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Abstract: The saliency feature is a key factor in achieving vision-based tracking for multi-UAV
control. However, due to the complex and variable environments encountered during multi-UAV
operations—such as changes in lighting conditions and scale variations—the UAV’s visual features
may degrade, especially under high-speed movement, ultimately resulting in failure of the vision
tracking task and reducing the stability and robustness of swarm flight. Therefore, this paper proposes
an adaptive active light source system based on light intensity matching to address the issue of visual
feature loss caused by environmental light intensity and scale variations in multi-UAV collaborative
navigation. The system consists of three components: an environment sensing and control module,
a variable active light source module, and a light source power module. This paper first designs
the overall framework of the active light source system, detailing the functions of each module and
their collaborative working principles. Furthermore, optimization experiments are conducted on the
variable active light source module. By comparing the recognition effects of the variable active light
source module under different parameters, the best configuration is selected. In addition, to improve
the robustness of the active light source system under different lighting conditions, this paper also
constructs a light source color matching model based on light intensity matching. By collecting
and comparing visible light images of different color light sources under various intensities and
constructing the light intensity matching model using the comprehensive peak signal-to-noise ratio
parameter, the model is optimized to ensure the best vision tracking performance under different
lighting conditions. Finally, to validate the effectiveness of the proposed active light source system,
quantitative and qualitative recognition comparison experiments were conducted in eight different
scenarios with UAVs equipped with active light sources. The experimental results show that the UAV
equipped with an active light source has improved the recall of yoloV7 and RT-DETR recognition
algorithms by 30% and 29.6%, the mAP50 by 21% and 19.5%, and the recognition accuracy by
13.1% and 13.6, respectively. Qualitative experiments also demonstrated that the active light source
effectively improved the recognition success rate under low lighting conditions. Extensive qualitative
and quantitative experiments confirm that the UAV active light source system based on light intensity
matching proposed in this paper effectively enhances the effectiveness and robustness of vision-based
tracking for multi-UAVs, particularly in complex and variable environments. This research provides
an efficient and computationally effective solution for vision-based multi-UAV systems, further
enhancing the visual tracking capabilities of multi-UAVs under complex conditions.
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1. Introduction

In recent years, due to rapid technological advancements, Unmanned Aerial Vehicles
(UAVs) have gradually transitioned from military to civilian applications, finding extensive
use in agriculture, logistics, security, and environmental monitoring [1–3]. Collaborative
navigation operations with multi-UAVs can significantly enhance operational speed and
expand the operational area, effectively alleviating issues related to the limited payload
and endurance of individual UAVs during large-scale tasks [4,5]. As a result, multi-
UAV collaborative navigation has become a key and hot topic for improving operational
efficiency in the current stage of UAV development [6,7]. Among these, vision-based multi-
UAV collaboration methods have become the mainstream research direction in the field of
UAV navigation, both domestically and internationally, due to the continuous updates of
vision algorithms and the compact size of vision sensors [8].

Vision-based collaborative navigation methods for UAV swarms primarily involve
using vision acquisition devices to capture external image information and employing com-
puter vision technology to analyze the features of other UAVs within the images [9,10]. This
enables the identification and localization of other UAVs’ positions [11,12]. Subsequently,
the UAVs adjust their flight states according to task requirements, achieving relative po-
sitioning, obstacle avoidance, and path planning within the swarm [13]. Vision-based
collaborative navigation methods provide efficient and accurate position perception and
decision-making, offering robust technical support for coordinated operations of UAV
swarms. However, during operations, UAV swarms may encounter complex and variable
environments, such as changes in light intensity and scale, which can lead to the loss of
visual features. Particularly during high-speed movement, these factors severely impact
the accuracy and robustness of vision-based navigation [14,15].

Currently, there are two main approaches to improving the robustness of vision-
based collaborative navigation for UAV swarms. One approach involves enhancing image
processing algorithms to improve the accuracy of feature extraction and recognition. For
example, Yang Zhang et al. [16] proposed a method that stabilizes target feature values
through preprocessing steps and incorporates contextual information from historical data,
integrating continuous weighted dynamic response maps from both temporal and spatial
perspectives to enhance the recognition capability of tracking algorithms for UAV targets.
Yiting Li et al. [17] proposed an improved YOLOv8 image recognition algorithm tailored
to UAV-acquired images. This approach improved the feature fusion module, feature
extraction module, and loss function within the network structure, enhancing the model’s
ability to recognize small UAV-like targets in images. While these methods can improve the
robustness of vision-based navigation to some extent, they are often limited by the lighting
conditions and scale variations of image acquisition equipment, failing to ensure sufficient
accuracy in complex and variable environments.

The other approach involves introducing active light source systems to enhance the
visual features of UAVs in complex environments. For instance, Viktor Walter et al. [18]
proposed installing multiple ultraviolet light sources on the UAV’s frame to determine
the relative positions of UAVs through different combinations of ultraviolet light sources.
This method effectively enhances UAV recognition features but uses fixed light sources,
which cannot adjust brightness and color in real time, resulting in the inability to adapt
the external features of the light sources to different scenarios. Hyeon-woo Park et al. [19]
addressed the impact of lighting changes during the day and night on visual collaborative
tracking by attaching infrared reflective tags to unmanned vehicles. Although this method
effectively addresses significant lighting changes from day to night, it still cannot cope
with complex and variable environments, such as fog, similar foreground and background
conditions, where the visibility and stability of the light source are compromised. Therefore,
researching an active light source system capable of adapting to different lighting and
scale variations is crucial for enhancing the practicality and reliability of vision-based
collaborative navigation for UAVs.



Drones 2024, 8, 683 3 of 18

In our previous research [20,21], we attempted to use laser beams emitted by a laser
transmitter as an active light source. By equipping the main UAV with an onboard laser
emitter that projects linear laser beams and installing a receiving visual acquisition device
on the follower UAVs, we captured and identified the relative position of the laser beam.
This enabled us to determine the relative positions between the main UAV and the follower
UAVs. Subsequently, the follower UAVs adjusted their flight status based on the detected
relative position, achieving coordinated multi-UAV flight. Although this method enhanced
the robustness of visual tracking against external factor variations to some extent, we
identified significant drawbacks during practical applications. Firstly, due to the highly
directional visibility of the laser beam, if obstacles were present between the transmitter
and receiver, the laser beam would be blocked by the obstacles, preventing the receiver
from detecting the beam’s actual position, ultimately causing the failure of the UAV swarm
mission. Secondly, when the distance between the main UAV and follower UAVs became
large, even minor vibrations of the main UAV could result in significant deviations of the
laser beam at long distances. This often led to the loss of the laser target by the receiving
device, causing mission failure of the swarm. In contrast, the active light source system
proposed in this paper introduces salient features directly onto the UAV itself. Therefore,
even when the main UAV undergoes significant attitude changes or encounters obstacles,
the active light source system provides a broader set of identifiable features, ensuring that
the follower UAVs can maintain consistent recognition and tracking of the target, thereby
achieving robust tracking.

In summary, addressing the challenges and limitations of the current methods in
vision-based collaborative navigation of UAV swarms, this paper proposes an active light
source system for UAVs based on light intensity matching, as shown in Figure 1. The system
consists primarily of an environmental perception and control module, a variable active
light source module, and a light source power supply module. It can automatically adjust
the brightness and color of the light source according to the environmental light intensity
and target scale to obtain high-quality image feature information, thereby improving the
accuracy and robustness of vision algorithms for UAV target recognition and tracking.
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Figure 1. Light intensity matched active light source system for UAVs. Note: 1. 5V-DC power supply
interface 2. MCU 3. Light intensity sensor module 4. Red laser constant voltage control module
5. Blue laser constant voltage control module 6. Light cover 7. Red laser emission module 8. Blue
laser emission module.

Considering that the sunlight spectrum consists of absorption spectra of different
wavelengths and that light energy is mainly distributed in the visible light band and the red
and ultraviolet bands, constructing an intelligent matching model of active light sources in
specific wavelength bands is a key factor affecting visual recognition features in the light
intensity matching active light source system [22,23]. Therefore, this paper collects visible
light images of different color light sources under full-time light intensity, compares them
with their respective original images, calculates the relationship between peak signal-to-
noise ratios, and constructs a comprehensive peak signal-to-noise ratio recognition effect



Drones 2024, 8, 683 4 of 18

(CREC-PSNR) control model for selecting the appropriate color. Ultimately, an intelligent
matching model for active light sources in specific wavelength bands is constructed.

Additionally, the size of the light shield is another crucial factor influencing the visual
recognition features of active light sources. A small-sized light shield has high brightness
after intercepting light but a lower recognition rate for distant small targets. In contrast, a
large-sized light shield can recognize larger distant targets but with lower brightness and
recognition rate. Therefore, we conducted comparative experiments on light shield sizes,
comparing the recognition effects of different colors under different sizes of light shields to
select the optimal size.

Our contributions are summarized as follows:

(1) We innovatively propose an active light source system for UAVs based on light
intensity matching. This system can intelligently adjust the brightness and color of
the light source according to changes in environmental light intensity and target scale,
maintaining high performance in various complex and variable environments. This
technology significantly enhances the identifiable feature information of UAVs.

(2) To achieve precise light source matching, we constructed an intelligent matching
model for active light sources in specific wavelength bands. By comprehensively
collecting visible light images of different color light sources under full-time light
intensity, we successfully established a CREC-PSNR control model for accurately
selecting the optimal color. Additionally, we conducted in-depth comparative experi-
ments and optimization on the size of the light shield to ensure high recognition rate
and brightness even at increased distances.

(3) We installed the variable active light source feature on a custom quadrotor UAV
and conducted comparative experiments with UAVs not equipped with this feature,
validating the practicality and versatility of the active light source feature.

The remainder of this paper is organized as follows. Section 2 describes the structure
and logical control of the system. Section 3 introduces the impact of the light shield size on
the active light source and the design and implementation of the size selection experiments.
Section 4 describes the influence of light source color on the active light source and how
to select the light source color under different light intensities. Section 5 explains how to
verify the feasibility and versatility of the active light source system after its completion.
Section 6 provides concluding remarks.

2. System Framework

The system structure of the proposed active light source device primarily consists of
three parts: the environmental perception and control module, the light source emitting
module, and the light source power supply module. Figure 2 illustrates the workflow of
the active light source system.

As shown in Figure 2, the environmental perception and control module is mainly
composed of the light intensity sensing module and the light source intelligent matching
model. The light intensity sensing module is used to collect and perceive the intensity
of ambient light and output this data to the light source intelligent matching model. The
light source intelligent matching model is a control model constructed by analyzing the
relationship between light intensity and the optimal light source emitting color. Its function
is to adjust the emitting color of the active light source in real time according to different
light intensities.

The power supply module for the active light source consists of a 5 V/4000 mAh
lithium battery and two constant voltage control modules. The lithium battery is indepen-
dent from the UAV’s power system and primarily provides stable power to the light source,
ensuring consistent lighting performance in various environments. The constant voltage
control modules are responsible for regulating the voltage, ensuring the stability and safety
of the power supply, and preventing voltage fluctuations from damaging the light source.
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The light emission module consists of the laser emission module and a light-shielding
cover. The laser emission module is composed of three main parts: a constant voltage
control module, a laser driver board, and a laser diode. During operation, the constant
voltage control module supplies a stable current to the laser driver board, which drives
the diode to continuously emit high-intensity laser light. The emitted laser beam then
illuminates the light-shielding cover. The scattered light is precisely controlled by the
cover, forming a uniform light field and ultimately creating a prominent active light source.
In this study, the laser emission module includes three colors: red, green, and blue. By



Drones 2024, 8, 683 6 of 18

combining any two of these colors, additional colors such as yellow, pink, and cyan can
be produced, resulting in a total of six different color combinations. This design meets
the lighting requirements of various scenarios. The multi-color laser emission module
not only enhances the flexibility of the light source but also improves its adaptability for
specific applications.

During system operation, the light intensity sensing and color adjustment module first
collects the ambient light intensity and outputs this data to the light intensity-color control
model, which selects the optimal active light source color for the current light intensity. This
ensures that the optimal color for each scene is selected, converting this color into control
signals that are output to the light source power supply module. The different colors of
the light source exhibit varying recognition performances under different light intensities.
Therefore, selecting the optimal color based on light intensity to ensure good recognition
performance of the active light source device is a key research objective of this paper.

3. Selection of Light Shield Size for Active Light Source

The primary function of the light shield is to diffuse the point laser beam to form
a recognizable light source. As the distance between the target object and the visual
sensor changes, the pixel distribution and details of the target object in the image will
alter [24]. Different sizes of light shields emit different brightness levels after intercepting
the same light source. Smaller light shields emit brighter light after intercepting the
light, but as the distance increases, the recognized target appears smaller, leading to a
decrease in recognition rate. Conversely, larger light shields provide better recognition of
targets at greater distances but emit less bright light compared to smaller shields, which
also results in a lower recognition rate. Therefore, selecting the appropriate size for the
light shield is crucial in the design of the active light source feature. To determine the
optimal light shield size, we conducted experiments under consistent light intensity and
background conditions.

To identify the light shield size that offers the best recognition effect within a certain
distance, we selected five different light shield sizes with diameters of 35 mm, 50 mm,
60 mm, 80 mm, and 95 mm. Figure 3 shows the actual images of the five light shield sizes.
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Figure 3. Different sizes of light shield.

All light shields have the same properties except for size, including transparency
and brightness. Therefore, under the condition of 700 nit light intensity and the same
background, each size of light shield was tested at distances of 30 cm, 60 cm, 90 cm, 120 cm,
and 150 cm, emitting red, blue, green, pink, cyan, and yellow light. We collected 25 images
for each color at each distance, resulting in 150 images for each distance for one light shield.
Each light shield was tested at five distances, yielding 750 images per light shield and
3750 images in total for all five light shields. Figure 4 illustrates the experimental setup for
selecting the light shield size for the active light source.
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To evaluate the recognition effect of different light shield sizes at varying distances,
we used the YOLOv7 [25] recognition algorithm on the collected images. We selected
precision (P) and confidence (C) as the evaluation metrics for recognition performance. To
comprehensively evaluate the relationship between size and distance under different colors,
we aggregated the recognition data of the six colors at the same distance and proposed a
metric called the recognition effect of the lampshade at a specific distance (RD) to evaluate
the recognition performance of the light shield at specific distances, which is calculated as
shown in Equation (1).

