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Abstract: The increasing deployment of unmanned aerial vehicles (UAVs) in urban air mobility (UAM)
necessitates robust Global Navigation Satellite System (GNSS) integrity monitoring that can adapt to
the complexities of urban environments. The traditional integrity monitoring approaches struggle
with the unique challenges posed by urban settings, such as frequent signal blockages, multipath
reflections, and Non-Line-of-Sight (NLoS) receptions. This study introduces a novel machine learning-
based GNSS integrity monitoring framework that incorporates environment recognition to create
environment-specific error models. Using a comprehensive Hardware-in-the-Loop (HIL) simulation
setup, extensive data were generated for suburban, urban, and urban canyon environments to train
and validate the models. The proposed Natural Gradient Boosting Protection Level (NGB-PL) method,
leveraging the uncertainty prediction capabilities of the NGB algorithm, demonstrated superior
performance in estimating protection levels compared to the classical methods. The results indicated
that environment-specific models significantly enhanced both accuracy and system availability,
particularly in challenging urban scenarios. The integration of environment recognition into the
integrity monitoring framework allows the dynamic adaptation to varying environmental conditions,
thus substantially improving the reliability and safety of UAV operations in urban air mobility
applications. This research offers a novel protection level (PL) estimation method and a framework
tailored to GNSS integrity monitoring for UAM, which enhances the availability with narrower PL
bound gaps without yielding higher integrity risks.

Keywords: GNSS; navigation; UAM; UAV; protection level

1. Introduction

According to the recent GNSS Market Report from EUSPA [1], aviation and UAV ap-
plications currently dominate the market in terms of the number of installed GNSS devices,
and this situation is projected to remain the same in the near future. Since most UAV appli-
cations are envisioned to operate in a mixture of suburban and urban environments [2],
where the accuracy, integrity, availability, and continuity of GNSS can vary widely, ensuring
the safety of UAV navigation systems for UAM is crucial. It is anticipated that either certain
flight zones would need to be avoided considering the GNSS performance [3], or different
means of navigation aiding would need to be active [4] in such environments to ensure the
desired navigation performance and reduce the risks. The navigation system should also
be able to detect and measure the environment-specific risks to avoid endangering safety.

Navigational integrity monitoring is a generic term that refers to the methods and
architectures used to observe the performance and trustworthiness of a navigation system.
GNSS integrity monitoring has captivated the attention of countless researchers since
it was introduced in 1985 with the Global Positioning System (GPS) Integrity Channel
(GIC) approach [5]. The importance of this technology cannot be overstated, as it plays a
crucial role in ensuring the accuracy and reliability of satellite navigation systems. With
the evolution of the GNSS technology, most issues related to GNSS integrity monitoring
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have already been addressed [6], and the methods such as Receiver Autonomous Integrity
Monitoring (RAIM) and its extended versions [7] have been improved over the decades.

The current GNSS integrity monitoring approaches typically rely on static error models
that do not account for the varying environmental conditions encountered in urban areas.
This oversight leads to significant performance degradation, increased navigation errors,
and higher integrity risks in GNSS-challenging environments. Moreover, the inability of the
traditional methods to dynamically adapt to the urban landscape limits their effectiveness
in providing the necessary reliability and safety for UAM operations.

Urban integrity monitoring has been researched in the literature, and the challenges,
such as signal blockages, multipath reflection, and NLoS receptions, have been addressed [8].
While these works aim to describe the generic integrity criteria for urban environments
in order to ensure reliable GNSS performance, environment types or urbanization levels
are not taken into account. Considering GNSS performance differentiates based on the
environment, some studies examine how GNSS or environment-based parameters such as
Dilution of Precision (DOP) coefficients, number of visible satellites, cut-off elevation, and
Signal-to-Noise Ratio (SNR) change in different environments [9–11]. The results show that
while the impact of LoS obscuration on the GNSS accuracy and integrity can be specified
with DOP, the number of visible satellites, and cut-off elevation, SNR is mostly useful for
detecting multipath effects.

Assuming that the distribution of these parameters and their impact on the error mod-
els vary with respect to the environmental conditions, the idea of environment recognition
has emerged. An environment recognition algorithm is suggested in [12] to distinguish
the five most common urban environment types based on GNSS blockage and signal
strength. Another algorithm for determining LoS blockage characteristics around a railway
is presented in [13] with clustering GNSS elevation and azimuth. In [14], GNSS SNR
data are classified for different environment types based on their elevation angles. Some
other studies reviewed in [15] also benefited from multiple onboard sensors for detecting
environment types. Nevertheless, the scope of these studies is limited to environment
detection or recognition, and their impact on GNSS performance has not been investigated.

In this study, we aimed to develop a novel ML-based GNSS integrity monitoring
framework utilizing environment-specific error models for UAM applications. With this
aim, initially, environment-specific data were generated via HIL simulation, as described in
Section 3. Then, the most suitable environmental and GNSS-based features were specified
and extracted from the generated data to train the environment-specific error models. After
the error models were trained with the Natural Gradient Boost (NGB) algorithm [16], which
is capable of estimating uncertainties of predictions, PLs were estimated with test and
validation data to perform an integrity monitoring analysis. Lastly, the estimated NGB-
based PLs (NGB-PL) were compared with the PL estimations of the existing approaches for
validation. The novel contributions of this study can be listed:

• A novel integrity monitoring framework implementing environment recognition
functionalities into the conventional integrity monitoring architecture

• A novel PL estimation method, NGB-PL, is proposed considering the uncertainty
prediction capabilities of the NGB algorithm.

• A comprehensive feature importance analysis is conducted to reveal the impact of
GNSS and environment-based observables on the error estimation in urban environ-
ments.

• Performance assessment and comparison between NGB-PL and other conventional
PL estimation methods are presented in various urban scenarios.

The rest of the paper is structured as follows. Section 2 reviews the related works,
including integrity monitoring, environment recognition, PL estimation methods, and ML
utilization for PL estimations. In Section 3, the proposed integrity monitoring framework
is introduced, and the overall research methodology is explained. Section 4 presents
the training data and feature analysis results, followed by a performance assessment and
comparison of the proposed and existing integrity monitoring approaches. Finally, Section 5
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discusses the findings of this study, and a brief conclusion and future works are given
in Section 6.

