic sensor suite including an inverted USBL system, an IMU, and a
DVL, consists of the following eight elements:

o =
[
ρ, ψ, α, auvvx, auvvy, auvω

]
(2)

in which ρ and ψ define the DS position with respect to the AUV in polar coordinates,
i.e., the range and bearing in the X-Y plane as measured by the USBL sensor. α is the AUV
angle with respect to the DS frame measured along the Z-axis and auvvx, auvvy and auvω
the linear and angular AUV velocities measured in the AUV frame by the DVL and IMU
sensors. The velocities auvvx and auvvy are measured by the DVL with respect to the sea
bottom. Therefore, they include both the vehicle’s velocity generated by its actuators and
the effect of the ocean current.

3.1.2. Actions

A popular action space for controlling an underwater vehicle in the X-Y plane is
defined by two elements: linear and angular velocity commands.

A = [νd, ωd] (3)

where νd represents the desired forward linear velocity and ωd the desired angular ve-
locity, both in the vehicle frame. This approach is suitable for the control of typical un-
derwater vehicles, where high-level controllers request a lower-level velocity controller
to execute their commands. The action space is bounded by νd = [−0.4, 0.8] m/s and
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ωd = [−0.3, 0.3] rad/s, ensuring realistic and safe operational limits for a vehicle such as
the Sparus II AUV [48].

3.2. Reward Function

The reward function is divided into four elements: three negative rewards that guide
the robot to approach the DS efficiently and at the correct speed and a final reward, which
can be positive or negative, indicating whether the contact between the AUV and the DS
is successful.

3.2.1. Approaching

A dense reward is given at each iteration as a function of two elements: the distance
between the AUV and the DS and energy consumed by the AUV actuators. The aim is to
minimize the time of the docking maneuver, as well as the energy wasted.

rdist = − ρ

max_dist
(4)

rτ = −
∣∣∣∣τauv

wτ

∣∣∣∣ (5)

max_dist is the typical distance at which the docking maneuver is initiated (approximately
30 m). τauv represents the vector of forces and moments requested from the thrusters to
control the vehicle’s motion. In the simulated AUV, this value ranges between −40 and
40 N and has been scaled using wτ . While this value does not exactly represent the energy
consumed by the thrusters, it is closely related to it and, unlike energy, is easier to obtain in
a real setup.

3.2.2. Entrance Velocity

To ensure gentle contact between the DS and the AUV, the following equation is used:

rentry_vel =

{
0 if ρ ≥ dappro,

max(auvv − vmax, 0)×−wvel ×
(

dappro−ρ
dappro

)
if dappro > ρ > 0,

(6)

where auvv is the norm of the AUV velocity in the X-Y plane (auvv =
√

auvv2
x +

auvv2
y),

the desired maximum speed for entry has been established at vmax = 0.3 m/s, the distance
to the approach at 3 m (dappro = 3), and with ρ being the distance between the AUV and
the DS. Unless otherwise stated, all velocities and positions are measured with respect to
the DS frame. This reward progressively affects the last meters of the docking maneuver
and its weight can be adjusted using wvel .

3.2.3. Contact Reward

In the moment of contact between the AUV and the DS, a final reward is given.
The challenge of guiding a torpedo-shaped AUV into a funnel-shaped DS can be abstracted
by representing the DS as an isosceles triangle and the AUV as a line segment. Under this
abstraction, it is feasible to compute a measure indicating the efficiency of the AUV’s
entry into the DS, based solely on the AUV’s distance from the DS’s central axis (yauv)
and its angle relative to the same axis (α). In Esteba et al. [22], this geometrical analysis is
introduced. The following equations delineate the methodology proposed to determine
this measure:

α0 = atan2(yauv, xauv)− π, (7)

with xauv and yauv being the AUV position with respect to the DS,

eα = α − α0, (8)
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where α is the AUV orientation with respect to the DS:

w =

{
w1 if sign(eα) == sign(yauv),
w2 otherwise.

(9)

g = 1 − w · |eα| · (1 + |α0|) (10)

rg = g · wcontact (11)

Equation (10) is formulated in such a way that it yields a g value of 1 for an ideal
docking maneuver. For scenarios where the AUV successfully enters the DS, the g value is
constrained to 0 < g ≤ 1. In contrast, a value of g ≤ 0 signifies that the AUV fails to enter
the DS. This delineation is illustrated in Figure 1 using a weight factor of wcontact = 200.
Furthermore, the coefficients in (9) are set to w1 = 1 and w2 = 3.05, as determined in the
original article [22].

(x, y, α) (−0.75, 0.0, 0.0) (−0.75, 0.25, 0.0) (−0.75, 0.6, 0.0)
rg 200 114 −26

(x, y, α) (−0.75, 0.6, −0.5) (−0.75, 0.25, −0.5) (−0.75, −0.5, −0.5)
rg 141 56 −145

Figure 1. AUV entrance pose in DS coordinates and contact reward.

3.2.4. Total Reward

The total reward is computed by summing all the previous terms. The weights
wτ = 100, wvel = 10, and wcontact = 200 were determined experimentally to achieve a total
reward close to 0 for valid docking maneuvers.

r = rdist + rτ + rentry_vel + rg (12)

3.3. Managed Surge Controller

To establish a baseline for comparing the DRL policies obtained in this article, we
define here a managed surge controller [5] that was designed with the same limitations: a
torpedo-shaped AUV without rudders docking on a funnel-shaped DS. This controller was
tested with a real vehicle, the Sparus II AUV, in the context of the ATLANTIS H2020 project
with successful results [47]. For the convenience of the readers, the main control algorithm
is depicted here. However, the readers are referred to [5,47] for more information. Figure 2
presents the main elements discussed below.

Given the state of the AUV with respect to the DS, the value of the ocean current (oc),
and the desired maximum entrance velocity (vmax), the controller calculates the AUV’s
desired linear and angular velocities to dock in the DS effectively.

1. Calculation of stream sign (xss):

xss = vmax − ocx (13)
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This equation calculates the difference between the desired entry velocity (vmax) and
the x component of the ocean current (ocx) to understand whether the vehicle has to
move in favor or against the ocean current.

2. Crab angle (θcrab) to compensate for the ocean currents and crab limit (θlimit) to ensure
the AUV can enter the DS:

θcrab = atan2(−ocy, vmax − ocx) (14)

θlimit = atan(
Fy

Fx
) (15)

3. Offset to the DS center axis (yg) to improve the performance of the docking maneuver
when a crab angle is used. It is defined by:

yg =

{
−(F + l

2 ) sin(θcrab) if − θlimit ≤ θcrab ≤ θlimit,
−sign(θcrab) ·

Fy
2 otherwise.

(16)

4. Error in Y-coordinate (e):
e = yauv − yg · sign(xss) (17)

The error (e) between the AUV’s current yauv coordinate and the goal yg coordinate,
adjusted for the sign of xss, indicating how far the AUV is from its desired path.

5. Desired angle (β):
β = atan2(e, ∆d · sign(xss)) (18)

Calculation of the desired angle (β) to reduce error (e) and align the AUV towards the
DS, using a specific look-ahead distance (∆d).

6. Desired angular velocity (wd):

ωd = clip(((θcrab − β)− α) · Kw,−0.3, 0.3) (19)

The desired angular velocity (ωd), based on the difference between the angle θcrab, β
and the current AUV angle (α), scaled by Kw and clamped to the AUV’s operational
limits (i.e., ±0.3 rad/s).

7. Desired linear velocity (vd):

c = k1 · atan(k2 · e) · sign(α) (20)

vd = clip(
xss

cos(α)
− c,−0.4, 0.8) (21)

The desired linear speed (vd), adjusted for the current angle of the AUV (α) and a
speed regulation term (c), which is itself a function of the error in the y-coordinate,
clipped between operational speed limits of −0.4 and 0.8 m/s.
The constants used in the implementation of this controller are DS and AUV size

Fy = 0.5, Fx = 2.0, F =
√

F2
x + F2

y , l = 1.6, look ahead distance ∆d = 6, and propor-
tional gains Kw = 0.5, K1 = 0.5, and K2 = 1.0 as in the original article.

Figure 2. Main elements featured in the control algorithm presented in [5].
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3.4. DRL Algorithms

Numerous DRL algorithms exist, each one with unique strengths and weaknesses.
The critical requirements of the proposed application are the capability to handle contin-
uous spaces for both observations and actions and the maximal sampling efficiency to
allow the system to be trained with a real robot. The first necessity, to handle continu-
ous spaces, makes the use of renowned DRL algorithms such as DQN [39] difficult. If a
discrete algorithm is to be used in a continuous environment, it is necessary to discretize
the observation space. However, in environments with high dimensionality, this becomes
unfeasible. Regarding efficiency in sampling, it typically denotes the ability to reuse ex-
periences from previous policies in newer ones during the learning process, a feature
present in off-policy DRL algorithms but not in on-policy ones. Notable examples of on-
policy algorithms include Asynchronous Advantage Actor-Critic (A3C) [49], which utilizes
multiple parallel agents to stabilize training and improve efficiency by asynchronously
updating a global neural network based on their individual experiences; Trust Region
Policy Optimization (TRPO) [50], which optimizes policies by making the largest possible
update step without straying too far from the previous policy, utilizing a trust region
approach; and PPO [42], which simplifies and enhances the approach of TRPO by imple-
menting a clipped objective function to maintain a trust region, which facilitates both the
implementation and the tuning. Modifications to these algorithms have been proposed
to allow them to reuse previous experiences and be more sample efficient, for example,
by using importance sampling [51]. However, these modifications tend to complicate the
final implementation and require extensive tuning in order to be properly used. On the
other hand, prominent off-policy reinforcement learning algorithms include DQN, one of
the pioneer algorithms in deep reinforcement learning, but it is not suitable to handle con-
tinuous spaces; DDPG [38], which extends DQN to continuous action spaces by combining
the Q-learning framework with policy gradient methods; TD3 [43], which improves upon
DDPG by addressing function approximation errors through the use of twin Q-networks
and delayed policy updates; and SAC [44], which is an off-policy algorithm that optimizes
a stochastic policy in an entropy-augmented reinforcement learning framework, promoting
exploration and stability. SAC employs two distinct models: the actor, which is based on a
policy gradient method and governs the agent’s actions, and the critic, which is derived
from an action-value function method and assesses the decisions made by the actor. Train-
ing for both models occurs concurrently; the actor’s policy π(s, a) is optimized to enhance
the cumulative reward for the agent’s actions, whereas the critic’s function Q(s, a) is refined
to reduce the error in approximating the reward function.

3.5. Learning Approach

In a realistic environment, the DRL agent responsible for learning the docking task
will need to manage noisy observations. Several researchers have already addressed
the challenge of noisy observations when using DRL algorithms [52,53]. The proposed
solutions typically involve filtering or preprocessing these observations to ensure that the
learning agent receives cleaner and more reliable inputs. However, the use of filters can
introduce side effects that are not present in the original noisy data, such as signal lag,
delays, loss of important details, or over-smoothing. On the other hand, filtered data have
reduced noise and improved signal clarity. To leverage the strengths of both types of data,
we propose enhancing the observations provided to the DRL algorithm by combining
the raw noisy data with the filtered data, allowing the agent to focus its attention on the
most relevant elements at any given time. With these compounded observations, not only
can the learning algorithm weigh the importance of each element within the observation,
but, as other authors have noted [54], including noisy data in the observations can have a
regularization effect, preventing overfitting, improving exploration, and helping to learn
more robust policies that can later be transferred to the real world.

To apply the proposed compounded observations shown in Figure 3, a filtering strat-
egy must be defined. For the problem at hand, we have designed an EKF to estimate the
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state of the docking task from the raw observations provided by the inverted USBL system,
the IMU, and the DVL sensors.

Figure 3. Proposed learning approach. The figure shows the observations obtained from the en-
vironment and illustrates how the compound observation is created by combining both filtered
and unfiltered observations. Additionally, it displays the actions sent by the DRL agent to the
environment, along with the reward generated by the environment and processed by the agent.

The EKF is presented below, starting with the definition of its state vector (see Figure 4
for a visual representation of the elements involved).

Figure 4. Elements involved in proposed EKF state and observation.

x = [x y α ν ω]T . (22)

Here, x and y represent the AUV position relative to the DS in the X-Y plane, α denotes
the AUV angle along the Z-axis relative to the DS, ν represents the linear velocity of the
AUV in the X-Y plane measured in the AUV frame, and ω indicates the angular velocity of
the AUV along the Z-axis, also in the AUV frame. The control input is defined as:

uk = [νd ωd]
T , (23)

with νd and ωd being the desired linear and angular velocities of the AUV. The state
transition model is defined as:

f (xk, uk) =



xk+1 = xk + (cos(αk) · νk + ocx) · ∆t
yk+1 = yk + (sin(αk) · νk + ocy) · ∆t
αk+1 = αk + ωk · ∆t
νk+1 = νk + kν(νd − νk) · ∆t
ωk+1 = ωk + kω(ωd − ωk) · ∆t

(24)

The ocean currents
[
ocx ocy

]
are considered known in the state transition model. This

assumption is reasonable because the vehicle’s DVL sensor can measure velocities relative
to both the water mass and the ground. Consequently, it is possible to isolate the velocity
component attributable to the ocean current, especially when considering that the ocean
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current remains constant in both direction and magnitude. It is also worth noting that a
first-order model has been introduced to gradually adjust the speed towards the desired
values, accounting for some inertia in the velocity changes. The model parameters have
been set to kν = 2.5 and kω = 2.5 in order to provide the system with a response similar to
that of the real vehicle (i.e., the Sparus II AUV). The Jacobian of the state transition model
is obtained by deriving the previous equations with respect to the state vector x:

A =


1 0 − sin(αk) · νk · ∆t cos(αk) · ∆t 0
0 1 cos(αk) · νk · ∆t sin(αk) · ∆t 0
0 0 1 0 ∆t
0 0 0 1 − kν · ∆t 0
0 0 0 0 1 − kω · ∆t

. (25)

Using the same observation vector as shown in (2), the measurement model is defined
as follows:

h(x) =



ρ
ψ
α
ν′x
ν′y
ω

 =



√
x2 + y2

atan2(−y,−x)− α
α

ν + (ocx cos(α) + ocy sin(α))
ocy cos(α)− ocx sin(α)

ω

. (26)

The Jacobian of the measurement model is obtained deriving the previous equations
with respect to the state vector x:

H =



x
ρ

y
ρ 0 0 0

− y
ρ2

x
ρ2 −1 0 0

0 0 1 0 0
0 0 −ocx sin(α) + ocy cos(α) 1 0
0 0 −ocy sin(α)− ocx cos(α) 0 0
0 0 0 0 1


(27)

Once all the matrices are defined, the EKF algorithm can be implemented. The algo-
rithm is divided into two steps: the prediction step and the update step. In the prediction
step the state is estimated based on the previous state and the control input as follows:

xk+1 = f(xk, uk), (28)

Pk+1 = AkPkA⊤
k + Qk. (29)

In the update step, the state is corrected based on the observations as follows:

yk = zk − h(xk), (30)

Sk = HkPkH⊤
k + Rk, (31)

Kk = PkH⊤
k S−1

k , (32)

xk+1 = xk + Kkyk, (33)

Pk+1 = (I − KkHk)Pk. (34)

Qk is the noise associated with the prediction model, Rk is the noise associated with
the measurements, and zk are the raw observations. The noise levels used in Rk are those
defined by the Gymnasium environment that simulates the docking task (see Section 4.1),
while the noise levels for Qk have been empirically estimated and are defined in Table 1. In a
real application, both the sensor noise Rk and the model noise Qk must be characterized to
obtain accurate values. Although here we have access to the exact noise values for Rk, since
the values for Qk are unknown, an empirical estimation has been made to achieve a filter
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response similar to what would be expected in a real situation after proper characterization
of these values. Figure 5 illustrates the impact of noise in the observations and the effect of
the EKF implemented here.

Table 1. Noise values for the state transition model in the process noise covariance matrix Q.

State Variable Noise (σ)

x 0.02 m
y 0.02 m
ψ 0.05 rad
ν 0.01 m/s
ω 0.01 rad/s

Figure 5. Effect of the noise in the observations and the EKF implemented.

4. Results

The results presented here compare the performance of the control law described in
Section 3.3 with three different DRL algorithms, trained in four scenarios that differ based
on the observations the agent receives. In the first scenario, the observations described in (2)
are provided to the DRL agent without any added noise. While this setup is unrealistic,
it serves as a baseline for all DRL results. In the second scenario, the same observations,
but with the noise specified in Section 4.1, representing the data a robot would have access
to in a real environment, are supplied. In the third scenario, the observations consist of these
same noisy observations, but after being passed through the EKF presented in Section 3.5.
Finally, in the fourth scenario, the agent utilizes the proposed compounded observations,
which combine both the raw noisy data and the filtered data (see Figure 3). All the tests
were conducted using the Gymnasium environment introduced in the following section.

4.1. Gymnasium Environment

An environment based on Gymnasium [20] has been developed to train DRL algo-
rithms in the targeted docking application [21]. This environment employs dynamics that,
while simplified, encapsulate common underwater effects faced by an AUV, including
damping, ocean currents, and constrained acceleration/deceleration. The proposed envi-
ronment computes the vehicle state s =

(
x, y, α, vx, vy, ω

)
from a given action a = (νd, ωd).

First, the desired action is transformed to a force τ using a basic closed loop Proportional-
Integral-Derivative (PID) controller. Then, the AUV velocity in each axis is calculated using
the following equations.

d = Kdl · ν + Kqdl · |ν| · ν, (35)
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acc =
τ − d
mass

, (36)

ν = clip(ν + ∆t · clip(acc,−max_acc, max_acc),−max_ν, max_ν). (37)

Once velocities are computed, pose can be obtained integrating them by time (∆t) and
adding the effect of the ocean current (ocx, ocy):xi+1

yi+1
αi+1

 =

xi
yi
αi

+

cos(αi) − sin(αi) 0
sin(αi) cos(αi) 0

0 0 1

 ·

νx
νy
ω

+

ocx
ocy
0

 · ∆t (38)

The parameters used are Kdl = 6.0 Ns/m and Kqdl = 12.0 Ns2/m as lineal and
quadratic dumping values, max_acc = 5.0 m/s2 and max_v = 1.0 m/s as maximum
acceleration and velocity for each axis, and mass = 60 Kg for the added mass.

