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Abstract: The formation control problem of distributed fixed-wing Unmanned Aerial Vehicles (UAVs)
is investigated in this paper. By utilizing the theoretical foundations of non-cooperative game
theory, a novel control strategy is introduced, which allows UAVs to autonomously determine the
optimal flight trajectory without relying on centralized coordination while concurrently mitigating
conflicts with other UAVs. By transforming the UAV model into a double integrator form, the control
complexity is reduced. Additionally, the incorporation of a homogeneous differential disturbance
observer enhances the UAV’s resilience against disturbances during the control process. Through
the development and validation of a Nash equilibrium-based algorithm, it is demonstrated that
UAVs can sustain a predefined formation flight and autonomously adapt their trajectories in complex
environments. Simulations are presented to confirm the efficiency of the proposed method.

Keywords: non-cooperative game theory; distributed control; disturbance observer; fixed-wing
unmanned aerial vehicles; formation control; Nash equilibrium; backstepping

1. Introduction

Recently, the utilization of Unmanned Aerial Vehicles (UAVs) has become increasingly
prevalent. Specifically, fixed-wing UAVs are prized for their extended endurance and
superior speed. Formation flight serves as a pivotal technology for enhancing the efficiency
of UAV missions, allowing multiple UAVs to collaborate in tasks such as search, surveil-
lance, mapping, and target localization [1–7]. However, with the escalating complexity of
mission environments and the proliferating number of UAVs, traditional centralized con-
trol approaches encounter obstacles, including constraints in communication bandwidth,
risks of single-point failures, and limitations in real-time processing [8–10]. In contrast,
the distributed formation control method rooted in graph theory exhibits strong stability
and robustness [11–15].

Unlike cooperative games, non-cooperative participants optimize independently,
which is suitable for scenarios where UAVs cannot or will not share information. Assuming
each UAV minimizes its cost function based on its own and others’ actions, an appropriate
game-theoretic model and Nash equilibrium ensure stable equilibrium without external
enforcement [16,17]. The communication and computational costs of Nash equilibrium-
seeking strategies in non-cooperative games were reduced by introducing an interference
graph to describe the interactions between agents within each coalition and by designing
Nash equilibrium-seeking strategies that consider the interference graph [18]. A projection
algorithm based on continuous-time distributed gradient was proposed to address the
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problem where both the cost function and the feasible action set depend on the actions of
all participants, and where each participant can only access the information of its neighbors.
This algorithm utilizes a leader–follower consensus algorithm to estimate the behavior of
each participant [19].

The Disturbance Observer was proposed by Japanese scholar K. Ohnishi in 1987 [20].
It is primarily used to handle external disturbances and uncertainties arising from changes
in model parameters in control systems. By observing and compensating for these distur-
bances, it achieves optimization and stabilization of system performance. A time-varying
dynamic modeling method for space double flexible telescopic manipulators, coupled with
a fuzzy PI real-time control strategy integrated with a fractional order disturbance ob-
server, was proposed to address the challenges posed by their nonlinear and time-varying
characteristics, aiming to enhance operational stability and precision [21]. A finite-time
control method is proposed for unmanned ground vehicle trajectory tracking, considering
uncertainty and disturbance compensation. Employing a Frenet-coordinate system and a
novel coordinate transformation, a finite-time disturbance observer and controller based on
an integral-type Lyapunov function are designed [22]. An improved discrete super-twisting
control algorithm is proposed, leveraging homogeneous system theory to precisely estimate
and compensate for system disturbances, enhancing robustness. An adjustable fractional
power parameter is introduced to address sampling constraints, ensuring higher control
accuracy in closed-loop systems [23].

In the context of multi-UAV formation control, backstepping can be used to develop
controllers that ensure the formation shape and spacing between the UAVs are maintained
during flight [24,25]. The effectiveness of backstepping for this complex and challenging
control problem has been demonstrated [26]. An adaptive fuzzy tracking control strat-
egy for pure feedback nonlinear multi-agent systems, developed through backstepping,
has been proposed [27]. An approach combining backstepping technology with neural
networks, introducing a radial basis function neural network with a gradient descent
algorithm, has been proposed to address the unknown complex nonlinear problems of
UAV systems caused by external disturbances [28]. A distributed formation controller
is designed using the backstepping method based on the asymmetric barrier Lyapunov
function [29].