2. Related Works
2.1. GNSS Integrity Monitoring in Urban Environments

GNSS integrity monitoring can be divided into two main categories with respect to
its implementation: system-level and user-level [17]. System-level integrity monitoring
is performed by Satellite-based Augmentation Systems (SBASs) and Ground-based Aug-
mentation Systems (GBASs) and relies on external measurements, which are provided by
augmentation satellites or ground reference stations [18]. On the other hand, user-level
integrity is performed internally by the user receiver, where no differential correction or
external data are required. Since the user-level integrity monitoring concept was orig-
inally introduced for aviation, it is considered under the umbrella of Airborne-based
Augmentation Systems (ABASs). ABAS integrity monitoring is broken down into Airborne
Autonomous Integrity Monitoring (AAIM), where GNSS-INS (Inertial Navigation Sys-
tem) integration is implemented, and Receiver Autonomous Integrity Monitoring (RAIM),
where a stand-alone GNSS is in use [19]. Besides these autonomous methods, Satellite
Autonomous Integrity Monitoring (SAIM) has been suggested in [20], where satellites
perform integrity monitoring internally to detect and exclude space segment errors. In
this study, we focused on offline stand-alone GNSS integrity monitoring at the user level.
Therefore, our interest lies specifically in the RAIM variants rather than other autonomous
or system-level integrity architectures.

RAIM was initially introduced by Lee in [21] as a foundational technique of user-level
autonomous integrity monitoring implemented in GNSS receivers and is still widely used
due to its simplicity and effectiveness in providing essential integrity monitoring. RAIM
variants have been originally designed for general aviation users, mainly operating at high
altitudes and in open-sky environments with negligible amounts of multipath reflections
and line-of-sight (LoS) blockages. Specifically in aviation and maritime applications, error
models and integrity requirements are well structured, and the existing methods are
able to meet the required navigation performance (RNP) [22,23] where the performance
criteria are not stringent. Additionally, real-time Integrity Support Messages (ISMs) from
various monitoring stations are available thanks to the clear LoS connection in open-
sky environments, providing up-to-date information on the integrity risk for different
fault modes.

Nevertheless, RAIM approaches cannot address the unique challenges of urban set-
tings, and they cannot guarantee the intended reliability and availability of GNSS-based
navigation in urban environments for the following reasons:

• Multipath reflections, non-LoS (NLoS) receptions or complete signal blockages are
very common.

• Error models and fault modes structured with respect to the open-sky conditions
significantly differ in urban environments.

• Multiple simultaneous faults are prevalent.
• ISM generated by integrity monitoring stations are unavailable as they are also LoS

dependent.
• Stricter accuracy and integrity requirements are expected as urban environments are

much more constricted and challenging for satellite navigation.

RAIM variants have two commonly used approaches to perform integrity monitor-
ing [24]: the Measurement Rejection Approach (MRA) and the Error Characterization
Approach (ECA). The MRA approach is designed to identify and exclude any faulty or
degraded measurements from the overall position estimation. This helps to mitigate the
negative impact of such measurements. On the other hand, the ECA approach character-
izes measurement errors and calculates a protection level (PL) to secure against them. It
does not require identifying and removing degraded measurements, even if they contain
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large errors. Both approaches have their unique strengths and can lead to a similar level
of integrity [25].

We have concentrated on enhancing ECA rather than MRA. This is because MRA is
generally ineffective in GNSS-challenging environments due to the multiple simultaneous
faults and limited signal availability. Even if seamless fault detection and exclusion (FDE)
with the MRA were possible in urban environments, excluding all the faulty signals would
lead to an insufficient number of signals for position estimations at the receiver level.

Although the FDE functionality is also available with most ECA-based integrity moni-
toring methods, this is mostly limited to isolating single or several significant faults. This
means that PL estimations should be able to deal with the existence of faulty measurements,
and their size should be proportional to the effect of the faulty signal. Therefore, we propose
a snapshot PL estimator to enhance the ECA functionality for integrity monitoring that is
resistant to the dynamic environmental conditions of UAM applications. Before introducing
the proposed method, the environmental awareness and PL estimation approaches need to
be reviewed.

2.2. GNSS-Based Environmental Awareness

As mentioned earlier, GNSS integrity monitoring systems can benefit from GNSS
observables while predicting faulty signals and position errors. Additionally, some envi-
ronmental parameters can enhance this prediction performance if applicable. However, the
GNSS error models are not the same in different sorts of environments. Thus, environmen-
tal awareness is necessary to produce better and more accurate error models, especially in
urban environments.

Different environment types can be defined based on the density of urban areas. The
most common environment types used in the literature are open sky, suburban, urban,
urban canyon, and forest, considering the intensity of LoS blockage and multipath re-
flections [12]. As we are interested in predicting the GNSS performance in urban areas,
three urbanization levels were selected and defined based on their cut-off elevation and
multipath effects:

1. Suburban: A settlement area consisting mostly of 2- or 3-storey houses, with a cut-off
elevation angle of 10 degrees. The multipath effect is too low.

2. Urban: A settlement area covered with apartments, and the cut-off elevation angle is
10 to 30 degrees. Multipath reflections have more impact than suburban areas.

3. Urban canyon: An area surrounded by many tall buildings sheathed with highly
reflective material creates a dense multipath impact. The cut-off elevation angle varies
between 30 and 60 degrees.

While generating environment-specific data in this study, the environment types were
considered as defined above, and error models were trained and tested with this data set.

Based on the definitions of environment types, the key separators between these
environments are satellite visibility and the intensity of multipath impact. While DOP,
the number of visible satellites, and elevation angle provide information about satellite
visibility and geometry, the variation in SNR is beneficial for detecting multipath reflections.
These parameters have been used in the literature in different ways.

The first approach is the direct usage of these parameters as extracted by the re-
ceiver [13]. In this case, some candidate input features for environment classification or
clustering algorithms are as follows:

• DOP;
• Number of visible satellites;
• Elevation angles of satellites;
• Azimuth angles of satellites;
• SNR of satellites.
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As all of these features are directly available at the user level without requiring further
calculation or comparison than a receiver normally does, this approach is applicable for
in-flight environment recognition.

The second approach is to use the relative values of features as input data. In this
approach, each feature’s ideal or expected values under the open sky and multipath-free
conditions should be known in advance to calculate the differences or rates with respect
to these ideal values. The suggested relative environment recognition features are as
follows [12]:

• DOP expansion ratio;
• Blockage coefficient;
• Mean and standard deviation of signal strength attenuation;
• Signal strength fluctuation coefficient.

Environment recognition accuracy would be better when the relative features are im-
plemented as input to the classification algorithm. However, this approach is not applicable
in a real-time scenario unless a calibration flight is conducted or in-flight conditions are
simulated in advance.

Some additional features can also be extracted from additional onboard sensors,
such as cameras or Lidar, to enhance the environment recognition accuracy, which causes
additional complexity in the system design [15].

Nevertheless, in this study, we were not focused on contributing to the field of envi-
ronment recognition. Instead, we were integrating an environment recognition function
into the integrity monitoring framework to create environment-specific error models and
to estimate PLs based on these models. In order to prevent errors caused by the misiden-
tification of environments, the training data were generated separately for each type of
environment. The process of generating training data is explained in detail in Section 3.

2.3. Existing PL Estimation Approaches

Basically, the PL should satisfy the condition below, where α is the target probability
of misleading information:

P(PE > PL) < α (1)

When we consider the fault-free scenario or the stage after the FDE function is ap-
plied, the classical PL estimation approach assumes that the error model of the remaining
measurement errors converges to a zero-mean Gaussian model. Thus, the typical equation
of classical approach, which is adopted by RAIM variants, SBASs, and GBASs, can be
defined as,

xPL = K·σx·xDOP (2)

where x refers to the horizontal or vertical direction, σ is the error variance, and K is the
Gaussian distribution confidence coefficient for overbounding the target integrity risk (IR),
1 −α. Equation (2) can be explicitly rearranged to horizontal and vertical axes as suggested
in [26],

HPLSBAS = KH·dmajor, VPLSBAS = KV·du (3)

where,

dmajor =

√√√√√d2
E + d2

N
2

+

√√√√(d2
E − d2

N
2

)2

+ d2
EN (4)

D = (G TWG
)−1

=


d2

E dEN dEU dET
dEN d2

N dNU dNT
dEU dNU d2

U dUT
dET dNT dUT d2

T

 (5)
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The weighted directional covariance matrix, D, can be derived from the weighting
matrix, W, and the geometry matrix, G, which are defined below:

G =


−cosθ1sinφ1 −cosθ1cosφ1 −sinθ1 1
−cosθ2sinφ2 −cosθ2cosφ2 −sinθ2 1
−cosθ3sinφ3 −cosθ3cosφ3 −sinθ3 1

...
...

...
...

 (6)

where θi and φi are the elevation and azimuth of the ith satellite.

W =


w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wn

, wi =
1
σi

for ith satellite (7)

The primary difficulty with the classical approach lies in estimating overbounding
sigma values to calculate PLs when the actual error model is not a zero-mean Gaussian.
To ensure that the error model overbounds the actual error distribution, basically, two
approaches can be implemented [27]. The first one is broadcasting inflated sigma values
for each satellite based on the presumed error models from a reference station. However,
since we are seeking a solution applicable to UAM, a method requiring this sort of online
updating does not seem to be feasible due to the limited availability of ISM data. The
second one involves using mathematical models of error sources to calculate inflated sigma
values based on GNSS observables within the user receiver. Overbounding pseudorange
error variances for each non-faulty satellite, σi, can be modelled for L1 single-frequency
users [26],

σ2
i = σ2

i,URA + σ2
i,UIRE + σ2

i,tropo + σ2
i,air (8)

• σ2
i,URA is the user range accuracy and is accepted as 0.75 m and 0.67 m for GPS and

Galileo satellites, respectively.
• σ2

i,UIRE is ionospheric delay estimation error variance, which can be calculated as a
function of ionospheric delay (∆τiono) [28] and obliquity factor (Fpp) [26] as below:

σUIRE = Fpp × ∆τiono (9)

• σ2
i,tropo is the tropospheric error variance and can be calculated based on a tropospheric

delay model mentioned in [29] with Black and Eisner’s mapping function [30], which
is valid for the satellites with more than a 4◦ elevation angle:

σ2
i,tropo = 0.12 ×

(
1.001

0.002001 + sin2 θi

)
(10)

• σ2
i,air is the variance of airborne (user) receiver error, which is composed of noise and

multipath terms to represent receiver-based errors [31].

σ2
i,air = σ2

i,noise + σ2
i,mp (11)

for Galileo satellites, a lookup table is provided by [31] for σ2
i,air ≡ σ2

i,user.
for GPS satellites:

σ2
i,noise = 0.15 + 0.43e(θi/6.9◦) (12)

σ2
i,mp = 0.13 + 0.53e(θi/10◦) (13)

The accuracy of classical PL estimations strictly relies on predefined error models, and
external ISM data are mostly required for real-time applications. In order to enhance the
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offline integrity monitoring capabilities, GMV introduced a patented isotropy-based PL
(IBPL) estimation method [32].

IBPL emerged from the centred Gaussianity assumption of the classical PL approach [33].
Considering this assumption, the norm of LSE residuals, r, should satisfy the equation
below with respect to the number of measurements, N, used for the solution.

||r|| = σ·
√

N − 4 (14)

If (14) is written in (2), the overbounding error variances can be replaced with LSE
residuals.

xPLIBPL = K· ||r||√
N − 4

·xDOP (15)

After introducing a new isotropy-based confidence coefficient, k, and assuming,

k·
√

N − 4 →
N→∞

K (16)

IBPL can be defined as:
xPL = k·||r||·xDOP (17)

As seen from (16), k varies with changing N values and can be computed numerically
by solving the following equation for any intended α value,

α =
N − 2

2
·
(

1 + k2
) 4−N

2 − N − 4
2

·
(

1 + k2
) 2−N

2 (18)

IBPL-based integrity monitoring cannot offer any FDE function, but its capability to
perform integrity monitoring without any error model assumption is unique. However,
this approach is sensitive to decreased satellite visibility and large measurement errors [24].
Hence, the IBPL efficiency may be affected in urban areas where the satellite visibility is
low and the measurement errors are large.

GMV has also introduced another patented method called Kalman Integrated Integrity
Monitoring (KIPL) [34], which offers a sequential PL estimation approach, especially for
GNSS-INS integrated navigation systems. However, this method was not investigated in
the scope of this study since we focused on snapshot algorithms for stand-alone GNSS.

2.4. Machine Learning Utilization for PL Estimations

ML utilization in the field of GNSSs has expanded significantly across various appli-
cations such as signal detection and classification, error prediction, precise positioning,
etc. [35]. However, the accuracy of PL estimations relies heavily on the precise estimation of
error variances. The traditional regression models often fail to provide reliable estimates of
these overbounding error variances and do not adequately support the integrity monitoring
in urban environments. Thus, there is a need for probabilistic approaches that can deliver
a complete probability distribution of the potential outcomes. Unlike the conventional
regression models, which provide a single-point prediction, these probabilistic regression
models offer valuable insights into the uncertainty surrounding predictions.

Various methods have been developed for probabilistic regression, each with unique
strengths and limitations. The classical regression models can be extended to probabilistic
settings, but these adaptations often assume that the variance remains constant across
all instances, a limitation known as homoscedasticity [16]. Generalized Additive Models
for Location, Scale, and Shape (GAMLSS) [36] address this by allowing the variance to
vary with the input features, accommodating heteroscedasticity, but they are limited to
pre-specified forms of the distribution, which may not always suit complex data patterns.
Bayesian methods, including Bayesian Neural Networks [37] and Bayesian Additive Re-
gression Trees (BARTs) [38], provide a principled approach to uncertainty by integrating
predictions over the posterior distribution. However, the flexibility of the Bayesian methods
often comes at the cost of computational complexity, as inference requires approximation
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techniques which are computationally demanding and require expertise to implement ef-
fectively. Bayesian Deep Learning with probabilistic backpropagation [39] tries to combine
deep learning with Bayesian inference to estimate uncertainty, yet this method also has
limitations, especially when data are structured or tabular and limited in volume.

Gradient Boosting Machines (GBMs) [40] present another promising approach, offer-
ing a powerful, flexible, and relatively easy-to-use solution for many regression problems.
However, standard GBMs produce scalar outputs in regression tasks, typically yielding
only point estimates. Some adaptations interpret these outputs as the mean of a Gaussian
distribution but assume constant variance, reducing the utility of this approach for applica-
tions requiring a fuller understanding of the predictive uncertainty. Moreover, extending
GBMs to produce multiple parameters (for example, both mean and variance) presents op-
timization challenges, as each parameter has different sensitivities and dynamics. Without
modification, traditional GBMs may struggle to capture the desired range of probabilistic
outcomes, especially for data with highly variable uncertainty.

Natural Gradient Boosting (NGB) [16] has emerged as an advancement over these
existing methods, particularly by addressing the weaknesses in the traditional GBMs when
applied to probabilistic tasks. NGB expands the gradient boosting framework to proba-
bilistic regression by estimating multiple distribution parameters simultaneously, allowing
for comprehensive probabilistic predictions that consider both the central tendency and
uncertainty. A key innovation in NGB is the use of the natural gradient instead of the
ordinary gradient [41]. The natural gradient corrects the issues in standard gradient opti-
mization by taking into account the geometric structure of the parameter space, leading
to more balanced and stable updates across the parameters. This correction is particu-
larly advantageous in probabilistic settings, as it helps balance the updates for different
parameters, such as the mean and variance, thereby improving the model robustness and
convergence stability.

The modular design of NGB further enhances its utility, allowing users to select the
distributional family, scoring rule, and base learners most suitable for their data. This
flexibility allows NGB to adapt to a wide range of applications without requiring exten-
sive customization.

3. Methodology
3.1. The Proposed Integrity Monitoring Framework

Probabilistic estimation is essential for integrity monitoring where predicting outcomes
with associated uncertainties is crucial. The existing methods for probabilistic regression
offer valuable insights but often require complex modelling or make restrictive assumptions
about the data variability. NGB offers a practical and flexible solution that leverages natural
gradients to address these limitations, providing a comprehensive and accessible approach
to probabilistic regression. Moreover, the test results provided in [16] show that NGB is
one of the best-performing algorithms in both single-point and probabilistic regression.
Therefore, in this study, the NGB-PL approach is proposed by utilizing the NGB algorithm
for PL estimations. According to the error prediction results in [42], a decision tree algorithm
was chosen as the base learner for NGB.

No matter how well the NGB algorithm performs, the success of the NGB-PL approach
depends on correctly training the error models with sufficient data. Suppose that the
algorithm is trained with generic data regardless of the environment. In that case, the
error model is expected to provide large uncertainties for error predictions, resulting in
very conservative PL estimations. For this reason, an environment recognition unit should
be integrated into the framework to benefit from environment-specific error models. The
proposed integrity monitoring framework is illustrated in Figure 1.
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3.2. HIL Simulation Setup

In the given framework, error and uncertainty prediction units construct the NGB
estimator together. PLs are later calculated using error and uncertainty predictions. The
environment recognition unit initiates the switch between the predefined environments to
enable the relevant error model in the NGB estimator. Since our main focus was to analyze
the accuracy of error and uncertainty predictions, the environment recognition unit was
assumed to provide fault-free classification results, and its development was beyond the
scope of this study.

The FDE unit is designed to detect and exclude faulty signals if possible. In practice,
most low-cost receivers can perform basic RAIM FDE to eliminate one faulty signal per
epoch. So, we assumed that the FDE capability of the u-blox receiver represents the typical
functionality of low-cost GNSS receivers. Therefore, no further development of the FDE
unit is proposed, as the receiver already applies FDE.

For the characterization of the GNSS error sources to support integrity monitoring, we
need to build deterministic threat models. However, the exact error bounds are unknown
due to the uncertainties in the transmission environment. In order to develop realistic GNSS
error models and understand how GNSS observables affect the navigation performance,
a large amount of data is required. GNSS almanac data provide observations and orbital
information about all satellites and can be found on publicly available databases such as the
Crustal Dynamics Data Information System (CDDIS) [43], where national or international
programs acquire the data. This kind of data is helpful for the reproducibility of GNSS mea-
surements with software-defined receivers (SDRs), particularly when open sky scenarios
are considered. Nevertheless, it is important to note that analyses conducted with almanac
data may not be valid in real-life scenarios, especially for urban environments, since the
dynamic uncertainties of the environment, transmission line, or receiver are ignored.

Collecting reliable data for statistical analysis can also be accomplished by building an
experimental setup. Although using experimental data may sound more appealing than re-
lying on almanac data, setting the environmental features to meet our test requirements can
be challenging. During flight experiments, GNSS observables provide limited information
about the environment type and signal quality, which is crucial for our environment-aware
integrity monitoring approach. Even if it is possible to overcome this challenge, another
issue arises when dealing with the atmospheric and ionospheric error sources since we
have no control over them. Lastly, generating hours of continuous experimental data is
neither practical nor useful when the required amount of data is taken into consideration for
statistical analysis in this research. Thus, in this study, a HIL simulation setup was chosen
to ensure the complete control over all the aspects of GNSS navigation while maintaining a
high level of realism.

The HIL simulation structure is illustrated in Figure 2, which comprises Spirent’s
GSS7000 GNSS Constellation Simulator [44] with its simulation software SimGen [45] and
a commercial-level low-cost GNSS receiver, u-blox ZED-F9P [46]. Although alternative
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GNSS signal generators are available on the market, especially for commercial use, Spirent’s
setup was chosen for its accessibility in our laboratory and its ability to simulate urban
environment scenarios.
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The SimGen GNSS simulation software offers a wide range of options for defining
the scenarios and parameters related to all the GNSS segments. When using SimGen,
GSS7000 can generate navigation messages and create a navigation environment with
all the necessary details, e.g., the position of the satellites and receiver, potential faults,
tropospheric or ionospheric effects, obstructions, and signal reflections. By creating a
proper scenario in the GSS7000 simulator, it is possible to observe the independent impact
of each error source on the position measurement realistically.

The RF signals generated by the GSS7000 simulator are capable of replicating the real
GNSS signals under the defined conditions in the SimGen software. These signals can be
used as the antenna input for any GNSS receiver. While the GSS7000 simulator generates
GNSS messages, SimGen creates log files at the same time, including the details of the
messages and simulation features. NMEA and RINEX data files are also available from
the simulator. All of this information was considered as the ground truth throughout this
research. The rest of the data were sourced from the employed receiver.

Basically, our setup had three physical data monitoring points: the RF output of the
GSS7000 simulator, raw measurements at the input of the GNSS receiver, and the receiver’s
output with PVT estimations. In order to extract the useful information from the different
types of data records, we first had to convert them into a MATLAB-compatible format. To
achieve this, we converted the simulator’s log files and the receiver’s RINEX files into the
.csv format, which made them easily readable by MATLAB. However, extracting the data
from NMEA files required more effort, as each line was allocated to a specific talker and
message type identifier. Therefore, we fragmented the NMEA folders into subfolders and
saved them as individual .csv files, each containing particular types of messages only.

Once the data extraction was completed, the data preprocessing stage had two main
challenges: ensuring proper synchronization and conducting data health checks. The
timestamps on the receiver’s recordings were rounded due to the restricted resolution
capabilities of the NMEA and RINEX formats. However, the exact timestamps can be
calculated by taking into account the receiver’s clock bias, which is available at the receiver’s
interface. After the clock corrections have been made on the timestamps, the mismatch
between the receiver’s recordings and the ground truth can be resolved.

To conduct data health checks, we developed a systematic approach to check the
quality and completeness of the available data. Our first step was to verify the availability
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of the position estimation by the receiver, commonly called a 3D fix. If a 3D fix did not occur
for a particular timestamp, we excluded all the information associated with that timestamp
from our data set. Additionally, data samples with any missing information were also
excluded from the data set. These helped us to ensure that we were only analyzing reliable
data. By doing so, we could prevent any errors or inaccuracies that might occur due to the
use of incomplete or misleading information.

4. Results
4.1. Simulation

Having discussed the methodology, we will initially explain the details of the simula-
tion strategy, including the environment models and scenarios built in order to generate
data to train the environment-specific error models properly. Training data were generated
separately for the three urban environment types (suburban, urban, and urban canyon),
which were simulated using SimGen software. These environment types are defined based
on the assumptions in Section 2.2. Their signal blockage and reflection characteristics are
illustrated in Figures 3–5 with respect to the elevation and azimuth angles of satellites.
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Figure 5. Urban canyon environment model.

During the simulation period, satellites’ skyplot changed gradually due to the move-
ment of the satellites and the vehicle. Thus, the impact of varying environments on the
satellite visibility and geometry is discussed in Section 4.2 as a part of the training data
analysis.

For each environment model, 24 h long training data, which began at midnight on
23 January 2022, were generated in the GSS7000 GNSS simulator. During the simulations,
the UAV maintained a constant altitude of 50 m and a constant speed of 10 m/s, and the
trajectory is illustrated in Figure 6. The starting location is (0,0,0) in the LLA (Longitude–
Latitude–Altitude) coordinate system.
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The data consisted of single-frequency (L1) GPS and Galileo signals, which were
processed by a low-cost GNSS receiver, u-blox ZED-F9P. This receiver is equipped with
onboard RAIM FDE capabilities to detect and exclude one faulty measurement per epoch.
Position errors were calculated from the difference between the receiver’s position esti-
mation and the ground truth of the simulator. The receiver also records GNSS-related
information in NMEA and RINEX data formats, and input features were extracted from
these records.

Twenty per cent of the generated data for each environmental scenario were randomly
allocated for testing. The rest of the data were utilized for training. Additional 3 h long
continuous validation data were also generated at midnight the next day. After training,
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testing, and validation data allocations were performed, the following input features were
considered for training the NGB algorithm to generate environment-specific error models:

• Number of visible satellites (vS);
• Minimum, mean, and standard deviation of the satellite elevations (minele/µele/σele);
• Mean and standard deviation of the satellite azimuths (µazi/σazi);
• HDOP/VDOP;
• Mean and standard deviation of satellite Signal-to-noise ratios (µsnr/σsnr);
• Directional covariances from Equation (4) (dmajor/du);
• Norm of Least-squared estimation (LSE) residuals (||r||).

The response of our trained model was position error estimations and error variances
which are necessary for PL estimations. In order to enhance the training performance, the
input features were normalized with respect to their mean (µx) and standard deviation (σx),
as below:

Xnorm = (X − µx)/σx (19)

4.2. Training Data Analysis

In this section, we will analyze the training data generated via the HIL simulation with
respect to the environment types. This analysis gives an insight into how the environment
types affect the position accuracy, satellite visibility, and satellite geometry. Multipath-free
scenarios for urban and urban canyon environments are also analyzed to see the impact of
the multipath reflections and NLOS receptions on the accuracy of the position estimations.
Table 1 summarizes the statistics of the data used for the training of ML-based error models.

Table 1. Training data statistics.

Environment
Type

Horizontal RMSE (m) Vertical RMSE (m) HDOP VDOP vS
Availability (%)

µ σ
95th

Percentile µ σ
95th

Percentile µ µ µ

Open sky 0.26 0.19 0.66 0.35 0.26 0.80 0.59 1.11 19.27 100

Suburban 0.27 0.24 0.67 0.41 0.44 0.90 0.60 1.11 19.25 100

Urban 2.40 1.59 5.59 8.34 5.14 17.50 0.71 1.30 16.35 100

Urban
Multipath-free 0.25 0.17 0.60 0.34 0.23 0.78 0.73 1.32 15.63 100

Urban canyon 11.10 8.39 26.83 35.66 20.34 75.90 0.90 1.47 12.65 100

Urban canyon
Multipath-free 1.13 1.96 4.07 1.95 2.87 6.10 4.92 9.31 5.99 90.07

Based on the data statistics, it is evident that the type of environment has a significant
impact on the accuracy of the position estimations. The vertical accuracy seems to be
more influenced by the intensity of the urban environment than the horizontal accuracy
is. The accuracy in the urban canyon scenario was about 40 times worse horizontally
and about 85 times worse vertically than in the suburban scenario. However, there was
no such significant decrease in the average number of visible satellites or increase in the
DOP coefficients, even in the urban canyon environments. Furthermore, no instances of
unavailability were observed in any multipath-inclusive scenarios.

When considering the impact of multipath signals, we examined two scenarios free
from multipath signals in the urban and urban canyon environments. The statistics show
that a multipath signal is much more impactful compared to the satellite visibility and
geometry in both scenarios. The horizontal and vertical accuracies in the urban scenarios
were even better than in the open sky scenarios when the impact of a multipath signal was
cancelled, despite slightly increased DOP coefficients and fewer available satellites.
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Similarly, in the urban canyon scenario, eliminating the multipath signals also im-
proved the position accuracy. Nevertheless, due to the intense LoS blockage and the high
number of NLOS signals in the urban canyon environments, removing all the measure-
ments from the reflected signals led to an availability issue, causing the GNSS availability
to decrease to 90.07%. This means that even if the receiver is somewhat capable of detecting
and extracting all the faulty measurements from the position estimation process, we cannot
guarantee enhancing the accuracy since the availability might be compromised. Therefore,
our integrity monitoring approach specialized for urban environments should be able to
deal with the presence of reflected signals and possess the ability to calculate PLs accurately.

4.3. Feature Analysis

After analyzing the training data in the previous section, we investigated the training
features mentioned in Section 4.1 in order to reveal their impact on the horizontal and
vertical error in each scenario. Numerous feature-ranking algorithms are available for
regression and classification model training, but one of the most common and efficient
algorithms for regression models is Minimum Redundancy Maximum Relevance (MRMR)
algorithm [47]. It calculates feature importance scores for each feature, x, based on the
Mutual Information Quotient (MIQ) value. MIQ can be defined as,

MIQx =
Vx

Wx
(20)

where Vx is the relevance, and Wx is the redundancy of features in the response.
The results presented in Table 2 provide a comprehensive analysis of the feature

importance scores calculated using the MRMR algorithm, focusing on the horizontal and
vertical errors across the suburban, urban, and urban canyon environmental scenarios.

Table 2. Feature importance scores (MIQ) of the training features for error estimation.

Features
MIQ for Horizontal Error MIQ for Vertical Error

Suburban Urban Urban Canyon Suburban Urban Urban Canyon

vS 0.0499 0.0627 0.0554 0.1728 0.1316 0.1686

HDOP 0.0323 0.0829 0.0796 N/A N/A N/A

VDOP N/A N/A N/A 0.1690 0.1372 0.3376

minele 0.0270 0.1083 0.1756 0.1167 0.1515 0.3955

µele 0.0462 0.0965 0.0936 0.2479 0.1642 0.3235

σele 0.0476 0.1095 0 0.2542 0.1518 0.4175

µsnr 0.0272 0.1038 0.1369 0.0923 0.1345 0.3850

σsnr 0.2842 0.3579 0 0.7867 0.5830 0

µazi 0.3401 0 0.1531 0.9747 0.1799 0.6140

σazi 0.0471 0.4338 0 0.2570 0.7088 0.3712

||r|| 0.1109 0.2307 0.3274 0.3258 0.2621 0.4859

dmajor 0.0418 0.1003 0.4463 N/A N/A N/A

du N/A N/A N/A 0.2883 0.1555 0

For the horizontal error estimation, the MIQ scores varied significantly across the
different environmental scenarios. In the suburban environment, the most impactful feature
for horizontal error estimation was µazi with an MIQ score of 0.3401, indicating that the
mean azimuth angle was the dominant feature in this scenario. σsnr and ||r|| also had
significant impacts with MIQ scores of 0.2842 and 0.1109, respectively. The impact of the
other features was relatively small.
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In the urban environment, the standard deviation of the azimuth and signal strength
were the most influential features, with notably high MIQ scores of 0.4338 and 0.3579,
respectively. This indicates that the variance-related features are more critical in urban
settings, likely due to the complex signal reflections and multipath effects prevalent in
such environments. Similar to the suburban scenario, ||r|| remains as one of the important
features for the urban scenario as well. The contributions of the other features were still
low, but an overall increase in the features’ impact could be observed according to the
MIQ scores.

For the urban canyon environment, dmajor emerged as the most critical feature with
an MIQ score of 0.4463. ||r|| and minele also showed a significant influence, with MIQ
scores of 0.3274 and 0.1756, respectively. This underscores the importance of the physical
dimensions of the urban canyon, which likely affect the signal propagation and, thus, the
horizontal error.

For the vertical error estimation, the most impactful features followed a similar trend
to that of the horizontal error in the suburban and urban scenarios. This consistency across
both dimensions presents the overall impact of these features on the positional accuracy.
However, in the urban canyon scenario, the top features for the vertical error estimation
were different from those for the horizontal error estimation. µazi, ||r|| and σele were the
most significant features based on their MIQ scores. It is also evident that the norm of LSE
residuals, ||r||, is one of the most influential features for all environments in both directions.

Across the different environments, certain features emerged as crucial for error predic-
tion, albeit with varying degrees of importance. This analysis underscores the necessity for
environment-specific feature selection in model training to enhance the error prediction
accuracy. Understanding the dominant features in each scenario aids in evolving more
robust and reliable integrity monitoring solutions to address the unique challenges posed
by different urban settings.

With the conventional approaches, there is no possible way to consider these environment-
specific impacts because they rely on static error models of open-sky conditions and ignore
the dynamic multipath and blockage conditions of urban environments. Therefore, in the
next section, we initially investigate the performance of the conventional PL estimation
approaches in simulated urban environments to determine the performance differentiations
with varying environmental conditions.

4.4. Classical PL vs. IBPL

As a part of this study, the performance of the classical PL and IBPL estimation ap-
proaches, which we reviewed earlier, must be compared under simulated urban conditions.
This comparison shows us what level of integrity monitoring performance can be achieved
and which approach is more suitable for each type of environment. The results are also
necessary to validate the proposed NGB-PL approach. While estimating PLs with both
approaches, the training data which were analyzed in Section 4.2 have been used. This
data set contains 86281 samples with known position errors.

For this comparison, the Stanford-ESA Integrity Diagram [48] is one of the most
practical tools to illustrate the integrity events with respect to the position errors (PEs),
protection levels (PLs), and alert limits (ALs), as seen in Figure 7.

The events dropping in the white triangular zone, where the PE < the PL < the AL, are
considered as the nominal operations. If the PL > the AL, the system is called unavailable
because the integrity requirements are not fulfilled. However, if the system is called
unavailable but the actual PE is smaller than the AL, it is a false detection. Similarly, if the
system is called available where the PL < the AL, but the actual PE is greater than the PL,
it is a missed detection and leads to a misleading operation. In reality, missed detections
pose a risk to the operation’s safety, while false detections compromise the availability of
the navigation system.

Although there is no consensus regarding the required navigation performance in
UAM applications, we must decide on the horizontal AL (HAL), vertical AL (VAL), and tar-
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get IR for integrity analysis. According to ICAO’s signal in space performance requirements
for aviation users [49], 40 m and 50 m are suggested for HAL and VAL, respectively, with
an integrity risk of less than 1–2 × 10−7/h for APV-I approach operations. On the other
hand, the European GNSS Agency defined more stringent alert limits for safety-critical
applications [50] where HAL is 5 to 10 m, and VAL is 10 to 25 m. In between these two
suggestions, HAL = 20 m, VAL = 40 m, and the target IR = 1–2 × 10−7/h values are selected
for this study.
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The estimated HPL results against PEs are illustrated in Stanford-ESA diagrams for
HAL = 20 m in Figures 8–10.
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Figure 8. HPL estimations in suburban scenario with (a) classical approach (b) IBPL approach.

According to the test results, both approaches perform best in the suburban test sce-
narios. However, the IBPL approach performs better than the classical approach, providing
23.5% more availability without causing any misleading information.
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With increasing blockage and signal reflections in the urban environment test scenario,
the system availability dropped to 11.86% for the classical approach and 2.18% for the IBPL
approach. Despite the declining availability, no misleading information was observed with
both approaches.

When it came to the urban canyon test scenario, the IBPL approach became totally
unavailable as a result of the unnecessarily large PL estimations. On the other hand, the
classical approach maintained nominal operation only for 4.36% of the simulation period.
The biggest risk in the urban canyon scenario when the classical approach was implemented
was the high probability of misleading information with 4.78%.

We can conclude that the overall performance of both approaches is only satisfactory
for suburban scenarios. The IBPL approach is superior to the classical approach in the
suburban scenario, where faulty measurements are uncommon and satellite visibility is
not intensely restricted. However, one approach is fully unavailable for the urban canyon
scenario, while the other is not safe to use.

A similar analysis was carried out for the vertical axis as well, and the estimated VPL
results against PEs are illustrated in Stanford-ESA diagrams for VAL = 40 m in Figures 11–13.
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According to the VPL analysis results, again, the IBPL approach is superior to the
classical approach in the suburban environment test scenario with a 96.93% nominal
operation rate against 0.37%. However, both approaches are mostly unavailable in the
urban and urban canyon scenarios except for a 1.52% availability of the IBPL method in the
urban test scenario. We can simply conclude that neither the classical nor IBPL approach is
able to provide sufficient performance for vertical integrity monitoring in urban and urban
canyon environments.
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4.5. NGB-PL

In the following subsections, we will assess the performance of the NGB-PL estimation
approach using the test and validation data. The results will be compared with PLs
estimated via the existing approaches to demonstrate the performance improvements.

For performance assessment and comparison, the following quality metrics will be
calculated for each scenario where N represents the number of samples:

• Nominal Operation (NO) Rate = NNO/NAll;
• Misleading Information (MI) Rate = NMI/NAll;
• Average Bound Gap (BG) = (PL−PE)/NAll, where the PL > the PE.

Ideally, we expect to minimize the average BG between the PL and PE without causing
a significant increase in the MI rates. In this way, we can enhance the GNSS availabil-
ity in GNSS-challenging urban environments while maintaining the intended integrity
requirements.

4.5.1. Test Results

This subsection presents the PL estimation results with randomly selected test data
for each environment scenario, separately. Figures 14–16 illustrate the horizontal and
vertical PE and PL estimations for each test sample, and the performance of PL estimation
approaches based on the quality metrics are compared in Tables 3–5.
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Table 3. Comparison of PL estimation approaches in suburban scenario with test data.

Approach
Horizontal Vertical

Average BG (m) MI Rate (%) NO Rate (%) Average BG (m) MI Rate (%) NO Rate (%)

Classical 18.55 0 75.55 49.93 0 0.47

IBPL 4.83 0 97.99 11.81 0 97.06
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Table 4. Comparison of PL estimation approaches in urban scenario with test data.

Approach
Horizontal Vertical

Average BG (m) MI Rate (%) NO Rate (%) Average BG (m) MI Rate (%) NO Rate (%)

Classical 21.03 0 11.42 50.37 0 0

IBPL 90.45 0 2.23 201.36 0 1.58

NGB-PL 5.09 0 100 15.58 0 97.67

Table 5. Comparison of PL estimation approaches in urban canyon scenario with test data.

Approach
Horizontal Vertical

Average BG (m) MI Rate (%) NO Rate (%) Average BG (m) MI Rate (%) NO Rate (%)

Classical 19.67 4.75 4.14 34.79 10.61 0

IBPL 594.25 0 0 1122.05 0 0

NGB-PL 28.69 0 4.69 67.71 4.28 0.06

According to the test results, one of the key outcomes of the tests is that the NGB-PL
approach enhances the GNSS availability by increasing the NO rates for each environment
type in both the horizontal and vertical axes. This is, in fact, because of narrowing the
average BG. However, narrower bound gaps can cause additional integrity risks due to a
rising MI rate. This situation could be observed in the urban canyon scenario where the
classical approach provided a narrower average BG, but the MI rate reached 4.75% for
the horizontal axis and 10.61% for the vertical axis. Additionally, despite the increased
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risks, no increase in availability could be observed with the classical approach in the urban
canyon scenario.

As expected, all the approaches performed best in the suburban environment due to
the limited signal blockage and reflection. The NGB-PL approach is superior to the other
two approaches even in this less challenging environment where the horizontal and vertical
NO rates were improved by 2% and 2.92%, respectively. Although an increment in the MI
rates of 0.01% in the horizontal and 0.02% in the vertical axes were observed, it did not lead
to any integrity risks since the actual positioning errors did not exceed the ALs.

The most considerable enhancement in the availability was observed in the urban
scenarios utilizing the NGB-PL approach. GNSS became 88.58% more available for the
horizontal and 96.09% more available for the vertical position estimations without leading
any MI.

4.5.2. Validation Results

In this subsection, the PL estimation results with continuous validation data are
presented separately for each environment scenario. Figures 17–19 illustrate the horizontal
and vertical PE and PL estimations for each validation sample, and the performance of the
PL estimation approaches based on the quality metrics are compared in Tables 6–8.
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Table 6. Comparison of PL estimation approaches in suburban scenario with validation data.

Approach
Horizontal Vertical

Average BG (m) MI Rate (%) NO Rate (%) Average BG (m) MI Rate (%) NO Rate (%)

Classical 19.67 0 51.42 50.88 0 0

IBPL 1.53 0 100 3.84 0 100

NGB-PL 0.37 0.89 99.11 0.95 0 100

Table 7. Comparison of PL estimation approaches in urban scenario with validation data.

Approach
Horizontal Vertical

Average BG (m) MI Rate (%) NO Rate (%) Average BG (m) MI Rate (%) NO Rate (%)

Classical 21.46 0 0 56.53 0 0

IBPL 103.44 0 9.11 227.49 0 7.31
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Table 8. Comparison of PL estimation approaches in urban canyon scenario with validation data.

Approach
Horizontal Vertical

Average BG (m) MI Rate (%) NO Rate (%) Average BG (m) MI Rate (%) NO Rate (%)

Classical 19.65 1.41 0 33.68 2.16 0

IBPL 281.83 0 0 545.70 0 0

NGB-PL 25.64 0.05 5.61 58.07 0 0

According to the validation results, in suburban environments, the NGB-PL and IBPL
approaches offer similar performance with respect to the NO rate, but IBPL is slightly better
than NGB-PL in the horizontal axis. Nevertheless, NGB-PL provides a narrower average
BG, which is beneficial for missions in more restricted airspace among the buildings.

In the urban scenario, similar to the test results, the proposed NGB-PL approach
performed much better than the other approaches with validation data and the increasing
availability of GNSS navigation by more than 90% both horizontally and vertically.

Lastly, in the urban canyon scenario, the NGB-PL approach was capable of providing
5.61% GNSS availability with a narrower average BG, and the MI rate was decreased by
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1.36% compared to the classical approach. However, neither the conventional nor the
proposed approaches can offer an intended level of availability for vertical positioning.