In the Gymnasium environment, the DS is always initialized at (0, 0, π). The AUV
pose is initialized randomly between(

−30 . . . − 25,−7.5 . . . 7.5,−π

2
. . .

π

2
, 0, 0, 0

)
,

with all variables being independent. An invariant ocean current is also initialized ran-
domly at

oc = (−0.3 . . . 0.3,−0.3 . . . 0.3).

The values in Table 2 show the standard deviations used to add noise to each of
the observation measurements. Note that for ρ, this standard deviation depends on the
actual distance.

Table 2. Noise values for each element in the observation vector.

Parameter Standard Deviation

Distance to DS (ρ) 2.5% of the real distance
Angle to DS (ψ) 1.5◦

AUV-DS relative Angle (α) 3◦

AUV Velocity in X (auvvx) 2 cm/s
AUV Velocity in Y (auvvy) 2 cm/s

AUV Angular Speed (auvω) 0.2◦/s

The observation vector is calculated at each step using the AUV state, the DS position,
and the noise described in Table 2. Each step in the environment corresponds to 0.2 s.
An episode is truncated after 2 min (600 steps) and terminated if the vehicle reaches a
position (x, y) with respect to the DS:

−0.8 ≤ x ≤ 0.0,

−0.5 ≤ y ≤ 0.5.

4.2. DRL Results

As discussed in Section 3.4, off-policy algorithms can reuse experiences from previous
policies in newer ones during the learning process, being more sample efficient than on-
policy methods. As one of the main limitations when dealing with a real vehicle is the
number of steps required to learn a policy, SAC and TD3 seem to be the most suitable
candidates for learning the proposed task. However, since the literature contains many
successful cases where PPO has been used to complete complex control tasks, this algorithm
has also been included in our study.

The process of tuning hyperparameters in DRL algorithms typically involves selecting
parameter ranges, evaluation criteria, and optimization techniques. Common strategies
for hyperparameter optimization include grid search, random search, and more advanced
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methods such as Bayesian optimization, which systematically explore the parameter space
to find the combination that maximizes the performance of the DRL model. Applying these
optimization techniques directly to real vehicles presents significant challenges due to the
physical and safety constraints inherent in real-world environments and especially because
each trial is highly time-consuming and costly. In the results presented here, we have
intentionally minimized the fine-tuning of the hyperparameters. Instead, we have aimed,
as much as possible, to use the most standard parameters found in the literature in order
to obtain results that could be more easily replicated on a real vehicle. Table 3 presents
the parameter selections for the SAC algorithm, while Table 4 details the parameters
used for the TD3 algorithm, and Table 5 outlines the parameters for the PPO algorithm.
As shown, most parameters are set to their default values provided by the stable-baselines3
library [55], from which the implementations of SAC, TD3, and PPO have been sourced for
these experiments. The most significant modifications to these hyperparameters include a
reduced learning rate and an increased sigma for the normal_action_noise_sigma parameter
in TD3, as well as an expanded network architecture for PPO, with 256 units per hidden
layer instead of the default 64. Increasing the network capacity in PPO does not significantly
affect the learning time, but it does improve the performance of agents trained with both
filtered and compounded observations. On the other hand, it negatively impacts the
performance of agents trained with noisy observations. Although these agents perform
the worst regardless of network capacity, they show a better performance when using a
reduced-capacity network.

Table 3. SAC parameters.

Parameter Value

alpha 0.2
batch_size 256
gamma 0.99
NN hidden_size 256
lr 0.0003
replay_size 1,000,000
start_steps 10,000
target_update_interval 1
tau 0.005
updates_per_step 1
network architecture 2 hidden layers with 256 units each

Table 4. TD3 parameters.

Parameter Value

learning_rate 0.0005
buffer_size 1,000,000
learning_starts 100
batch_size 256
tau 0.005
gamma 0.99
train_freq 1
gradient_steps 1
policy_delay 2
target_policy_noise 0.2
target_noise_clip 0.5
normal_action_noise sigma 0.2
network architecture 2 hidden layers with 400 and 300 units
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Table 5. PPO parameters.

Parameter Value

learning_rate 0.0003
n_steps per update 2048
mini batch_size 64
gamma 0.99
NN hidden_size 64
gae_lambda 0.95
clip_range 0.2
normalize_advantage True
ent_coef 0.0
vf_coef 0.5
max_grad_norm 0.5
use_sde False
network architecture 2 hidden layers with 256 units each

Each DRL algorithm is trained in four distinct scenarios, each differing from the
others only in the observations provided: observations without noise (identified as no
noise), observations with noise (identified as noise), noisy observations filtered with an
EKF (identified as noise filtered), and a combination of noisy and filtered observations
(identified as compound obs.). Figures 6–8 present the evolution of the total reward and the
time required to complete the task during the learning process. These figures are generated
by averaging the total reward and time per episode over 10 episodes every 10,000 steps
in Figure 6 and every 50,000 steps in Figures 7 and 8. Because the difficulty of the task
changes drastically according to the initial conditions (i.e., AUV position and orientation
with respect to the DS, but mostly the amount of ocean currents present in the episode),
the variability in the plots is high.

(a) (b)

Figure 6. SAC agent training results: evolution of (a) total reward and (b) time to complete the task
per episode.

(a) (b)

Figure 7. TD3 agent training results: evolution of (a) total reward and (b) time to complete the task
per episode.
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(a) (b)

Figure 8. PPO agent training results: evolution of (a) total reward and (b) time to complete the task
per episode.

Looking at the training figures, we can see that all three algorithms are able to learn the
task (i.e., reaching a total reward close to 0). However, while SAC requires only between
200,000 and 700,000 steps depending on the scenario, TD3 and PPO require between
1,500,000 and 2,500,000 steps to achieve similar results. Training on a laptop equipped with
an RTX3050, a basic consumer NVIDIA card, SAC took around 2.5 h to learn each policy,
TD3 took around 4 h, and PPO was the fastest, taking around 2 h per scenario.

To better evaluate the performance of these algorithms and reduce the high variability
seen in Figures 6–8 due to different initializations, Table 6 presents the average total
reward, the time per episode, and the success rate after 500 trials. To obtain these data,
12 new models were trained, giving SAC 500,000 steps to learn the task and TD3 and PPO
2,500,000 steps. Note that the success rate is a measure that only considers whether the
AUV was able to dock in the DS in less than 2 min and at the appropriate speed. In the
end, this is what is most interesting for us, as the total reward is heavily influenced by
the initial conditions and includes elements, like the distance between the AUV and the
DS, which are useful to help the agent learn the task but are not relevant for evaluating
the application.

Table 6. Results for SAC, TD3, and PPO algorithms.

Algorithm Scenario Success Rate (%) Avg. Time (s) Total Reward

SAC No noise 97.0 47.1 ± 11.4 42.7 ± 63.1
SAC Noise 73.4 48.3 ± 11.0 −23.3 ± 99.5
SAC Noise filtered 88.4 46.9 ± 12.7 0.7 ± 78.1
SAC Compound obs. 99.4 44.5 ± 11.0 36.7 ± 80.1

TD3 No noise 98.0 44.1 ± 10.8 50.8 ± 48.3
TD3 Noise 69.0 47.4 ± 9.8 −44.1 ± 106.9
TD3 Noise filtered 97.2 45.3 ± 15.5 −0.1 ± 61.0
TD3 Compound obs. 99.8 44.4 ± 9.7 36.1 ± 30.6

PPO No noise 88.2 50.7 ± 15.6 −41.0 ± 93.9
PPO Noise 64.2 68.4 ± 21.5 −94.1 ± 112.5
PPO Noise filtered 90.8 45.7 ± 11.0 2.4 ± 83.6
PPO Compound obs. 94.2 45.5 ± 11.2 23.6 ± 65.3

Table 6 shows that there is significant variability in time, with a standard deviation of
more than 10 s, and especially in total reward due to different initial conditions. However,
the success rate, which is the metric we are most interested in, remains much more stable.
Table 6 also shows that when the DRL agent has to deal with noisy observations, as expected,
the learning process produces the worst results, with a decrease of between 25% and 30% in
the success rate. The agent trained using the EKF filter detailed in Section 3.5 to filter
the noise in the observations, although learning more slowly, is able to achieve results
just below the agent trained in a noise-free environment for the SAC and TD3 algorithms,
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and slightly better for the PPO algorithm. The agent trained using the proposed compound
observations not only learns faster, according to Figures 6–8, but also achieves the best
performance across all algorithms, with a success rate close to 100% for SAC and TD3.

Although the TD3 agent trained with the proposed compound observations offers the
best performance, it is important to note that it requires 1,500,000 to 2,000,000 steps to learn
the task. Since each step represents 0.2 s in the real world, this amount of training corre-
sponds to approximately 100 h if the task were learned by a single AUV. This time accounts
only for the steps during which the agent is actively learning, excluding the time needed to
position the AUV appropriately to begin the task or any other preparatory activities. This is
an immense amount of time, making it unfeasible to use this algorithm in a real application
unless a sim-to-real approach is applied to reduce the training time significantly. On the
other hand, the SAC agent trained with compound observations achieves nearly the same
performance with 500,000 steps and still presents decent performance when learning for
just 200,000 steps, as shown in Figure 6. This equates to only 11 h of training from scratch,
which is a far more reasonable timeframe for training an agent in real-world applications.

It seems clear that SAC’s off-policy nature allows it to reuse experiences from its replay
buffer, significantly enhancing learning efficiency by reducing the number of steps required.
Its built-in entropy regularization promotes better exploration, even in noisy environments,
helping the agent explore a wider range of actions and observations. In contrast, PPO, an on-
policy algorithm, learns only from fresh data, leading to a more unstable learning process.
Although TD3 is also off-policy, SAC’s entropy regularization and stochastic policy give it
an edge, enabling broader exploration and preventing premature convergence, making it
more adaptable and sample-efficient in the proposed environments.

4.3. Comparison with the Managed Surge Controller

The managed surge controller, in general, performs significantly worse than the DRL
agents according to the results in Table 7. However, it provides a slightly higher success
rate than the policies trained using only noisy observations. It is also noteworthy that all
learned policies are significantly faster (>20%) than the manually programmed one.

Table 7. Results for the managed surge controller.

Algorithm Scenario Success Rate (%) Avg. Time (s) Total Reward

Managed Surge Ctrl. Noise 73.7 59.2 ± 7.7 −115.8 ± 114.2

The variability shown in Tables 6 and 7 for the total reward and time per episode
values is mainly attributed to the wide range of initial conditions for each episode, which
can make the problem either straightforward or nearly impossible to solve. The most
influential parameter in the initial conditions is, without a doubt, the amount of ocean
current present, denoted by oc =

[
ocx, ocy

]
. To distinguish trials based on the ocean current,

Figure 9 compares the performance of the managed surge controller with the SAC policy
trained using the compound observations. The ocean current vector was divided into
nine segments per axis, ranging from −0.3 m/s to 0.3 m/s, resulting in an 81-cell matrix,
with each cell representing a specific ocean current vector. For each current, 10 trials were
conducted with the AUV starting from a random initial position and bearing. Figure 9
shows the percentage of successful maneuvers for each cell in the matrix.

The strategy of following a straight line by controlling only the crab angle and forward
velocity works well when the ocean current opposes the desired direction (i.e., ocx < 0) or
when the lateral ocean currents are small (

∣∣ocy
∣∣ < 0.1). However, for larger lateral currents,

or when the current pushes the vehicle toward the DS with a velocity close to the desired
entry speed (i.e., 0.3 m/s), the controller fails to achieve the required entry angle or velocity.
In contrast, the SAC algorithm finds strategies to overcome this limitation by maneuvering
the vehicle, as illustrated in Figure 10.
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(a) (b)

Figure 9. Success rate map according to ocean current for: (a) managed surge controller and (b) SAC
agent trained with the proposed compund observations.

Figure 10 presents several trajectories obtained in a noisy environment with the
SAC policy trained using compound observations. Three scenarios with different ocean
currents, approached from opposite starting positions, are shown. The first scenario, see
Figure 10a,b, features a small lateral current (oc ≈ [0.05,−0.1]). The second scenario, see
Figure 10c,d, combines a stronger lateral current with a forward current (oc ≈ [0.15,−0.3]),
both hindering AUV progress towards the DS but simplifying lateral current management
and keeping the arrival velocity below the maximum allowed. The third scenario, see
Figure 10e–h, presents the worst-case scenario: a strong lateral ocean current combined
with a backward current (oc ≈ [0.3,−0.3]) that pushes the AUV towards the DS, making it
difficult to achieve the desired entrance velocity (i.e., around 0.3 m/s) while maintaining a
correct docking angle. For each scenario, two initial positions are shown: in Figure 10a,c,e
the ocean current pushes the AUV towards the DS, while in Figure 10b,d,f–h the AUV has
to navigate against the current to reach the docking position. In trajectories (a)–(f), the AUV
successfully enters the DS. However, trajectories (g) and (h) depict two cases in the most
complex configuration where the AUV fails to dock.

(a) rg = 184 (b) rg = 187

(c) rg = 170 (d) rg = 191

Figure 10. Cont.
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(e) rg = 136 (f) rg = 108

(g) rg = −117 (h) rg = −24

Figure 10. Obtained trajectories (small green arrows) with the SAC policy for different levels of
ocean current. Results in (a,b) are obtained with oc ≈ [0.05,−0.1], in (c,d) with oc ≈ [−0.15,−0.3],
and (e–h) with oc ≈ [0.3,−0.3]. The ocean current direction and magnitude are shown as a red arrow
in the bottom right corner of each trajectory. Negative rg values denote failed maneuvers.

4.4. Policy Deployment in a Realistic Environment

By selecting actions that adjust vehicle velocity through a low-level controller, a certain
degree of abstraction between these actions and vehicle dynamics is achieved. Additionally,
including noisy data in the observations can have a regularization effect, preventing
overfitting, improving exploration, and helping to learn more robust policies. Accordingly,
the policies obtained in the Gymnasium environment could be transferred to more realistic
simulators or even to a real robot.

As a proof of concept, the policy trained in the Gymnasium environment with the SAC
algorithm was transferred to the Stonefish simulator [56] (see Figure 11), which employs a
completely different and more realistic dynamics model for the AUV. Some trajectories
obtained with this policy, without any further re-training, are shown in Figure 11c,d. While
the policy’s performance was relatively low, with a success rate of only 40%, the trajectories
were coherent in all the tests performed.

(a) (b)

Figure 11. Cont.
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(c) (d)

Figure 11. (a) Stonefish simulator graphical user interface, (b) Docking maneuver execution in the
Stonefish simulator, and (c, d) Trajectories (small green arrows) obtained with the SAC policy trained
in the Gymnasium environment but executed in the Stonefish simulator. Reward values achieved
were rg = 174 for (c) and rg = 23 for (d). Both results are obtained with low ocean current values
oc = [0.1,−0.05] and oc = [0.1, 0.1] represented as red arrows.

5. Conclusions

This paper presents a novel approach to autonomous underwater docking using a
DRL method under realistic assumptions. Building on previous experiences with non-
holonomic AUVs docking in a funnel-shaped DS, the proposed method relies solely on
proprioceptive sensors to measure linear and angular velocities (i.e., DVL and IMU sensors)
and an inverted USBL system for acoustic localization of the DS relative to the AUV. It is
well known that these sensors are heavily affected by noise, a factor often overlooked in
many DRL applications. In this study, we have analyzed the impact of noise in the agent’s
observations while learning a policy. Additionally, we have considered the effects of ocean
currents, energy consumption during maneuvering, and the maximum contact velocity
between the AUV and the DS, thus defining a realistic and challenging control task. To
ensure that the learning agent receives cleaner and more reliable inputs, without intro-
ducing side effects to the observation data such as signal lag, delays, loss of important
details, or over-smoothing, we have proposed a compound observation that combines
the noisy observations provided by the AUV sensors with a filtered version of these same
observations using an EKF tailored to this task. This compound observation has proven to
be beneficial for the training of all the DRL agents tested, allowing them to learn the task
faster, and producing policies with better performance.

Our study has concluded that, as expected, whether using SAC, TD3, or PPO, policies
trained with noisy observations experienced a substantial decline in performance compared
to agents trained with noise-free observations. When a filter is applied to clean these noisy
observations, the overall performance improves almost to the level of the policies trained
without noise. However, using the filter slows down the learning process, particularly in
SAC and TD3, requiring more learning steps to reach a slightly lower performance than that
of the policies trained without noise. Finally, the compound observation proposed in this
paper has proven to be an excelent option for training DRL agents in the presence of noise,
providing not only the best performance across all the algorithms tested but also learning
as fast, if not faster, than when using noise-free observations. Regarding sample efficiency,
which is a key factor in applying DRL to a real vehicle, the SAC algorithm has proven to
be the most efficient, requiring up to nine times fewer steps to learn the task. Although
the effectiveness of the compounded observation mechanism may vary from problem
to problem, we encourage its use in control tasks where noise could compromise the
performance of trained policies, as its application is straightforward: it has no constraints on
the DRL algorithm to be used and only requires the definition of a tailored filtering system.

Finally, by selecting actions with a certain degree of abstraction with respect to the
vehicle dynamics, as well as introducing noise in the agent’s observations, we have been
able to deploy one of the policies learned in an environment with simplified dynamics to a
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high-fidelity simulation. This highlights the potential of transferring the obtained policies
to real systems for fine-tuning, rather than performing all the learning from scratch.

Future work will focus on transferring the learned policies to the Sparus II AUV
to determine how much retraining is required to achieve performance similar to that in
simulation. Although the current approach should be sufficient to ensure a safe sim-to-real
transition, additional mechanisms will need to be implemented to provide a safe training
environment at sea.
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