This paper introduces a distributed formation control strategy for fixed-wing UAVs
based on the non-cooperative game theory. Compared to the aforementioned literature,
this paper makes the following innovations. A double integrator model was used to reduce
the design complexity of the controller [30]. We innovatively combine the principles of
non-cooperative game theory with the backstepping control method to design a distributed
formation controller, enabling the states of the multi-UAV system to converge to a Nash
equilibrium point. Additionally, a homogeneous differential disturbance observer is em-
ployed to observe and mitigate the disturbances generated in the system. The effectiveness
of this method has been confirmed by simulations.

2. Preliminaries
2.1. Graph Theory

In a multi-agent communication topology, the graph G = {V, E} embodies the con-
nectivity among various agents. Here, V = {V1, V2, . . . , VN} denotes the set of nodes,
representing individual agents, and E = {E1, E2, . . . , EM} signifies the set of edges, de-
noting communication links between these nodes. The presence of an edge from node
i to node j is symbolically indicated by the pair (i, j) ∈ E. Furthermore, if there exists a
sequence of edges (i, j1), (j1, j2), . . . , (jm, j) ∈ E, this implies that there is a directed path
enabling communication from node i to node j.

A directed graph G qualifies as strongly connected if, regardless of the pair of nodes
chosen, a directed path facilitating communication between them can be identified. The ad-
jacency matrix associated with this directed graph is denoted as A, where each element aij
corresponds to the entry in the i-th row and j-th column. Specifically, aij = 1 when there
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exists an edge from node i to node j, i.e., (i, j) ∈ E, while aij = 0 in all other cases. It is
important to note that the graph G explicitly disallows self-loops, meaning that aii = 0 for
all nodes.

The in-degree matrix, represented as D, is constructed as a diagonal matrix with
the degrees of the nodes along its diagonal. Mathematically, it is expressed as D =
diag{deg(V1), deg(V2), . . . , deg(VN)}, where the degree deg(Vj) of a node Vj is calculated
as the sum of the entries in the j-th column of the adjacency matrix A, or deg(Vj) = ∑N

i=1 aij.
The Laplacian matrix L of the graph G is then defined as the difference between the

in-degree matrix D and the adjacency matrix A, formulated as L = D − A. In the context of
a strongly connected graph G = {V, E}, the eigenvalue spectrum of the Laplacian matrix L
exhibits a unique characteristic: the value 0 emerges as the sole eigenvalue, accompanied
by the vector 1N as the corresponding eigenvector [31].

2.2. Non-Cooperative Game

Defining V as the set of N players, oi ∈ Rn represents the operation of the i-th player,
o = [oT

1 , . . . , oT
N ]

T is the joint action vector, and fi(o) the cost function associated with the
i-th player. In a non-cooperative game, the cost function for each player is determined by
the joint actions of all players involved in the game. Each player aims to minimize their
own individual cost function, taking into account the actions of the other players. This
results in a strategic interaction where the optimal strategy for each player depends on the
strategies chosen by the others.

If there exists a joint action vector o∗ = [o∗T
1 , . . . , o∗T

N ]T , which means a collection
of strategies chosen by each of the N players, such that for any player i within the set
{1, . . . , N} and for any alternative strategy oi that this player might consider, the following
condition holds:

fi(oi, o∗−i) ≥ fi(o∗i , o∗−i) (1)

where o∗ is referred to as a Nash equilibrium solution of the non-cooperative game [32].
Here, o−i = [oT

1 , . . . , oT
i−1, oT

i+1, . . . , oT
N ]

T represents the actions of all players except the i-th
player, highlighting the interdependence of players’ decisions in the game.

The aforementioned inequality signifies a crucial property of the Nash equilibrium: it
ensures that once the system reaches this state, no individual player has an incentive to
deviate from their current strategy, as doing so would not lead to a reduction in their cost
function, or equivalently, would not improve their payoff. This principle underlines the
stability of the Nash equilibrium as a solution concept in non-cooperative games.

For an unconstrained non-cooperative game among players, the Nash equilibrium
is mathematically characterized by the first-order condition ∂ fi(o∗)

∂oi
= 0. This condition

implies that at the equilibrium point, the marginal change in the cost (or payoff) with
respect to the player’s own action is zero, indicating a local optimum for each player given
the actions of others.

Furthermore, if the cost function fi(o) is continuous in the overall action vector o and
exhibits convexity in the individual action oi while the actions of other players o−i are held
constant, the existence of a Nash equilibrium in the non-cooperative game is assured. This
assurance stems from the fact that under these conditions, the game’s structure allows for
a unique solution where no player can benefit from a unilateral deviation, thus ensuring
the stability and predictability of the game’s outcome. Meanwhile, the convexity of the
function lays the foundation for the effectiveness of the gradient descent method, which
will be partially utilized later on.

Lemma 1 ([33]). If Q is a non-singular M-matrix, then PQ+QTP > 0 for P = diag(p1, . . . , pN) > 0.

Lemma 2 ([34]). If c, d > 0 and γ > 0, and x, y ∈ R, the following inequalities hold:

|x|c|y|d ⩽
c

c + d
γ|x|c+d +

d
c + d

γ− c
d |y|c+d (2)
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3. Modeling of Fixed-Wing Unmanned Aerial Vehicles

Assume that the UAVs are labeled as i = 1, 2, 3, . . . , N, where N represents the number
of UAVs in the formation, and all the fixed-wing UAVs are flying at the same altitude.
The typical kinematic model for the i-th UAV can be expressed as follows:

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi

v̇i = ui,1, ω̇i = ui,2
(3)

The variables xi, yi, and θi denote the horizontal coordinate, vertical coordinate,
and heading angle of the i-th UAV, respectively. The linear velocity and angular velocity of
the UAV are represented by vi and ωi, respectively. The control inputs for these dynamics
are given by ui,1 and ui,2.

As described in the paper [30] and illustrated in Figure 1, we define xhi = xi + li cos θi
and yhi = yi + li sin θi, where (xi, yi), indicated by the red dot, is the centroid between the
head and tail of the i-th UAV, and li represents the distance from the centroid to the head of
the i-th UAV. As a result, it follows from (3) that

ẋhi = ẋi − liωi sin θ = vi cos θi − liωi sin θi

ẍhi = ui,1 cos θi − viωi sin θi − liω2
i cos θi − liui,2 sin θi

ẏhi = ẏi + liωi cos θi = vi sin θi + liωi cos θi

ÿhi = ui,1 sin θi + viωi cos θi − liω2
i sin θi + liui,2 cos θi

(4)

Defining ẍhi = ux,i and ÿhi = uy,i, one obtains[
ẍhi
ÿhi

]
=

[
cos θi −li sin θi
sin θi li cos θi

][
ui,1
ui,2

]
+

[
−viωi sin θi − liω2

i cos θi
viωi cos θi − liω2

i sin θi

]
(5)[

ui,1
ui,2

]
=

[
cos θi −li sin θi
sin θi li cos θi

]−1[ux,i + viωi sin θi + liω2
i cos θi

uy,i − viωi cos θi + liω2
i sin θi

]
(6)

Figure 1. The model of the i-th fixed-wing unmanned aerial vehicle (UAV).

At this point, the following relationships are established:[
ẋhi
ẏhi

]
=

[
vxi
vyi

]
,
[

v̇xi
v̇yi

]
=

[
ux,i
uy,i

]
(7)
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As a result, ξi = [xhi, yhi]
T represents the head coordinates of the UAVs, νi = [vx,i, vy,i]

T

represents the velocities of the UAVs, and ui = [ux,i, uy,i]
T represents the control signals.

Consequently, the following relationships hold:

ξ̇i = νi, ν̇i = ui (8)

4. Non-Cooperative Game and Nash Equilibrium
4.1. Cost Function

In a non-cooperative game, players aim to minimize their individual cost functions by
underscoring the importance of accurately determining these functions.

In the context of UAV formation flying, each UAV pursues two primary objectives.
The first objective is to maintain the formation by keeping a specified relative distance from
other UAVs, constituting an individual objective. The second objective is to follow the over-
all reference path ξ0, which involves maintaining a specified distance relative to ξ0, fulfilling
a collective objective. Here, ξ0 = [xh0(t), yh0(t)]T represents a time-dependent function.

To maintain formation, we expect each UAV to maintain a fixed relative position with
respect to the others. We defined dij represents the desired coordinate difference between
the head of the i-th UAV and the head of the j-th UAV. To achieve this objective, we aim
to minimize

N

∑
j=1

aij||ξi − ξ j − dij||2 (9)

where aij is the element of the adjacency matrix A and it represents the interaction between
the i-th and j-th UAVs.

In order for the UAV formation to track a given mission trajectory as a whole, we
expect the UAVs with individual targets to maintain a fixed relative position with respect to
the mission trajectory point ξ0(t). Let pi be the desired coordinate difference between the
head of the i-th UAV and ξ0. To achieve this goal for agent Vi with independent objectives,
we aim to minimize

N

∑
j=1

αi||ξi − ξ0 − pi||2 (10)

where αi = 1 when Vi ∈ Vs and αi = 0 otherwise. Integrating these two objectives,
the cost function Ji(ξ) for the i-th UAV is crafted as a balanced trade-off between formation
maintenance and path tracking. The first component ensures that each UAV contributes to
the formation’s cohesion by minimizing deviations from the desired inter-UAV distances.
The second component focuses on the collective objective of tracking the reference path,
with select UAVs assuming primary responsibility for this task. Consequently, the cost
function Ji(ξ) of the i-th UAV can be designed as follows:

Ji(ξ) =
1
2

N

∑
j=1

aij||ξi − ξ j − dij||2 +
αi
2
||ξi − ξ0 − pi||2 (11)

where ξ = [ξT
1 , . . . , ξT

N ]
T , Vs denotes the set of UAVs with independent objectives, and ξ0

is defined as the given trajectory. By optimizing this cost function, the UAVs within
the formation are able to dynamically adjust their positions in response to changes in
the environment, ensuring that the formation moves in harmony towards its designated
destination with precision and efficiency.

4.2. Nash Equilibrium

Previously, we concluded that in an unconstrained non-cooperative game among
players, at the Nash equilibrium, ∂ fi(o∗)

∂oi
= 0 holds. If fi(o) is continuous in o and convex in

oi with fixed o−i, then a Nash equilibrium exists for the non-cooperative game.
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Currently, N UAVs are interconnected as represented by the graph G, with A as the
adjacency matrix and L as the Laplacian matrix of the graph. Taking the partial derivative
of Ji(ξ) with respect to ξi, we derive that

Ψi(ξ) =
∂Ji(ξ)

∂ξi
=

N

∑
j=1

aij(ξi − ξ j − dij) + αi(ξi − ξ0 − pi). (12)

We define Ψ(ξ) = [Ψ1(ξ)
T , . . . , ΨN(ξ)

T ]T , Λ = diag(α1, . . . , αN), and Q = L + Λ. Let
α = [α1, . . . , αN ]

T . Consequently, we have the following:

Ψ(ξ) = (Q ⊗ I3)ξ − d − α ⊗ ξ0, (13)

where ξ = [ξT
1 , . . . , ξT

N ]
T , d = [dT

1 , . . . , dT
N ]

T , and di = ∑N
j=1 aijdij + αi pi. Given that Q is

non-singular, when Ψ(ξ) = 03N , a unique Nash equilibrium state exists, which is denoted
as ξ∗ = [ξ∗T

1 , . . . , ξT
N ]

T . This state can be expressed as follows:

ξ∗ = (Q ⊗ I3)
−1(d + α ⊗ ξ0)

= (Q ