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Abstract: In the past decade, Unmanned Aerial Vehicles (UAVs) have garnered significant attention
across diverse applications, including surveillance, cargo shipping, and agricultural spraying. Despite
their widespread deployment, concerns about maintaining stability and safety, particularly when
carrying payloads, persist. The development of such UAV platforms necessitates the implementation
of robust control mechanisms to ensure stable and precise maneuvering capabilities. Numerous
UAV operations require the integration of payloads, which introduces substantial stability challenges.
Notably, operations involving unstable payloads such as liquid or slung payloads pose a considerable
challenge in this regard, falling into the category of mismatched uncertain systems. This study focuses
on establishing stability for slung payload-carrying systems. Our approach involves a combination of
various algorithms: the incremental backstepping control algorithm (IBKS), integrator backstepping
(IBS), Proportional–Integral–Derivative (PID), and the Sparse Online Gaussian Process (SOGP), a
machine learning technique that identifies and mitigates disturbances. With a comparison of linear
and nonlinear methodologies through different scenarios, an investigation for an effective solution has
been performed. Implementation of the machine learning component, employing SOGP, effectively
detects and counteracts disturbances. Insights are discussed within the remit of rejecting liquid
sloshing disturbance.

Keywords: control; UAVs; incremental backstepping; slung payload; agricultural drone; Gaussian
process; adaptive control; pendulum

1. Introduction

In the last decades, the rapid advancement of technology has skyrocketed Unmanned
Aerial Vehicles (UAVs) into a pivotal role in various sectors [1], including the transportation
of slung payloads emerging as a notable application domain. This application entails the
carriage of payloads, such as pesticide tanks or other equipment, suspended externally from
UAVs to designated locations [2]. However, the efficacy of such operations is significantly
challenged by the instability inherent to slung payloads during flight.

Transporting slung payloads with UAVs presents a paradigm shift in logistics and
delivery, enabling targeted and localized transportation of goods [3]. Yet, the inherent
instability arising from the dynamics of the slung payloads during flight undermines the
precision and reliability of such missions. The unstable movement of payloads suspended
externally from these UAVs can lead to instability issues and compromised cargo delivery,
ultimately impacting the overall effectiveness of the mission [4]. Ensuring consistent
and controlled behavior of the slung payloads necessitates innovative control strategies
that can adapt to the dynamic nature of the system [5]. To this end, the utilization of
advanced control algorithms becomes essential to mitigate the adverse effects of payload-
induced instability.

Through the target operation, proposed control methodology takes shape, such as the
study in [6] considering the payload’s vibration. However, it is a common approach to
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develop adaptive algorithms in this manner; [7,8]. Some researchers provide stability with
the support of an artificial neural network (ANN) by training through the simulations [9].
Some researchers treated the payload movement as a disturbance and applied a disturbance
observer for the solution [10]. Although every methodology has self-improvement through
the described perspectives, most of the studies depend on model information, such as total
weight. However a commercially confident system, which will go through different tasks,
should not require pre-defined training or coefficients.

In this study, the critical issue of slung payload instability in UAV-based cargo trans-
portation operations has been investigated. Our primary focus is on developing robust
and model free control methodology to effectively manage the dynamics of slung payloads
during flight. The overarching goal is to enhance the precision, efficiency, and reliability
of payload delivery, thereby augmenting the overall effectiveness of cargo transportation
with UAVs.

Payload and weight changes can significantly affect dynamic behavior of the drone/UAV.
This is particularly true for drone platforms such as agricultural drones for spraying or
drones for cargo delivery. Weight changes must be considered in the modeling to enable
and enforce appropriate robust controller design for stability and performance.

With the increased nonlinearity and instability, control of drones with slung payload
becomes an even tougher challenge. Nonlinear control approaches arise as promising
solutions due to their capability to handle complex and non-standard systems [11]. Among
these, the backstepping control methodology holds notable significance, offering a sys-
tematic way to design control laws by iteratively addressing the system’s dynamics [12].
Furthermore, the incorporation of incremental control techniques demonstrates remarkable
adaptability. Notably, the principles of Incremental Dynamics provides a framework to
invert the dynamics of the system, while incremental backstepping control builds upon
this by sequentially stabilizing intermediate systems [13].

Additionally, we consider the classic Proportional–Integral–Derivative (PID) control
as a benchmark for comparison in our study. PID control is a widely used feedback
control mechanism that adjusts the control input based on the error between the desired
setpoint and the measured process variable. While PID control is simple to implement and
often effective in many applications, it may lack the adaptability and robustness required
to handle the complex dynamics of slung payloads in UAV-based cargo transportation
operations. By including PID control in our comparative analysis, we aim to evaluate its
performance against our proposed control methodologies, shedding light on the advantages
and limitations of both traditional and advanced control techniques in this context.

In this paper, Sparse Online Gaussian Processes (SOGPs) are integrated into control
strategies. SOGPs extend the capabilities of Gaussian Processes (GPs), catering to the
demands of real-time control scenarios. They optimize computational efficiency and predic-
tive precision through sequential projections and sparse representations. This framework
aligns with the dynamic nature of control processes, making GP a potent choice for respon-
sive, adaptive control systems. By leveraging SOGPs, we aim to enhance the stability and
accuracy of our control methodologies in managing the dynamics of slung payloads during
UAV-based cargo transportation operations.

Through a comprehensive analysis, the performance of the proposed control method-
ologies against traditional approaches is compared. To facilitate this evaluation, we im-
plement a six-degree-of-freedom (6DoF) quadrotor model that accurately simulates the
dynamics of cargo transportation missions. The study encompasses the formulation of dis-
tinct scenarios involving payload-induced disturbances, simulating real-world conditions.

The ensuing sections of this paper are structured as follows: Section 2 elaborates on the
modeling aspects of the study; the UAV model and payload dynamics have been discussed.
Section 3 details the proposed control strategies and Section 4 explains Sparse Online
Gaussian Process methodology. Section 5 encompasses simulations, offering insights into
the performance of the control methodologies under payload-induced disturbances. Finally,
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Section 6 concludes the study by summarizing the findings and presenting avenues for
further research and implementation.

2. Model
2.1. UAV Model

In this paper, we consider a quadcopter UAV. Therefore, the dynamic model of the
quadrotor for the inertial frame can be written as follows.

ẍ = − ft

m
[sin ϕ sin ψ + cos ϕ cos ψ sin θ] (1)

ÿ = − ft

m
[cos ϕ sin ψ sin θ − cos ψ sin ϕ] (2)

z̈ = g − ft

m
[cos ϕ cos θ] (3)

ϕ̈ =
Iy − Iz

Ix
θ̇ψ̇ +

τϕ

Ix
(4)

θ̈ =
Iz − Ix

Iy
ϕ̇ψ̇ +

τθ

Iy
(5)

ψ̈ =
Ix − Iy

Iz
θ̇ϕ̇ +

τψ

Iz
(6)

With the six dynamics equations, the linear accelerations are represented by [ẍ, ÿ, z̈]T

and angular accelerations are represented by [ϕ̈, θ̈, ψ̈]T , which affect the position and angular
state of the aircraft, respectively. However, dynamics defined by force, momentum, and
inertia terms is shown as follows: ft is the total force generated by propellers, [τϕ, τθ , τψ]T

are the orientation torques produced by the relation of motors, and [Ix, Iy, Iz]T is inertia,
which is the UAV’s body’s coefficient for tuning through each X − Y − Z axis.

The following are the assumptions made for the design; the structure is rigid and
symmetrical, the propellers are rigid, and the thrust and drag are proportional to the square
of the propeller speed.

It is important to note that the quadrotor modeling purpose is mainly for the control
design. However, the model which has been used for simulations has been calculated with
payload. The next section will detail the proposed payload modeling.