5. Discussion

The results of this study provide significant insights into the GNSS integrity monitor-
ing in the context of urban air mobility (UAM), specifically in suburban, urban, and urban
canyon scenarios. Within the scope of the study, three models for urban environments
were proposed based on the signal blockage and reflection intensity. These environment
models were initially utilized in our simulation setup to conduct an environment-specific
analysis of the GNSS performance. This analysis demonstrated how the GNSS position
accuracy, availability, and satellite visibility/geometry were impacted by different types
of environments.

In the multipath-inclusive scenarios, despite there being no availability issues or
significant decrease in the average number of visible satellites, the accuracy in the ur-
ban environment became 8 times worse horizontally and 18 times worse vertically, and
the accuracy in the urban canyon environment became 40 times worse horizontally and
85 times worse vertically compared to the suburban environment. On the other hand, in
the multipath-free scenarios where the reflected signals were removed, it was observed
that the horizontal and vertical accuracy in the urban environment was as good as the
accuracy in the open sky scenario. However, in the urban canyon scenario, although the
horizontal accuracy was 6.5 times better and the vertical accuracy was 12.5 times better
than in the multipath-inclusive scenario, the GNSS availability decreased to 90% because
of the insufficient healthy signals. These results showed that the integrity monitoring with
MRA is not a solution for dense urban areas. Therefore, we decided to enhance the integrity
monitoring with ECA without eliminating all the faulty measurements.

Since the integrity monitoring performance with ECA relies on accurate PL estimations,
generating environment-specific error models is necessary considering the dynamic nature
of urban settings. Therefore, a feature analysis was conducted to reveal the importance of
the GNSS and environment-based features while training error models for each type of
environment. The feature importance analysis results demonstrate that azimuth-related
features have the most impact on suburban and urban error models. Additionally, σsnr
and ||r|| are among the top features in suburban and urban scenarios both horizontally
and vertically. ||r|| also remains one of the most crucial features for horizontal and vertical
error estimation in the urban canyon scenario. While minele and dmajor are the other most
impactful features of the horizontal urban canyon error model, µazi and σele have more
influence on the vertical error model. Although we benefited from all the available features
during the model training in this study, this feature analysis would be beneficial for feature
selection where the computational power is limited.

The performance of the proposed integrity monitoring framework with the NGB-
PL approach was investigated after data and feature analysis. Initially, classical PL and
IBPL estimations were compared with each other using the training data set in order to
demonstrate their strengths and weaknesses in different sorts of environments. Then,
NGB-PLs were estimated with test and validation data in addition to the PLs estimated
with the classical and isotropy-based approaches.

If we consider the environment types one by one, it was observed that in the suburban
scenario, where the blockages and reflections were negligible, the NGB-PL and IBPL ap-
proaches performed efficiently with above 97% availability both horizontally and vertically.
Moreover, NGB-PL significantly reduced the average BG. With a narrower average BG, our
proposed approach can maintain higher GNSS availability where the required navigation
performance is stricter. The classical PL estimation approach, on the other hand, main-
tained very large bound gaps between the PL and PE in the suburban scenario and caused
unnecessarily high unavailability. It would be a safe approach for aviation use cases, but
such an over-conservative approach is impractical for UAM applications.
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In the urban environment scenario, the NGB-PL approach was significantly more
efficient than the other methods, simultaneously providing a balanced performance with a
narrower bound gap and higher availability. The GNSS became approximately 90% more
available with the NGB-PL approach. Additionally, no integrity risk was observed, neither
in the horizontal nor vertical positioning. Unlike the suburban scenario, the IBPL approach
is fragile against faulty measurements in urban environments and reacts dramatically to
even minimal position error changes, as seen in Figure 18. Although the classical approach
provides lower bound gaps than IBPL, IBPLs are still more compatible with UAM integrity
requirements to maintain availability and avoid MI.

Lastly, the urban canyon scenario was challenging for all the PL estimation methods
due to the increased number of faulty measurements. Even the actual position errors were
significantly higher in the urban canyon scenario compared to the others. The NGB-PL
approach can still maintain limited availability while not leading to high integrity risks.
However, the results show that GNSS-only integrity monitoring is inefficient via both the
conventional and proposed methods for such highly intense urban environments.

Overall, according to the results, the error and PL estimation accuracy are highly
dependent on the environment type, and the proposed framework with additional environ-
ment recognition functionality would be beneficial for the following reasons:

• With the development of environment-specific error models utilizing selective features,
more accurate error predictions and corrections can be applied within specific types
of environments.

• Lower average bound gaps and more GNSS availability can be provided without
leading to additional integrity risks.

• Users can avoid specific environment types to maintain the required GNSS integrity
and availability.

• Since the performance of the integrity monitoring methods varies with the changing
environmental conditions, a switching algorithm can be implemented to assign a
particular approach to a particular environment type.

6. Conclusions

In this study, we developed a novel ML-based GNSS integrity monitoring frame-
work in order to address the unique challenges of urban environments by incorporating
environment-specific error models. The proposed framework, which integrates the NGB
algorithm, demonstrates substantial improvements over classical PL and IBPL estimation
approaches in various urban scenarios.

Our results showed that the NGB-PL approach significantly enhances the perfor-
mance, particularly in urban and suburban environments, by reducing the bound gap
and increasing the GNSS availability. Unlike other PL estimation methods, which often
lead to unnecessarily high unavailability, the NGB-PL method maintains narrower PLs,
compromising integrity and making it more suitable for UAM applications.

The integration of environment recognition into the integrity monitoring framework
allows for the development of environment-specific error models. This enhancement
enables more accurate error predictions and integrity monitoring in specific environment
types. Moreover, it allows users to avoid certain environment types to maintain the
required integrity and availability and switch between different integrity methods based
on the environment.

Overall, the findings underscore the importance of considering environment-specific
factors in GNSS integrity monitoring. The proposed NGB-PL approach, with its environ-
ment recognition capabilities, offers a promising solution to enhance the reliability and
safety of GNSS-based navigation systems in UAM applications.

Future work should explore extending this framework to additional scenarios and
environment types and integrating additional environmental features to further improve
the accuracy and availability in more challenging UAM applications. The proposed ap-
proach should also be validated with an experimental setup after more diverse environment
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models have been developed in addition to those provided in this study. In the proposed
framework, we assumed that FDE and environment recognition units are seamless in order
to measure the true potential of the NGB-PL approach. However, the existing methods in
the literature for environment recognition are not able to provide sufficient performance
to detect environment types in such demanding UAM scenarios. The development of the
Environment Recognition Unit is outside the scope of this study but should be considered
for future works. According to our literature review, Natural Gradient Boosting was chosen
as a probabilistic regression algorithm due to its superior performance, but researchers
might be interested in investigating other alternatives and comparing them with NGB.
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