RDdistance = ∑6
i=1

(
P(distance,i) × C(distance,i)

)
, (1)

where distance denotes the distance between the vision acquisition device and the light
source. i is 1 to 6 and represents the six colors of red, blue, green, pink, cyan, and yellow,
respectively. P(distance,i) is the precision and C(distance,i) is the confidence for each of the six
colors at distance. This metric provides a comprehensive assessment of the recognition
performance of the light shield size at a specific distance, considering the combined effect
of precision and confidence across different colors.

To select the appropriate size for the light shield, this study considered the impact
of both distance and color. Using the values at various distances, we further proposed
an evaluation metric, the integrated recognition effect of the lampshade at different size
(IRELsize), to better assess the comprehensive recognition performance of the light shield
at different distances, which is calculated as shown in Equation (2).

IRELsize = RD30 ×W30 + RD60 ×W60 + RD90 ×W90 + RD120 ×W120 + RD150 ×W150, (2)

where size represents the size of the light shield. Wd represents the weight coefficient for the
distance d. Given that the difficulty of target recognition increases with distance, the weight
coefficients in this study are set to 5%, 15%, 20%, 25%, and 35% for the distances of 30 cm,
60 cm, 90 cm, 120 cm, and 150 cm, respectively. This metric ensures a comprehensive assess-
ment of the light shield size, taking into account both distance and recognition performance,
with higher weights assigned to longer distances due to increased recognition difficulty.

Based on the methodology described above, we conducted experiments to evaluate
the performance of different light shield sizes. The experimental data for five different sizes
of masks are shown in Tables 1–5.

From the recognition data in Tables 1–5, we can see that although the precision of
each color remains high across different sizes, the differences are not very pronounced.
However, based on the confidence indicator, it is evident that when the light source size is
60mm, the confidence values corresponding to the six colors are the highest among all sizes.
To better illustrate the differences between the various sizes, we used Equations (1) and (2)
for a comprehensive analysis of the data in Tables 1–5. The results are shown in Figure 5.
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Table 1. Precision and confidence of 35 mm size light shield at different distances.

Distance
Red Blue Green Yellow Pink Cyan

P C P C P C P C P C P C

30 cm 1.000 0.935 1.000 0.927 1.000 0.905 1.000 0.836 1.000 0.892 1.000 0.869
60 cm 1.000 0.789 1.000 0.810 1.000 0.774 1.000 0.663 1.000 0.797 1.000 0.779
90 cm 0.400 0.442 1.000 0.708 1.000 0.727 1.000 0.358 1.000 0.536 1.000 0.700

120 cm 0.400 0.621 1.000 0.760 1.000 0.555 1.000 0.268 1.000 0.499 1.000 0.702
150 cm 0.960 0.495 1.000 0.755 1.000 0.610 1.000 0.249 1.000 0.393 1.000 0.692

Table 2. Precision and confidence of 50 mm size light shield at different distances.

Distance
Red Blue Green Yellow Pink Cyan

P C P C P C P C P C P C

30 cm 1.000 0.851 1.000 0.893 1.000 0.825 1.000 0.896 1.000 0.868 1.000 0.845
60 cm 1.000 0.932 1.000 0.918 1.000 0.884 1.000 0.920 1.000 0.902 1.000 0.893
90 cm 1.000 0.860 1.000 0.889 1.000 0.850 1.000 0.820 1.000 0.832 1.000 0.874

120 cm 1.000 0.897 1.000 0.913 1.000 0.851 1.000 0.745 1.000 0.836 1.000 0.846
150 cm 1.000 0.873 1.000 0.882 1.000 0.786 1.000 0.647 1.000 0.759 1.000 0.835

Table 3. Precision and confidence of 60 mm size light shield at different distances.

Distance
Red Blue Green Yellow Pink Cyan

P C P C P C P C P C P C

30 cm 1.000 0.790 1.000 0.812 1.000 0.804 1.000 0.872 1.000 0.839 1.000 0.828
60 cm 1.000 0.939 1.000 0.932 1.000 0.912 1.000 0.933 1.000 0.908 1.000 0.889
90 cm 1.000 0.914 1.000 0.910 1.000 0.883 1.000 0.882 1.000 0.863 1.000 0.897

120 cm 1.000 0.916 1.000 0.921 1.000 0.866 1.000 0.786 1.000 0.833 1.000 0.885
150 cm 1.000 0.902 1.000 0.910 1.000 0.812 1.000 0.720 1.000 0.813 1.000 0.890

Table 4. Precision and confidence of 80 mm size light shield at different distances.

Distance
Red Blue Green Yellow Pink Cyan

P C P C P C P C P C P C

30 cm 1.000 0.399 1.000 0.400 1.000 0.416 1.000 0.415 0.000 0.000 1.000 0.590
60 cm 1.000 0.944 1.000 0.948 1.000 0.930 1.000 0.914 1.000 0.876 1.000 0.874
90 cm 1.000 0.942 1.000 0.917 1.000 0.913 1.000 0.887 0.000 0.000 1.000 0.884

120 cm 1.000 0.907 1.000 0.900 1.000 0.889 1.000 0.794 0.000 0.000 1.000 0.886
150 cm 1.000 0.872 1.000 0.881 1.000 0.838 1.000 0.645 0.000 0.000 1.000 0.841

Table 5. Precision and confidence of 95 mm size light shield at different distances.

Distance
Red Blue Green Yellow Pink Cyan

P C P C P C P C P C P C

30 cm 0.640 0.133 0.120 0.400 0.360 0.132 0.360 0.174 0.000 0.000 1.000 0.259
60 cm 1.000 0.863 1.000 0.908 1.000 0.893 1.000 0.879 0.000 0.000 1.000 0.797
90 cm 1.000 0.916 1.000 0.915 1.000 0.909 1.000 0.885 0.000 0.000 1.000 0.811

120 cm 1.000 0.877 1.000 0.893 1.000 0.844 1.000 0.842 0.000 0.000 1.000 0.803
150 cm 1.000 0.860 1.000 0.840 1.000 0.510 1.000 0.680 0.000 0.000 1.000 0.743
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According to Figure 5, the 35 mm light shield performs well at short distances but
poorly at long distances. The 50 mm and 60 mm light shields show good recognition
performance across all distances. In contrast, the 80 mm and 95 mm light shields perform
poorly at short distances and better than the 35 mm shield at long distances, but worse
than the 50 mm and 60 mm shields.

These results can be explained by the fact that smaller light shields emit brighter light,
which enhances recognition rates. However, as a recognition target, small light shields
appear too small at long distances, reducing their recognition rate. Larger light shields, on
the other hand, display more details and features as recognition targets at long distances,
but their intercepted light brightness is lower compared to smaller shields, decreasing their
recognition rates across all distances.

Therefore, the 50 mm and 60 mm light shields exhibit the best recognition performance.
Although the 60 mm light shield performs slightly worse than the 50 mm shield at 30 cm,
it outperforms the 50 mm shield at all other distances. Given that higher weights are
assigned to longer distances in our evaluation metric, the IREL value for the 60 mm light
shield is greater than that for the 50 mm light shield, making it the highest among the five
sizes. In summary, the 60 mm light shield size is selected for the active light source system
due to its superior integrated recognition effect, balancing brightness and detail across
different distances.

4. Optimal Light Source Color Selection

When training recognition models, the original images captured by visual acquisition
devices are used as training images. However, in actual recognition scenarios, the active
light source is influenced by external lighting conditions, resulting in variations in per-
ceived colors under different light intensities [26]. To ensure that the active light source
color maintains recognition performance close to the original images, the color deviation
under different lighting conditions should be minimal. Therefore, the optimal active light
source color is selected by comparing images taken under various light intensities with the
corresponding original images captured under a standard light intensity of 700 nit.

To determine the best active light source color under varying light intensities, images
were collected of red, green, blue, yellow, pink, and cyan light sources under different
lighting conditions. Specifically, from 8 AM to 6 PM, covering a light intensity range from
200 nit to 8000 nit, photos were taken every 10 min, capturing the six different colored
light sources. Additionally, ambient light intensity data were recorded at 10 min intervals.
The photos taken at 700 nit were used as the baseline original images for each color. The
collected data were then analyzed to select the optimal light source color for different light
intensities. Figures 6 and 7 illustrate the experimental setup for selecting the optimal light
source color.
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source (b).

After collecting the original and comparison images, peak signal-to-noise ratio
(PSNR) [27] was selected to evaluate the images. A higher PSNR value indicates that
the comparison image is closer to the original image. PSNR is based on mean squared error
(MSE), which is calculated as shown in Equation (3) for a given original image I of size
m × n and a comparison image K:

MSE =
1

mn∑m−1
i=0 ∑n−1

j=0 [I(i, j)− K(i, j)]2, (3)

where (i, j) represents the pixel coordinates in the image.
For color images with three channels (BGR), the average MSE is calculated as shown

in Equation (4):

MSE =
MSEB + MSEG+MSER

3
, (4)

Based on the above formulas, the PSNR calculation is as follows:

PSNR = 10·log10

(
MAX2

I

MSE

)
, (5)

where MAX I is the maximum pixel value of the image, which is 255.
Using the above experimental methods and evaluation criteria, we compared the

collected comparison images with the original images and calculated the PSNR values
for the comparison images. Figure 8 shows the relationship between the PSNR values of
different colors and varying light intensities.
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The PSNR value helps determine the similarity between images of different colored
active light sources and the original images under varying light intensities. To further
ascertain which color performs best for recognition under different lighting conditions, we
introduce a comprehensive evaluation metric combining PSNR and overall recognition
effectiveness, termed as the comprehensive recognition effect of a given color. The CREC
for a given color with a 60 mm light shield can be calculated using Equation (6):

CRECi = P(30,i)×C(30,i) × 5% + P
(60,i)

×C(60,i) × 15% + P(90,i)×C(90,i) × 20% + P(120,i)×C(120,i) × 25%+

P(150,i)× C(120,i) × 35%,
(6)

where P and C are the precision and confidence values, respectively, and the subscript
(distance, i) indicates the distance and color (1 to 6 representing red, blue, green, pink,
cyan, and yellow, respectively).

Using the data from Table 2 and the PSNR calculation formula, the CREC values can
be computed for the original image light intensity for different colors of active light sources.
Figure 9 shows the variation in CREC-PSNR with luminance.
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From Figure 9, it is evident that red and blue CREC-PSNR values significantly exceed
those of other colors, indicating that red and blue perform better in terms of recognition
under varying light intensities.

To decide between red and blue under different light intensities, we fitted their data
using luminance as the independent variable and CREC-PSNR as the dependent variable
through nonlinear regression. The fitting curves are shown in Figure 10.
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Equations (7) and (8) show the results of polynomial fitting of the blue laser and red
laser with respect to the CREC-PSNR against the light intensity, respectively:

fred(x) = 4.261∗10−26 × x7
+ 2.521 × 10−23 × x6 − 2.256 × 10−17 × x5 + 3.415×10−13 × x4−

2.191 × 10−9 × x3 + 6.907 × 10−6 × x2 +−0.01005 × x + 30.87,
(7)

fblue(x) = −1.664 ×10−25 × x7
+ 5.136 × 10−21 × x6 − 6.469 × 10−17 × x5 + 4.283×10−13 × x4

−1.589 × 10−9 × x3 + 3.181 × 10−6 × x2 − 0.002774 × x + 26.59,
(8)

where x is the ambient light intensity.
Therefore, the active light source can select the corresponding color by the size of the

contrast; when fred(x) is greater than fblue(x), it means that the recognition of the red light
source is better than blue under the current light intensity, and vice versa. Equation (9) is
shown below:

Color
{

red, fred(x) > fblue(x)
blue, fblue(x) > fred(x)

, (9)

Based on the above analysis, we developed a control model to select the best recogni-
tion color under different light intensities. This model has been integrated into our active
light source device, enhancing its effectiveness in various lighting conditions. The proposed
active light source system significantly improves the accuracy and robustness of visual
algorithms for UAV identification and tracking, showcasing the potential for practical
applications in complex environments.

5. Practical Recognition Experiments with Active Light Sources
5.1. Implementation Details

To verify whether the active light source device can enhance the recognition rate of
UAVs in real-world scenarios, we mounted the active light source device on the test UAV,
in which the relevant parameters of the test UAV are shown in Table 6. We conducted
recognition tests and comparisons between UAVs equipped with the device and those
without it across various application scenarios. Figure 11 shows the comparison image of
the UAV equipped with the active light source and the conventional UAV.

A total of 320 images of UAVs with and without the active light source device in the
same indoor scene were collected to form the training set. Eight scenarios were selected
as the test environments: outdoor without shadow, outdoor with shadow, complex back-
ground with grass, complex background with trees, transparent corridor, indoor without
light, indoor with light, and light-free environment. Each of these eight scenarios varies in
terms of lighting intensity, background complexity, and active light source color. The spe-
cific parameters of the test scenarios are detailed in Table 7. A total of 1600 images of UAVs
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with and without the active light source device were collected across these scenarios to form
the test set. To better validate the improvement in UAV recognition robustness provided
by the proposed device, we conducted experiments on the aforementioned dataset using
two algorithms: YOLOv7 and RT-DETR [28]. YOLOv7 is an end-to-end object detection
algorithm, while RT-DETR is a real-time object detection model based on the Transformer
architecture. Additionally, precision, recall, and mAP50 were selected as evaluation metrics.
These metrics were used to compare the two setups, verifying the feasibility and generality
of the device in practical recognition scenarios.

Table 6. The relevant parameters of the test UAV.

Parameter Unit Value

Supply mode mAh 4S lithium battery, 4000 mAh
Dimensions (whole machine) mm 205 × 205 × 204

Dimensions (without a battery and light source) mm 205 × 205 × 83
Weight (whole machine) kg 1.15

Weight (without a battery and light source) kg 0.575
Endurance min 15

Number of propellers 4
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UAV: UAV with active light source (a), UAV without active light source (b). Note: 1. Active light
source 2. Support module 3. UAV.

Table 7. The specific parameters of the test scenarios.

Experimental Scene Light Intensity (nit) Background
Complexity Light Source Color

Outdoor without shadow 4097 Low Blue
Outdoor with shadow 2135 Low Blue

Complex background with grass 1671 High Blue
Complex background with trees 1376 High Blue

Transparent corridor 142 Low Red
Indoor without light 14 Medium Red

Indoor with light 401 Medium Red
Light-free environment 0 Medium Red

Precision measures the proportion of correctly identified positive samples out of all
predicted positive samples. Recall measures the proportion of correctly identified positive
samples out of all actual positive samples. Precision and recall are calculated as shown in
Equations (10) and (11):

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)
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where TP represents true positives, FP represents false positives, and FN represents false
negatives. The average precision (AP) represents the mean precision for a single class,
while the mean average precision (mAP) is the average of AP values across all classes,
serving as a comprehensive metric for evaluating model performance in multi-class object
detection tasks. AP and mAP are calculated as shown in Equations (12) and (13):

AP =
∫ 1

0
P(r)dr (12)

mAP =
∑S

j=1 AP(j)

S
(13)

where S symbolizes the overall number of categories.

5.2. Quantitative Comparison and Analysis

The recognition results of UAVs with and without active light source devices in two
different algorithms for different scenarios are shown in Table 8. From the recognition
results, it can be observed that in scenarios with strong or concentrated lighting and
complex backgrounds, such as outdoor without shadows, complex background with grass,
complex background with trees, and indoor with lights, the metrics for UAVs without the
active light source device are generally lower than those for UAVs with the active light
source device.

Table 8. Comprehensive evaluation data for UAVs with and without active light source.

Loading of Active
Light Sources Experimental Scene

YoloV7 RT-DETR

P R mAP50 P R mAP50

With active light

Outdoor without shadow 0.88 0.96 0.958 0.913 0.931 0.947
Outdoor with shadow 0.99 0.991 0.995 0.971 0.995 0.975
Complex background with grass 0.974 0.94 0.968 0.973 0.961 0.952
Complex background with trees 0.975 0.772 0.868 0.990 0.807 0.843
Transparent corridor 0.963 1 0.945 0.968 1.000 0.934
Indoor without light 0.999 1 0.995 0.999 0.986 0.964
Indoor with light 0.978 0.98 0.971 0.974 1.000 0.976
Light-free environment 0.998 1 0.995 0.986 0.999 0.964

Mean value 0.969 0.955 0.962 0.971 0.960 0.944

Without active light

Outdoor without shadow 0.934 0.568 0.798 0.943 0.617 0.814
Outdoor with shadow 0.986 0.92 0.959 0.959 0.968 0.960
Complex background with grass 0.954 0.827 0.932 0.928 0.839 0.942
Complex background with trees 0.968 0.302 0.619 0.961 0.282 0.630
Transparent corridor 0.999 1 0.995 0.972 1.000 0.988
Indoor without light 0.999 0.88 0.885 0.976 0.833 0.874
Indoor with light 0.753 0.65 0.765 0.835 0.677 0.741
Light-free environment 0.11 0.1 0.065 0.101 0.099 0.041

Mean value 0.838 0.655 0.752 0.835 0.664 0.749

In scenarios with strong or concentrated lighting, like outdoor without shadows and
indoor with lights, the high external light intensity and concentrated lighting cause the
UAV body to reflect more natural light, leading to missed detections and lower confidence
scores. This results in a significant drop in R values and mAP50. For UAVs with the active
light source device, the device emits light independently, reducing the reflection of natural
light from the UAV body and serving as a distinctive feature to aid recognition. Hence, R
values and mAP50 for UAVs with the active light source device are significantly higher in
these scenarios. In the outdoor without shadow scene, the P value for UAVs with the active
light source is lower because the active light source can become washed out in strong light,
and its light can affect the surrounding environment, causing false positives. However, it
still maintains a relatively good level.
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In complex scenarios like complex background with grass and complex background
with trees, the R values and mAP50 for UAVs without the active light source device are
significantly lower. In complex backgrounds, UAVs without the active light source blend
in, making it difficult for the recognition algorithm to detect them, leading to higher
missed detection rates and lower confidence, thus significantly reducing R values and
mAP50. UAVs with the active light source, however, stand out due to the distinct light
source, making them easier to recognize, resulting in much higher R values and mAP50 in
complex scenarios.

In low-light scenarios like indoor without lights and light-free environment, the
metrics for UAVs without the active light source device are lower than those for UAVs
with the device. In these scenarios, especially in no light, the poor lighting conditions
cause loss of details, leading to lower recognition rates and confidence, thus lower R values
and mAP50. UAVs with the active light source, however, provide additional lighting in
dark environments, revealing more details and serving as a distinctive feature, aiding
recognition. Therefore, in low-light scenarios, UAVs with the active light source maintain
higher metrics.

In simpler scenarios like outdoor with shadows, both types of UAVs retain good
details as there is no direct lighting, resulting in high metrics for both setups. However, in
the translucent corridor scenario, the P values and mAP50 for UAVs with the active light
source are lower than those without. The reflective ground in this scenario causes the light
from the active light source to create reflections, slightly affecting recognition. Thus, in this
scenario, the p values and mAP50 for UAVs with the active light source are slightly lower,
but the overall metric values remain relatively high.

Finally, from the average metrics across all scenarios, it can be observed that UAVs
equipped with the active light source device outperformed those without it in terms of
both recognition accuracy and recall rate. Specifically, for the YOLOv7 algorithm, the UAVs
with the active light source achieved a 13.1% increase in precision, a 30% increase in recall
rate, and a 21% increase in mAP50. For the RT-DETR algorithm, the precision improved
by 13.6%, the recall rate increased by 29.6%, and the mAP50 rose by 19.5%. These results
indicate that the active light source effectively enhances the saliency features of the UAVs,
thereby improving recognition performance across various scenarios.

5.3. Qualitative Comparison and Analysis

Further, a qualitative comparison of the recognition performance of UAVs with and
without the active light source across different scenarios is presented. Figure 12 shows the
comparison of UAVs with and without the active light source in various scenarios.

As illustrated in Figure 12, in scenarios with strong or concentrated lighting and
complex backgrounds (a), (c), (d), and (f), UAVs without the active light source can blend
with the background, resulting in difficulties in recognition. In contrast, UAVs with the
active light source maintain high-confidence recognition. In simple scenarios (b), both types
of UAVs exhibit good recognition performance. In environments with low lighting (g),
UAVs without the active light source experience significant detail loss, making recognition
challenging. In completely dark environments (h), UAVs without the active light source
are almost invisible, whereas UAVs with the active light source can be identified through
the active light source itself, allowing for effective recognition of the UAV.

In summary, in the vast majority of scenarios, the active light source device enhances
the UAVs by serving as a prominent feature that improves the recognition rate. However,
in a few specific scenarios, such as in a translucent corridor, the device exhibits some
limitations, which results in a slight decrease in the recognition performance of UAVs
equipped with the device.
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6. Discussion and Conclusions
6.1. Discussion

Through detailed experiments and analysis, the significant role of the active light
source device in UAV recognition was systematically discussed. The experimental results
demonstrated that UAVs equipped with the active light source device exhibited substantial
advantages in recognition performance under various complex and extreme lighting con-
ditions compared to those without the device. Specifically, whether in strong light, weak
light, complex backgrounds, or simple scenes, the active light source effectively improved
the recognition rate, recall rate, and mAP50 values, thereby enhancing the applicability and
reliability of UAVs in various environments.

Firstly, in strong light environments, the active light source device effectively reduced
the reflection of natural light on the UAV body, mitigating the risk of missed or incorrect
identifications. It also served as a unique recognition feature, enhancing the UAV’s visibility
under complex lighting conditions. Secondly, in weak or no-light environments, the
active light source provided the necessary lighting compensation, making the UAV more
prominent in images and significantly improving the accuracy of the recognition algorithm.
Furthermore, in complex backgrounds, the sharp contrast created by the active light source
against the background allowed the UAV to be accurately recognized even in highly
variable scenes.

Although the active light source device may have a slight impact on recognition
performance due to ground reflection in specific scenarios (such as transparent corridors),
its advantages far outweigh the disadvantages overall. The comprehensive evaluation data
in Table 3 further corroborate this, showing significant improvements in recognition rate
and recall rate for UAVs equipped with the active light source, fully demonstrating its
importance and effectiveness in UAV recognition.
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6.2. Conclusions

This study addresses the issue of UAV recognition and localization based on vision in
complex environments by proposing an active light source system based on light intensity
matching. The components of the device were studied, tested, and designed according to
the functional requirements of the system. In order to select the optimal size of the light
source shield, comparison experiments were carried out on several sizes of shield, and the
optimal size of the shield was selected. To determine the most effective color for the active
light source under different light intensities, recognition performance experiments were
performed, and a control model for color and light intensity was established to select the
optimal active light source color for different conditions. Finally, to verify the feasibility
of our active light source device, it was mounted on a UAV and compared with a UAV
without the active light source.

In summary, this research provides new insights and methods for the development of
UAV recognition and localization technology. However, the improvement in recognition
performance provided by the active light source device is limited in some specific scenarios.
Our future goal is to enhance the device’s effectiveness in these scenarios for practical
applications. For example, by adding a power adjustment module, the active light source
device can offer more brightness and color options, thereby improving UAV recognition
performance in a wider range of scenarios. Alternatively, by collecting pictures in different
modalities and fusing the effective information in the pictures, robust recognition and
localization of UAVs can be ultimately achieved.
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