2.2. Slung Payload Model

An accurate model with payload is essential for simulation studies. Through the
measurements from simulations, controller methodology validations will be made. For
unstable payload modeling, many different approaches have been studied in the literature.

In the literature, various payload modeling methodologies have been developed.
Some of them are mentioned as follows: single pendulum [14–16], single pendulum dy-
namics by Navier–Stokes [17,18], two pendulum [19], the multi-mass spring model [20],
the finite element method algorithm [21], Lagrange formalism [22,23], smoothed particle
hydrodynamics(SPH) [24], the multi-body model [25], the time-independent finite differ-
ence method [26], and the infinite-dimensional model computed with a finite-dimension
approximation [27,28].

After analysis of the literature, it has been found that the widely used and most
accurate method is pendulum dynamics-based modeling. However, in some studies, liquid
payload movement converged with a similar approach. For this study, the payload model
borrowed from Guerrero’s work [29].

The base approach to the state is taken as coupling two different systems. First, the
pendulum system’s dynamics were modeled, and then the effects of the UAV and pendulum
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on each other were calculated. As shown in Figure 1, the pendulum’s coordinates can be
calculated regarding the UAV system given below:

xp = x + l cos(β) sin(α) (7)

yp = y + l sin β sin α (8)

zp = z − l cos α (9)

Figure 1. Pendulum and UAV frames.

With the following notation: ℓ is the pendulum cable length, α is the angle in the Xb0Zb
direction, β is the angle in the Yb0Xb direction and [xb, Yb, Zb] body axes. The rotational
movement of the pendulum mass has been neglected. The total potential and kinetic energy
are given below.

K(q, q̇) =
1
2

ξ̇Mξ̇T +
1
2

η̇ Jη̇T +
1
2

ξ̇pmξ̇T
p

U(q) = Mgz + mg(z − l cos α) (10)

The notations in the Equation (10) are explained as follows: M is UAV mass, m is
pendulum mass, J is UAV inertia J = [Ixx, Iyy, Izz], ξ is UAV position ξ = [x, y, z]T ∈
R3, η is angular states η = [ϕ, θ, ψ]T ∈ R3, and ξp is pendulum position ξp = [xp, yp, zp].
The pendulum state derivative can be calculated through the UAV’s state derivative and
pendulum extension derivative.

ξ̇p = ξ̇ + ℓ

−β̇ sin β sin α + cos βα̇ cos α
β̇ cos β

α̇ sin α cos β + cos αβ̇ sin β

 (11)

The Lagrangian of the system is as follows:

L(q, q̇) = K(q, q̇)− U(q) (12)

If the Equation (12) is described in a detailed manner;

L =
1
2
(M + m)(ẋ2 + ẏ2 + ż2) +

1
2

Iψϕ̇2 +
1
2
(Iθc2

ϕ + Iϕs2
ϕ)θ̇

2

+
1
2
(Iψs2

θ + Iθc2
θs2

ϕ + Iϕc2
θc2

ϕ)ψ̇ + (Iθcθcϕsϕ − Iϕcθcϕsϕ)ψ̇
2θ̇2 + Iψsθψ̇2ϕ̇2

+ mẋℓ(cβcαα̇ − sβsα β̇) + mẏℓ(cβ β̇) + mżℓ(cβsαα̇ + sβcα β̇) +
1
2

mℓ2(c2
βα̇2 + β̇2)

+
1
2

I(α̇2 + β̇2)− Mgz − mg(z − ℓcαcβ) (13)



Drones 2024, 8, 687 5 of 26

Now, we can write the Euler–Lagrange equation for the system:

d
dt

[
∂L
∂q̇

]
− ∂L

∂q
= bu (14)

where the input signal u = [ ft, τψ, τθ , τϕ]T , state vector q = [x, y, z, ψ, θ, ϕ, α, β]T , and

b =



sϕsψ + cϕcψsθ 0 0 0
cϕsθsψ − cψsϕ 0 0 0

cθcϕ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


, (15)

Equation (14) can be represented in matrix form:

M(q)q̈ + C(q, q̇)q̇ + G(q) = bu (16)

M matrix with the following coefficients:

M(q) =



m11 0 0 0 0 0 m17 m18
0 m22 0 0 0 0 m27 m28
0 0 m33 0 0 0 m37 0
0 0 0 m44 m45 −Iψsθ 0 0
0 0 0 m54 m55 0 0 0
0 0 0 −Iψsθ 0 Iψ 0 0

m71 m72 m73 0 0 0 m77 0
m81 m82 0 0 0 0 0 m88


(17)

The notations in the corresponding matrix equations are described as m11 = m22 =
m33 = M + m, m17 = m71 = mℓcαcβ, m18 = m81 = −mℓsαsβ, m27 = m72 =

mℓcαsβ, m28 = m82 = mℓsαcβ, m37 = m73 = mℓsα, m44 = Iψs2
θ + c2

θ(Iθs2
θ + Iθs2

θ),
m45 = m54 = (Iθ − Iϕ)(cθsϕcϕ), m55 = Iθc2

ϕ + Iϕs2
ϕ, m77 = mℓ2 + I, m88 = mℓ2s2

α + I.
Coriolis matrix (C) coefficients:

C(q, q̇) =



0 0 0 0 0 0 c17 c18
0 0 0 0 0 0 c27 c28
0 0 0 0 0 0 c 0
0 0 0 c44 c45 c46 0 0
0 0 0 c54 c55 c56 0 0
0 0 0 c64 c65 0 0 0
0 0 0 0 0 0 0 −mℓ2sαcα β̇
0 0 0 0 0 0 mℓ2sαcα β̇ mℓ2sαcαα̇


(18)

The notations in the corresponding Coriolis matrix equations are described as
c17 = −mℓ(cαsβ β̇ + sαcβα̇), c18 = −mℓ(cαsβα̇ + sαcβ β̇), c27 = mℓ(cαcβ β̇ − sαsβα̇),
c28 = mℓ(cαcβα̇ − sαsβ β̇), c44 = Iψ θ̇sθcθ − (Iθ + Iϕ)(θ̇sθcθs2

ϕ) + (Iθ − Iϕ)ϕ̇c2
θsϕcϕ,

c45 = Iψψ̇sθcθ − (Iθ − Iϕ)(θ̇sθcϕsϕ + ϕ̇cθs2
ϕ)− (Iθ + Iϕ)ϕ̇cθsθc2

ϕ − ϕ̇cθc2
ϕ),

c46 = −(Iψ θ̇cθ − (Iθ − Iϕ)ψ̇c2
θsϕcϕ), c54 = ψ̇cθsθ(−Iψ + Iθs2

ϕ + Iϕc2
ϕ),

c55 = −(Iθ − Iϕ)ϕ̇sϕcϕ), c56 = Iψψ̇cθ + (Iθ − Iϕ)(−θ̇sθcϕ + ψ̇cθc2
ϕ)− ψ̇cθc2

ϕ − ϕ̇cθs2
ϕ),

c64 = −(Iθ − Iϕ)ψ̇c2
θsψcψ), c65 = −Iψψ̇cθ + (Iθ − Iϕ)(θ̇sϕcϕ + ψ̇cθs2

ϕ)− ψ̇cθc2
ϕ)
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Finally, gravity-related coefficients are given below:

G(q) =
[
0 0 (M + m)g 0 0 0 mlgsα 0

]T (19)

In order to calculate dynamics by the Euler–Lagrange method, the three-dimensional
movement of the pendulum has been modeled and applied to the quadrotor system.
Another unique aspect, according to the target mission, is that weight change has been
included. Since the weight ratio of the payload was quite high, weight change had an
important role. It is expected that a payload-delivering UAV should show acceptable
performance with and without the payload. According to this aspect, due to model-
changing nature of the problem, a model-free approach is needed.

3. Control

In the present study, the controller algorithm is structured in a cascaded framework.
The outer control loop governs the UAV’s position control, calculating the set points for
angular orientation. Conversely, the inner loop orchestrates the angular control, directly
influencing the actuation of the UAV’s motors. Also, in order to avoid windup, a filter
algorithm is used. Throughout the agile dynamics of rotorcraft UAVs, the adoption of a
cascaded control strategy for this inherently underactuated system proves to be an effective
approach. The visual representation of this cascade system design is depicted in Figure 2.

Figure 2. Proposed cascade control system diagram.

As shown in the previous section, pendulum movement affects force disturbance.
Thus, the results of the disturbance show themselves on the position states. To find the best
approach, linear and nonlinear control methodologies were applied and compared. One of
these controllers employs a Proportional–Integral–Derivative (PID) approach, while the
other controller is the integrator backstepping (IBS) approach, and last is the incremental
backstepping (IBKS) controller.

For the attitude controller, the incremental backstepping (IBKS) controller has been
used. Advantages of the attitude control with incremental backstepping have been dis-
cussed in a previous study [30,31]. Also, the incremental backstepping controller has been
applied for position controlling.

These proposed algorithms affirmed their attributes in terms of finite-time convergence
and overall stability through the Lyapunov theory. In the following discussion of the topic,
the proposed controlling algorithms will be explained briefly.

3.1. Proportional–Integral–Derivative

The PID (Proportional–Integral–Derivative) control algorithm is widely recognized.
It integrates proportional, integral, and derivative components. In our system, we imple-
mented the PID controller in both PID and P-PID forms, with a parallel PID controller
configuration shown in Figure 3.
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Figure 3. Proportional–Integral–Derivative(PID) controller diagram.

For position control, the PID controller is used. It can be positioned in the cascade
design as an outer or higher controller, placed in the final layer of the structure. Thus, the
controller structures are designed as PID-IBKS. For the X and Y positions, the Proportional–
Derivative (PD) form was selected, while for the Z position, the Proportional–Integrall–
Derivative (P-PID) form was chosen. The fundamental logic of the PID is detailed in
Equation (20).

ex = xd − x (20)

u(t) = Kpx ex + Kix

∫
ex + Kdx ėx (21)

The PID parameters are refined using an iterative optimization process that minimizes
a performance index J. This index typically incorporates both time-domain specifications
(e.g., rise time tr, settling time ts, overshoot Mp) and frequency-domain specifications (e.g.,
gain margin GM, phase margin PM):

J = w1tr + w2ts + w3Mp + w4|GM − GMdesired|+ w5|PM − PMdesired| (22)

The coefficients defined in wi notation are weighting factors. In Table 1, the coefficients
of PID controllers are given.

Table 1. PID controller coefficient table.

P P I D

X&Y — −2.4098 0.02374 1.11357
Z 1.61057 −3.11757 −0.4174 0

3.2. Integrator Backstepping

Integrator backstepping is a control strategy used for nonlinear systems building upon
the concept of backstepping control. It involves systematically introducing integrators into
the system dynamics at each step of the control design process. These integrators help in
addressing steady-state errors and enhancing tracking performance.

The control law is designed gradually, with each step involving the addition of a new
control term to the previous one, effectively “backstepping” through the system dynamics.
In this way, translational dynamics are regulated with both position and speed state errors
of the UAV. This approach allows for the creation of controllers capable of stabilizing and
tracking desired trajectories for a wide range of nonlinear systems.

One of the key advantages of integrator backstepping is its robustness, as it can handle
uncertainties and disturbances effectively [32]. Moreover, it offers stability guarantees and
can accommodate complex system dynamics.

Proposed system equation:

ẋ = f (x) + g(x)ξ (23)

ξ̇ = u (24)
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The integrator backstepping method proposes a virtual input ξ after putting the actual
input u to an integrating function. In this way, we would be able to make modifications
on the input signal. To achieve this, the desired virtual input is also defined by state
feedback control:

ξdes = α(x) =⇒ ẋ = f (x) + g(x)α(x) (25)

V is the proposed solution equation and Va is the proposed positivity definite function

V(x) =
1
2

x2 =⇒ V̇(x) = ẋx ≤ Va(x) (26)

After the proposed process, the input signal definition according to control solution is
given as below:

z = ξ − α(x) (27)

ż = u − α̇ =

(
∂V
∂x

)
g(x)− cz (28)

u = α̇ +

(
∂V
∂x

)
g(x)− c[ξ − α(x)] (29)

In Figure 4, the placement of the desired input in the system diagram is given.

Figure 4. Integrator backstepping diagram.

With the defined backstepping dynamics, the relation between acceleration p̈, position
error ϵp, and velocity error ϵs is given below:

p̈ = ϵp − kp(kpϵp + ϵs)− ksϵs (30)

The error and acceleration variables are described as p̈ = [p̈x, p̈y, p̈z]T, ϵp = [ϵX, ϵY, ϵZ]
T,

ϵs = [ϵu, ϵv, ϵw]T, and kp, ks represents position and speed error gains. The simplified position
dynamics is given below:  p̈x

p̈y
p̈z

 =

0
0
g

+

− cos ϕ sin θ
sin ϕ

− cos ϕ cos θ

 ft

m
(31)

With the help of simplified dynamics for control, it has become possible to define the
desired angle values for the defined speed.

uϕ = arcsin
(

m
ft
(ϵY − kY(kYϵY + ϵv)− kvϵs)

)
(32)

uθ = arcsin
(
− m

ft(cos ϕ
ϵX − kX(kXϵX + ϵu)− kuϵs)

)
(33)

u ft =
m

cos ϕ cos θ
(ϵZ − kZ(kZϵZ + ϵZ)− kwϵw + g) (34)
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3.3. Incremental Backstepping

The incremental backstepping algorithm steps forward with its lower model depen-
dency and effective feedback management. The improved backstepping structure has
proven itself in previous studies [31]. In terms of enhancing the backstepping controller’s
dependency on the model, sensor-based improvements were achieved using an incremental
approach. Incremental dynamics, a promising sensor-based technique, has been developed
to address unmodeled system dynamics by utilizing acceleration feedback. Within this
framework, two distinct control algorithms were formulated: the incremental dynamic
inversion (INDI) and incremental backstepping (IBKS) algorithms [33]. The backstepping
controller’s advantage includes regulating rotational movement with angular state and
angular rate adjustments.

However, it is essential to note that the IBKS algorithm, while beneficial, occupies a
middle ground between model-based and sensor-based methodologies. Consequently, it is
more vulnerable to sensor-originated disturbances such as noise, bias, and delays within
the closed-loop system [34]. The block diagram illustrating the incremental backstepping
approach is shown in Figure 5. The sensor based IBKS algorithm needs a sensor to acquire
actuator’s actuator’s value. Than the actual actuator value can be reversed and used as
feedback to the control algorithm.

Figure 5. Incremental backstepping methodology diagram.

The key difference in the incremental approach is the combination of the controller sig-
nal ∆u and the actual actuator state signal u0, resulting in an enhanced responsive structure.
As depicted in the diagrams, system feedback is of significant importance. The following
section provides a mathematical explanation of the incremental backstepping algorithm.

The proposed system equation with incremental dynamics is as follows:

ξ̇ = fk(ξ) + gk(ξ)x (35)

ẋ = fd(ξ, x) + gd(ξ, x)u (36)

We design a backstepping controller with a control Lyapunov function (CLF) such as
V1 = 1

2 ξ2 and xd = α

V̇1 = ξT( fk(ξ) + gk(ξ)α) (37)

and

α = −gk
−1(ξ)(k1ξ + fk(ξ)) (38)

α represents the desired value for the lower state. In the angular controller, this means
angular rate. Repeating the same backstepping process with the included lower state, the
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double-layered backstepping controller is achieved. The incremental approach proposes
the input signal calculated as given below:

u = ∆u + u0 (39)

In the proposed method, u0 is the actual input signal. And the incremental input
signal and ∆u becomes:

∆u = −gd
−1(ξ, x0)(ẋ0 − α̇ + kr + (ξT gk(ξ))

T
) (40)

The final equations of input signals for the moment control become:

∆uτϕ = − Ix

ℓ
( ṗ0 − ṗre f + kpzp + zϕ) (41)

∆uτθ
= −

Iy

ℓ
(q̇0 − q̇re f + kqzq + cos ϕzθ) (42)

∆uτψ = −Iz(ṙ0 − ṙre f + krzr +
cos ϕ

cos θ
zψ) (43)

The coefficients and errors in the equations are defined as follows: [zϕ, zθ , zψ] repre-
sents angular state error, [zp, zq, zr] represents angular acceleration state error, and [kp, kq, kr]
represents the gains. Also, the equations for the position control are given below:

∆uϕd = −m
ft
(v̇0 − v̇re f + kvzv + cos ϕzy) (44)

∆uθd = − m
ft cos ϕ

(u̇0 − u̇re f + kuzu − cos θzx) (45)

∆u ft =
m

cos ϕ cos θ
(ẇ0 − ẇre f + kwzw + cos ϕ cos θzz) (46)

where [zx, zy, zz] represents position state error, [zu, zv, zw] represents speed state error,
and [ku, kv, kw] represents the gains. The control Equation (40) indicates that the system’s
incremental dynamics are generated by the control input increment. Implementing this
concept requires the assumption of a small sampling time. For position controlling, the
actual state of the actuator has switched with the angular state of the UAV. For example,
pitch angle has been chosen as the actuator value for the X position control. In this way, the
cascade influence mechanism of the incremental methodology is preserved.

Furthermore, it is presumed that the actuators are highly responsive, allowing them to
achieve the desired input increment within the brief sampling time. The time delay between
the control command and feedback signal for u0 has been chosen as 0.01 s. Additionally,
the sensors are assumed to be ideal, delivering state derivatives without errors.

3.4. Filter

To prevent the controller from issuing infeasible commands, a command filter (CF) is
integrated into the controller [35]. This filter incorporates bandwidth, magnitude, and rate
limiters, as shown in Figure 6.

Figure 6. Anti-windup command filter diagram.
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Command filters are low-pass filters that shape command inputs to align with the
aircraft’s dynamics. This technique, used in backstepping strategies, restricts the pseudo-
control at each step. Consequently, differentiation variables must be estimated based on
measurements. To estimate signal derivatives, the proposed filter also includes a differentiator.[

xc
ẋc

]
=

[
q1
q2

]
(47)[

xc
ẋc

]
=

[
q1

2ξωn

(
SR{ ωn

2

2ξωn
[SM(xd)− q1]} − q2

)] (48)

The term SM represents magnitude constraints and SR indicates rate constraints.

4. Sparse Online Gaussian Process

Gaussian Processes (GPs) serve as potent tools for modeling continuous functions
within control applications. They extend multivariate Gaussian distributions to infinite
dimensions, functioning as distributions over functions. In control contexts, GP finds
application in approximating intricate functions, such as uncertain disturbances in air-
craft controls.

Mathematically, GP involves a collection of continuous random variables, where any
finite subset follows a joint Gaussian distribution. The covariance function, dictated by
a positive-definite kernel (K0(x, x′) = Cov(ζ, ζ ′)), encapsulates the resemblance between
inputs and guides predictions [36]. Kernel functions encapsulate crucial aspects, like the
smoothness of functions, impacting predictive outcomes.

GPs exhibit remarkable adaptability and proficiency in managing stochasticity. These
attributes are particularly relevant to control applications demanding real-time adjustments.
GPs update their kernel dictionaries based on incoming data, ensuring relevance in evolving
systems. In control algorithms, GPs bolster stability by compensating for uncertainties.

Sparse Online Gaussian Processes (SOGPs) extend GP capabilities, catering to the
demands of real-time control scenarios. SOGPs optimize computational efficiency and
predictive precision through sequential projections and sparse representations [37]. This
framework aligns with the dynamic nature of control processes, making GP a potent choice
for responsive, adaptive control systems.

The estimation of the posterior Gaussian Process approximation, along with its pos-
terior means and covariance, involves utilizing the initial kernel K0(x, x′) and the corre-
sponding likelihoods.

⟨ fx⟩t = αT
t kx (49)

Kt(x, x′) = K0(x, x′) + kt
xCtkx, (50)

Variables in the equations explained are as follows: kx = [K0(x1, x), ....., K0(xt, x)] is
the kernel functions, αt = [αt(1), ......., αt(t)]T is the coefficient, and Ct = Ct(ij)i,j=1.....t is
the coefficient matrix For dealing with regression-based problems, in the literature, Radial
Basis Functions (RBFs) are widely used for kernel functions.

K(x, x′) = exp(

∣∣∣x − x′
∣∣2

2σ2
x

) (51)

In the RBF equation, x and x′ are input data points and σ represents the hyperparame-
ter bandwidth. With the proposed framework, control efficiency is approximated using
GP, characterized by its mean ⟨ fx⟩ and covariance K(x, x′). For a smooth identification
process, the components of the input vector are normalized. The output observations are
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the instantaneous control efficiency values ζ, estimated from Equation (52) by dividing the
increment of the state derivative ∆ẋ by the increment of the control input ∆u:

ζi =
∆ẋ
∆u

(52)

To avoid singularity of the estimation due to division, an additional check of the input
data is added:

∆u >∈utol (53)

Later, the achieved error measurement is added to the controller algorithm’s signal
as a correction. As a benefit of the model-free approach, the SOGP algorithm does not
target a specific disturbance. Regardless of the source, the algorithm can neutralize any
force-breaking disturbance. The problem source can be a slung payload, liquid tank, or an
external issue like wind disturbance. As shown in Figure 7, the Gaussian Process output
signal affects the angle command, which is calculated by position control.The disturbance
caused by payload shown with the red arrow on the right side of diagram and correction
signal calculated by SOGP algorithm shown with green arrow on the left side.

Figure 7. Proposed cascade control system diagram.

Final components of the proposed signal can be represented as below:

u = u0 + yGP (54)

In this proposed methodology, u0 represents desired angle and thrust inputs of the
controllers and yGP represents the SOGP algorithm signal [38]. The Gaussian Process input
is notated with yGP and yGPX , and yGPY and yGPZ are the components through the axis.

yGP =

yGPX
yGPY
yGPZ

 (55)

In order to achieve the most accurate values for yGP, choosing correct state variables
has significant importance. Variable selection for the proposed error dynamics is chosen as:

uSOGP = [u0, eangle, edrate, xξ , xr]
T (56)

Five observing state data have been chosen as follows: actual input value u0, angular
state error eangle, derivative of rate state error edrate, actual angular state xξ , and actual rate
state xr.

The GP algorithm has been designed in a model-free disturbance observer manner. By
detecting unwanted changes in the angular velocity vector, or the widely used term angular
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body rates, it is possible to take action. From the observed status, a moment correction, the
yGP value, has been calculated.

Unfortunately, the performance of the proposed algorithm has been limited by the
user’s understanding of the state of the art. Although the proposed methodology has a
clear solution to the problem, it still needs a hyper-parameter definition. According to the
given parameters and gains to these parameters, the performance of the algorithm is about
to change.

The validation of the proposed methodology has been tested with the regular Proportional–
Integrator–Derivative (PID), integrator backstepping (IBS) and incremental backstepping
control algorithms versus the Sparse Online Gaussian Process (SOGP)-implemented version
of the algorithms. In this way, possible improvements and behavior analysis of the proposed
methodology can be observed clearly. The results are discussed in the following section.

5. Simulation

This study explores fault recovery using the Gaussian Process in a disturbance obser-
vation manner. With a sparse online structure, the Gaussian algorithm is able to detect and
reject disturbances. As explained in the slung payload model section, the movement of the
slung payload affects external force to the UAV system. As a result of this, the disturbance
outcome can be seen in the direct position state of the drone. Thus, the study has focused
improvement on the position controlling methodology of the UAV. Then in order to achieve
a deeper analysis, the proposed improvement applied two different control algorithms.

To make a comprehensive analysis, three control algorithms, PID, IBS and IBKS,
have been designed and implemented. It should be noted that control algorithms are
tuned according to UAVs without payload. This aspect is modeled considering oper-
ations with payload drop-off or payload weight-changing missions. The simulations
have included both base control algorithms and Sparse Online Gaussian Process (SOGP)-
implemented versions.

The quadrotor UAV frame model has been used with 27 kg total weight, which includes
a 10 kg payload with 0.5 m rigid cable. The payload is a point mass, and considering the
connecting cable between the UAV and the payload mass as zero, it is attached precisely at
the UAV’s center of gravity.

Additionally, the study excludes the modeling of other UAVs’ pre-failure conditions
and assumes they do not interfere with the single-UAV payload system under consideration.
The cable is assumed to always be tight, ensuring the slung payload condition holds true,
given that the UAV is not expected to execute abrupt manoeuvres causing cable tension to
drop to zero. The study is set in an indoor environment, negating outdoor disturbances
such as birds, wind gusts, and rotor down-wash and offering better control over disruptive
variables like sudden air drafts or unexpected obstacles. Finally, during training and
testing simulations, it is presumed that ideal sensor data are available without noise, and
odometry is consistently accessible for use by the controllers, with no dropout. These
assumptions collectively simplify the study’s scope, although they may not encompass the
full complexities of real-world scenarios.

Simulation studies were completed in three different approaches. Firstly, validation
of all six proposed algorithms has been performed. Then, controller performance against
the slung payload was analyzed. Finally, a case study that satisfies many aspects of a
real-world scenario has been simulated.

5.1. Validation Simulation

Before moving through the comparison and analysis studies, validation is needed.
Firstly, a nominal performance (without pendulum) of the considered controllers was
considered. Secondly, the behavior of the proposed algorithms is recorded as the base point.
Finally, the SOGP algorithm effects on the controller without payload were analyzed.

In Figure 8, the control algorithms’ performance for the step signal command has
been presented and compared. Separately, a 5 m position change in X, Y, and Z directions
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was simulated. The amount of the time which the command signal was applied is 7 s.
This time has been measured enough to let all controllers achieve the desired command
with stability. It should be remembered that the roll/pitch angle has been limited with
±30 degrees, thus achieving less than a certain amount of time is not physically possible.
The black dash-dotted line shows the command signal, the red line shows the base PID
algorithm, the green dashed line shows the PID algorithm with SOGP, the dotted orange
line shows the base IBS algorithm, the blue solid line shows the IBS algorithm with SOGP
implementation, the turquoise line shows the base IBKS algorithm, and the purple dotted
line shows the IBKS algorithm with SOGP implementation.

Figure 8. Step signal command for position and controller performance comparison.

All six controllers provide the desired command tracking performance. For the X-axis,
PID, IBS and SOGP-implemented IBS show overshoot. The SOGP algorithm dampens the
overshoot of PID, increases overshoot of IBS, and increases agility of the IBKS controller.
For the Y-axis, all six controllers show overshoot except PID with SOGP. SOGP affects
in a similar way the X-axis, and only the IBKS controller behaves differently since the
controller has been tuned in a more agile way. Increasing the agility of the controller has
caused overshoot and oscillation. However, the SOGP algorithm acts in a balanced way
and decreases agility in order to avoid oscillation. In terms of Z-axis performance, all
controllers shows similar behavior and change altitude with similar agility. Only the base
PID controller shows an overshoot in all six controllers. However, the SOGP algorithm
dampens the overshoot and PID with SOGP shows more stabilized performance. Since
the study’s main focus is improving the payload-carry stability, having an acceptable
performance without a payload was enough.

As seen on the X-Y axis simulations, the SOGP algorithm dampens the overshoot of
PID and gives more stabilized output. On the other hand, the SOGP algorithm shows a
performance-increasing behavior on IBS with a shorter rise time. This also can be seen
slightly in PID-based results. For the IBKS controller, although improvement has been
achieved compared with the base version, it is still not as effective as other controllers. This
aspect has been discussed in the conclusion section.

Validation of the proposed algorithms shows promising results for further analysis.
Although SOGP implementation is designed for neutralizing slung payload effects, it is also
suitable for use without payload. It is possible to claim SOGP has performance improvement.



Drones 2024, 8, 687 15 of 26

5.2. Payload Simulation

In a similar validation study, a 5 m pulse signal on the position state was demanded
from the flight controller separately. The amount of time which the command signal was
applied is 7 s. For the payload, a 10 kg point mass has been selected. In this way, the con-
troller management on the single-axis disturbance is inspected. Unlike multidimensional
operations, this is a relatively simple test for algorithms. However, for close inspection
purposes, it is beneficial to analyse in this way.

In Figure 9, the control algorithms’ performance for the step signal command has been
presented and compared. The 5 m position change in the X, Y and Z directions commanded
separate simulations. The black dash-dotted line shows the command signal, the red line
shows the base PID algorithm, the green dashed line shows the PID algorithm with SOGP,
the dotted orange line shows the base IBS algorithm, the blue solid line shows the IBS
algorithm with SOGP implementation, the turquoise line shows the base IBKS algorithm,
and the purple dotted line shows the IBKS algorithm with SOGP implementation.

Figure 9. Step signal command for position and controller performance comparison with payload.

In X-Y axis simulations, payload swing-related position oscillation is visible on base
controllers. Although IBKS has a relatively smaller amount of oscillation than PID and IBS,
all controllers still fail to dampen. This should not be seen as the controllers not responding
to external force disturbances at all. But, either the response time is too long or the response
amount stays low compared to the slung payload effect. Also, all controllers have larger
overshoots under the influence of payload.

However, on the X-axis, the backstepping algorithm responds in a different way
with SOGP, and the peak value of overshoot rises with a small percentage. Although the
SOGP algorithm successfully neutralizes swing effects, an increase in the overshoot seems
unavoidable. Both base controllers and SOGP-integrated controllers have quite a visible
overshoot, this is caused by a moment of inertia of the payload. When it comes to the
Y-axis, three controllers show a similar performance with the X-axis: base PID, base IBS,
and IBS with SOGp. On the other hand, PID with SOGP shows a larger overshoot. The
difference in IBKS is closely related with the tuning of the controller; to achieve a more
acceptable performance, and the is controller tuned in a manner with less agility. In terms
of settling, the algorithms with SOGP successfully manage settling within the given time
on both X-Y axes.

The behavior difference in the three controllers with SOGP shows a difference. The
variety of the behavior can be related to a couple of reasons, such as the tuning of the con-
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troller and the nature of the control method. Since all controllers show similar performance
without payload, all differences are accepted as differences between the method and SOGP
coupling. To this extent, to provide the stability with the SOGP, the PID algorithm has to
sacrifice agility and has longer rise-settling time. On the other hand, IBS also has a longer
rise time and bigger overshoot. By the way, IBKS has some issues with coupling and not
having smooth behavior. However IBKS also has a longer rise time a bit but gains much
more stability.

The PID algorithm has the most error in the base form and the biggest change with
the SOGP algorithm. This can be related with the linear control methodology since UAV
dynamics move away from the linearization point. Still, rejecting the disturbance requires
time. In spite of that, backstepping-based controllers tend to increase nonlinearity and lose
stability. Although they remain at an acceptable level, maintaining precise stability can be
a challenging issue.

During the simulations on the z-axis, the base PID and IBS controllers’ vulnerability to
model uncertainty has shown itself openly. A biased output has been seen on the IBS graph
and also a remarkable error in PID results. Since the backstepping algorithm uses a modelled
system’s dynamics, any model change affects the controller performance significantly. Also,
PID uses a linearized system model during the tuning and getting away from the trim point
causes errors. But, especially with the help of the integration function, it covers the gap slowly
over time. In contrast, the IBKS algorithm perfectly manages the error and shows the best
performance. Hence, the SOGP algorithm is not able to match it.

On the other hand, the SOGP algorithm successfully manages the rejecting error and
maintains stability on the PID and IBS controllers. However, on the rising part, everything
seems fine; SOGP detects the error and keeps close to the starting altitude and then carries
the commanded altitude with a quite small (around %2) error in PID and IBS. On the other
hand, IBKS successfully manages to remove weight effect with and without SOGP. Even
the SOGP algorithm successfully removes the weight effect, and the still-linear control
approach still shows an overshoot with the second movement (returning the zero altitudes),
which means crashing to the ground in real-life experiments. Overall, it is possible to claim
that the IBS-based controller shows better performance.

Table 2 presents a comparative analysis of control performance metrics across different
controller configurations for the step signal with payload, focusing on the X, Y, and Z axes.
In the table, RMS (Root Mean Square), overshoot, undershoot, and rise time values have
been compared. To briefly explain the purposes of these terms, the RMS value is helpful for
assessing the overall tracking performance because it considers the entire signal duration,
overshoot shows how much the response exceeds the target, undershoot indicates if the
response falls short before reaching the steady state, and finally rise time measures the
time taken to go from a low to high percentage of the final value. A lower RMS error
indicates that, on average, the system is closer to the desired position, implying better
tracking accuracy.

In this part of the study, the results shown in the Table 2 will be analyzed. In reference
to RMS (Root Mean Square) analysis:

• X-axis: The configurations “PID w SOGP” (3.282) and “IBKS w SOGP” (3.307) achieve
the lowest RMS values, suggesting superior tracking accuracy along the X-axis when
SOGP is applied.

• Y-axis: The lowest RMS value is observed in the “IBKS w SOGP” configuration (3.100),
indicating that this setup provides the most accurate tracking along the Y-axis.

• Z-axis: Here, the “PID” configuration stands out with the lowest RMS value (2.286),
showing that, in this case, the standard PID controller is highly effective for tracking
along the Z-axis.

In summary, the “IBKS w SOGP” configuration generally exhibits better tracking accuracy
across the X and Y axes, while the standard PID controller performs well on the Z-axis.



Drones 2024, 8, 687 17 of 26

Table 2. Measurements of the step signal with payload graphs.

PID PID w SOGP IBS IBS w SOGP IBKS IBKS w SOGP

X

RMS 3.383 3.282 3.342 3.364 3.326 3.307
Overshoot 18% 0.526% 11.446% 13.125% 8.721 8.824%

Undershoot 1.999% 1.997% 3.365% 1.990% 1.993% 4.504%
Rise Time 1.235 s 1.873 s 1.076 s 1.455 s 1.236 s 1.283 s

Y

RMS 3.343 3.317 3.296 3.317 3.262 3.100
Overshoot 13.636% 11.446% 12.963% 13.125% 4.605% 0.588%

Undershoot 1.964% 2.188% 4.129% 1.970% 6.991% 2.792%
Rise Time 1.212 s 1.235 s 0.982 s 1.426 s 1.152 s 2.589 s

Z

RMS 2.981 3.237 2.286 3.199 3.281 3.285
Overshoot 9.868% 0.519% — % 0.505% 0.503% 0.503%

Undershoot 8.161% 1.999% — % 1.999% 1.996% 1.997%
Rise Time 0.885 s 1.115 s — s 1.244 s 1.250 s 1.242 s

With respect of overshoot analysis:

• X-axis: The “PID w SOGP” configuration achieves the lowest overshoot (0.526%),
demonstrating a well-controlled response compared to the other configurations.

• Y-axis: The “IBKS w SOGP” configuration also has minimal overshoot (0.588%),
indicating stable control along the Y-axis.

• Z-axis: Both “PID w SOGP” (0.519%) and “IBKS w SOGP” (0.503%) configurations
maintain very low overshoot, signifying controlled performance along the Z-axis.

These observations suggest that configurations with SOGP significantly reduce over-
shoot across all axes, making them more suitable for applications requiring precise and
stable control.

With regard to undershoot analysis:

• X-axis: The “PID” and “PID w SOGP” configurations show minimal undershoot,
staying below 2%, which indicates stable response without significant initial dips.

• Y-axis: “PID w SOGP” has a slightly higher undershoot (2.188%), though all configu-
rations remain within acceptable stability limits.

• Z-axis: Undershoot is more pronounced in the “IBKS” and “PID” configurations,
suggesting a slight drop in the response before stabilizing.

Overall, undershoot is generally well controlled across configurations, with slight
variations but no significant impact on stability.

In terms of rise time analysis:

• X-axis: The “IBS” configuration has the shortest rise time (1.076 s), making it the fastest
in responding along the X-axis.

• Y-axis: The “PID” configuration achieves the lowest rise time (1.212 s) on the Y-axis,
indicating quick response.

• Z-axis: Rise times are generally consistent along the Z-axis, with “PID” and “PID w
SOGP” showing times around 1.2–1.25 s.

Configurations without SOGP, specifically “PID” and “IBS”, tend to exhibit shorter
rise times, suggesting they respond more quickly, although this may come at the expense
of overshoot control. However, IBS was not able to catch desired command in Z axis, thus,
overshoot, undershoot and rise time did not calculated.

This analysis reveals that configurations integrating SOGP generally achieve improved
tracking accuracy and control, as seen in the lower RMS and overshoot values. However,
they tend to have slightly longer rise times. Specifically, “PID w SOGP” and “IBKS w SOGP”
configurations demonstrate superior performance in minimizing overshoot and tracking
error, making them ideal for applications where stability and precision are paramount.
On the other hand, the “PID” and “IBS” configurations exhibit quicker response times,
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which may be beneficial in scenarios where response speed is a higher priority than
overshoot control.

Overall, “PID w SOGP” and “IBKS w SOGP” offer balanced performance across
most metrics, providing a stable and accurate response ideal for controlled applications,
while “PID” and “IBS” configurations can be considered when faster response times are
essential. With the achieved results, it is possible to claim validation for rejecting the
proposed disturbance type. Nevertheless, a real-life operation requires multi-dimensional
movement of a UAV; moreover, complexity of movement is a crucial aspect of our study
since pendulum movement can be amplified harmonically with continuous maneuvers. In
the following section, a case study which fits the given points has been investigated.

5.3. Case Study: Agriculture Spraying

Within the given extent of slung payload, several different types of drone operations
can be included. One of the target operations to this extent is agricultural spraying. In many
studies in the literature, liquid tank sloshing has been modeled as a pendulum [14–16].
With regards to this approach, agricultural spraying drones are taken as slung payloads in
terms of payload dynamics.

For realistic results, a commercially accepted spraying drone has been modeled and
parameters used. Spraying drones usually have an airframe with a long diameter and big
propellers in order to carry heavier payloads. To avoid dislocation and use down-wash for
more precise spraying, nozzles are located under the motors, and to minimize disturbance,
the pesticide tank is located in the same Z-axis direction as the CoG (center of gravity) of the
drone. In Figure 10, a general spraying drone has been presented. It should be noted that,
unlike the previous section, the command signal given to the controllers has been made
smoother with a filter for clear presentation purposes. This can be seen in the later figures.

Figure 10. UAV spraying drone visual.

Parameters of the modeled spraying drone given in Table 3.

Table 3. Quadrotor UAV parameters [39].

Parameters Value Unit

Frame Weight 17 Kg
Payload Weight 10 Kg
Num of motors 4 pcs
Frame Diameter 1780 mm

Propeller 30 × 11 inch

Although the proposed modeling meets the required UAV dynamics, there are some
novel attributes for the spraying. One of the special aspects is changing weight behavior;
during the operation, pesticide payload slowly decreases. The other specific aspect is the
operation navigation route; since the spraying needs to cover the target area iteratively, the
most common operation route pattern is the Boustrophedon pattern [40]. As mentioned in
the previous section, navigation pattern has a huge influence on payload dynamics.

With regard to the given information, an agricultural spraying drone with a 10 kg
pesticide tank has been modeled and the spaying operation has been simulated. In Figure 11,
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operation results in X-Y coordinates, and in Figure 12, a three-dimensional perspective
have been represented. The black dash-dotted line shows the command signal, the red line
shows the base PID algorithm, the green dashed line shows the PID algorithm with SOGP,
the dotted orange line shows the base IBS algorithm, the blue solid line shows the IBS
algorithm with SOGP implementation, the turquoise line shows the base IBKS algorithm,
and the purple dotted line shows the IBKS algorithm with SOGP implementation.

The first catch from the given graphs, similar to the previous simulations, is that
the base controllers have the biggest errors. In particular, the IBS algorithm’s altitude
error causes big risks to the safety of the operation. On the other hand, as expected, the
PID algorithm covers the altitude error within the time. Another observed pattern is
the increasing instability with the change in direction. However, the payload movement
behavior increases harmonically with every direction change. The linear momentum of the
payload causes an increase in instability. To this extent, the number of corners should be
considered during the navigation planning. On the other hand, the PID algorithm shows
unstable behavior in the corners, possibly having trouble minimizing payload movement.
This aspect will be investigated in further parts of the section.

Figure 11. Spraying operation from the top.

The SOGP algorithm covers the controllers’ significant error behaviors such as altitude
error and instability in the corners, as well as reducing the position errors. In terms
of a comparison between SOGP-implemented algorithms, it is possible to claim IBKS
with SOGP has better performance. In particular, overshoots of the PID-based controller
are more significant. However, it might be possible to decrease the amount of error by
smoothing navigation or decreasing the speed of the drone. Despite that, increasing the
agility performance of autonomous UAVs covers the main focus of this study.

In Figure 13, the error values of the controllers on the X-Y-Z position have been
represented. The error graph shows the error between the desired value and the actual
value. So when a command is given, it reaches the maximum. Although the peak value of
the error shows controller agility and responsiveness, the proceeding way of the signals,
especially, gives clues about the stability. The IBKS-based controllers’ error value decrease at
a slower rate. In contrast, the settling time is almost the same as the other controllers. Table 4
compares control performance metrics for different controller configurations during the
spraying operation, examining the X, Y, and Z axes. Metrics include RMS value, overshoot,
undershoot, and rise time, providing insights into each configuration’s effectiveness in
maintaining stable and accurate control.
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Figure 12. Spraying operation from the corner angle.

Figure 13. X, Y, Z position error values on simulation.

In this part of the study, the results shown in Table 4 will be analyzed. In terms of
RMS (Root Mean Square) analysis:

• X-axis: The “IBKS” configuration yields the lowest RMS value (3.444), showing supe-
rior tracking accuracy on the X-axis without SOGp.

• Y-axis: Here, “IBKS w SOGP” has the lowest RMS (1.199), suggesting it is the most
accurate configuration for tracking on the Y-axis.

• Z-axis: The “IBKS” configuration achieves a low RMS value of 3.668, indicating good
performance along the Z-axis without SOGp.

Overall, “IBKS” and “IBKS w SOGP” configurations demonstrate strong tracking
accuracy, particularly along the X and Y axes.



Drones 2024, 8, 687 21 of 26

Table 4. Measurements of the spraying operation.

PID PID w SOGP IBS IBS w SOGP IBKS IBKS w SOGP

X

RMS 3.524 3.518 3.510 3.515 3.444 3.448
Overshoot 0.690% 0.217% 0.424% 13.125% 0.505 0.487 %

Undershoot 2.203% 1.998% 1.999% 1.999% 1.999% 1.999%
Rise Time 3.223 s 3.218 s 3.725 s 2.982 s 4.770 s 4.919 s

Y

RMS 1.230 1.229 1.227 1.226 1.201 1.199
Overshoot 5.851% 4.737% 6.989% 1.531% 1.531% 1.453

Undershoot 4.123% 4.630% 4.090% 2.000% 2.624% 2.625
Rise Time 2.659 s 2.992 s 3.866 s 3.105 s 4.769 s 4.784 s

Z

RMS 4.872 4.805 3.668 4.769 4.829 4.830
Overshoot 5.172% −1.322% 5.936% −0.877% 0.473% −0.073%

Undershoot 11.545% 1.999% 1.981% 1.998% 1.997% 2.000%
Rise Time 1.071 s 1.185 s 1.483 s 1.301 s 1.249 s 1.267 s

With regard to overshoot analysis:

• X-axis: The lowest overshoot is observed with “PID w SOGP” (0.217%), highlighting
this configuration’s stability along the X-axis.

• Y-axis: “IBKS w SOGP” has minimal overshoot (1.531%), suggesting excellent control
on the Y-axis.

• Z-axis: “PID w SOGP” reduces overshoot significantly to −1.322%, indicating a
controlled response with minor undershoot rather than exceeding the target.

Configurations with SOGP generally reduce overshoot, showing enhanced stability
across all axes.

With respect to the undershoot analysis:

• X-axis: All configurations maintain similar undershoot levels, around 1.999%, indicat-
ing controlled response along the X-axis.

• Y-axis: “IBKS w SOGP” achieves the lowest undershoot (2.000%), supporting its
stability along the Y-axis.

• Z-axis: Undershoot is consistent across configurations, with minor variations, suggest-
ing stable control on the Z-axis.

Undershoot is generally well managed, with all configurations maintaining acceptable
stability across axes.

In reference to rise time analysis:

• X-axis: The “IBS w SOGP” configuration has the shortest rise time (2.982 s), highlight-
ing quick response on the X-axis.

• Y-axis: “PID” configuration demonstrates a relatively short rise time (2.659 s) on the
Y-axis, indicating prompt response.

• Z-axis: “PID” has the shortest rise time on the Z-axis (1.071 s), showing rapid response
along this axis.

The configurations without SOGP, particularly “PID” and “IBS w SOGP”, tend to
provide faster rise times, indicating quicker system response.

For the spraying operation, the configurations integrating SOGP (e.g., “PID w SOGP”
and “IBKS w SOGP”) generally achieve reduced overshoot and strong tracking accuracy,
with slightly longer rise times compared to configurations without SOGp. Specifically,
“IBKS w SOGP” and “PID w SOGP” perform well in controlling overshoot and undershoot,
making them ideal for applications that prioritize stability and precision.

In scenarios where rapid response is critical, “PID” and “IBS w SOGP” provide shorter
rise times and good overall performance, making them suitable for applications demanding
quick system responsiveness.

For three-axis combined motion, the IBKS with SOGP controller shows the most
stabilized output. In terms of X-Y plane, IBS with SOGP has the best performance. Never-
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theless, altitude management is worse than IBKS-based controllers. Even though SOGP has
damped most of the instability from the PID-only controller, still oscillations are shown in
the route. On the Z-axis, SOGP-implemented PID and IBS show quite similar performance.
However, for providing altitude stability also, it is possible to claim the SOGP algorithm
rejects the disturbance.

Also, on the X-axis route, visible fluctuation in altitude is shown in all controllers,
unlike the Y-axis. Another aspect with a similar pattern is the amount of error value on the
X- and Y-axes; the average error value on the X-axis is almost three times the error on the
Y-axis. This behavior is caused because by the amount of commanded signal; the command
given is on the axis at 5 m, whereas the command on the Y-axis is only 2 m. The amount
of the time tilted in maximum value (±30°) affects the altitude. With a lower maximum
tilting value, this affect can be minimized. However, in the missions that operate in narrow
places, this aspect should be considered.

As given in the modeling section, the angle between the Z-axis and pendulum payload
has been named alpha (α) and the pendulum angle on the X-Y coordinate is named beta (β).
Changes in these angles during the simulation give important clues about controller man-
agement and dominance in the system. In Figure 14, the relation between position change, α
angle change, β angle change, and weight change has been presented. Each group of lines is
defined in the legends of graphs.

Figure 14. Cont.
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Figure 14. X-Y-Z position, alpha angle, beta angle and weight change relation.

The controllers’ performance difference also shows itself in the α angle. While base
controllers require more time to dampen pendulum movement, SOGP-implemented con-
trollers seem more stable. The only exception to this matter is IBKS-based controllers. SOGP
algorithms have issues with integrating incremental dynamics and instead of damping the
pendulum completely only reduce it to a certain level. However, this allows the controller
to keep the UAV in the desired position. Furthermore, there is a visible difference between
IBS and PID-based controllers on both sides. IBS-based controllers (with and without
SOGP) are more successful at damping pendulum movement. This behavior should affect
the outcome of the position graph. Therefore, the force disturbance is closely related to the
angular rate of the pendulum.

Another aspect is increasing swing angles and speed with time; with the reduction
in weight, the UAV’s movement force causes faster swinging. Moreover, the payload
movement behavior increases harmonically with every direction change and decreased
weight helps increase the swing angle. Following the tradition of swinging in a direction on
the X-Y coordinate, the β angle keeps increasing during the operation. The more damped
movements are seen in the β angle also. Beneficial to stabilizing, navigation planning can
be planned to neutralize the beta angle movement.

6. Conclusions

In this paper, disturbances which swing a slung payload carried by a quadcopter
have been inspected and the solution has been proposed with the Sparse Online Gaussian
Process. Firstly, the modeling of the quadcopter and slung payload is explained. Then,
control algorithms were explained briefly. Due to the highly nonlinear nature of the quad-
rotor, a cascaded structure of control has been used. Also, to achieve a more comprehensive
result, PID and integrator backstepping controllers have been used in position control.
Finally, Sparse Online Gaussian Process algorithms are explained briefly.
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With the gathered modeling and control methods, a series of numerical simulations
has been performed. The SOGP algorithm has been implemented with the PID, IBS, and
IBKS algorithms. With these implementations, a total of four controllers have been included
in the simulations. Firstly, validation of the proposed four controllers was performed with
pulse command on each position axis separately. Secondly, controllers were compared
with the same commands as the payload. Thirdly, a payload carrying case, an agricultural
spraying operation, was simulated.

It is possible to claim that base PID and IBS controllers are far away from satisfying
results with stability. However, the SOGP algorithm successfully covers this aspect and
gives an acceptable outcome. Another noticeable aspect is the base IBKS algorithm’s
performance and cooperation with SOGP. With the support of incremental design, base
IBKS more successfully manages the drone than the other base controllers. And with
SOGP implementation, the IBKS algorithm shows the best performance in the case study.
Typically, the slower behavior of the IBKS is a disadvantage for use in position controlling.
However, in terms of maintaining payload stability, this aspect is beneficial.

Although the IBKS algorithm was successful, a groundbreaking improvement with
the SOGP was not observed. Still, small oscillations show themselves. Regardless of the
attempt to improve the tuning of both controllers, any better result was not achieved. This
result shows more than one feed-forward algorithm might have integration problems.
Results of the simulations were discussed with consideration of the nature of the control
methodologies and slung payload behavior. In general, implementation of the Sparse
Online Gaussian Process provided better results.

The topic of slung payload transport presents numerous avenues for further research,
particularly in enhancing navigation accuracy, addressing shifts in the center of gravity
(CoG) during flight, enabling efficient multi-UAV collaboration, and implementing dynamic
gain scheduling for improved adaptability. Although the proposed algorithms—IBKS and
SOGP—have shown promising results, certain limitations remain due to their reliance
on sensor data. Both algorithms are sensitive to the quality and accuracy of feedback
information, meaning that any distortion or noise in sensor readings can degrade their
performance and stability.

Future work will prioritize the development of robust strategies to mitigate the impact
of sensor inaccuracies, possibly through sensor fusion techniques or fault-tolerant control
mechanisms, to ensure more reliable feedback data. Additionally, efforts will focus on
optimizing the gain parameters dynamically within the control algorithms to improve
adaptability across varying payload conditions and operational environments. By enhanc-
ing the resilience of IBKS and SOGP to sensor errors and fine-tuning gain scheduling, this
research aims to advance the reliability and versatility of UAVs in slung payload transport,
paving the way for broader practical applications and increased operational efficiency.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
PID Proportional–Integral–Derivative
IBS Integrator Backstepping
IBKS Incremental Backstepping
SOGP Sparse Online Gaussian Process
6DoF 6-degree-of-freedom
GM Gain Margin
PM Phase Margin
INDI Incremental Dynamic Inversion
CLF Control Lyapunov Function
GP Gaussian Process
CoG Center of Gravity

References
1. Kumar, S.S.; Gudipalli, A. A comprehensive review on payloads of unmanned aerial vehicle. Egypt. J. Remote. Sens. Space Sci.

2024, 27, 637–644. [CrossRef]
2. Askarzadeh, T.; Bridgelall, R.; Tolliver, D. Monitoring Nodal Transportation Assets with Uncrewed Aerial Vehicles: A Compre-

hensive Review. Drones 2024, 8, 233. [CrossRef]
3. Yüksel, Z.; Epcim, D.E.; Mete, S. Multi-Depot vehicle routing problem with drone collaboration in humanitarian logistic. J. Optim.

Decis. Mak. 2024, 3, 438–448.
4. Imran, I.H.; Wood, K.; Montazeri, A. Adaptive Control of Unmanned Aerial Vehicles with Varying Payload and Full Parametric

Uncertainties. Electronics 2024, 13, 347. [CrossRef]
5. Zolotas, A. Simple Internal Model-Based Robust Control Design for a Non-Minimum Phase Unmanned Aerial Vehicle. Machines

2023, 11, 498. [CrossRef]
6. Geronel, R.S.; Bueno, D.D. Adaptive sliding mode control for vibration reduction on UAV carrying a payload. J. Vib. Control 2024,

30, 459–925.
7. Ullah, N.; Sami, I.; Shaoping, W.; Mukhtar, H.; Wang, X.; Shahariar Chowdhury, M.; Techato, K. A computationally efficient

adaptive robust control scheme for a quad-rotor transporting ca-ble-suspended payloads. Proc. Inst. Mech. Eng. Part J. Aero-Space
Eng. 2022, 236, 379–395. [CrossRef]

8. Bingöl, Ö.; Güzey, H.M. Neuro sliding mode control of quadrotor UAVs carrying sus-pended payload. Adv. Robot. 2021, 35,
255–266. [CrossRef]
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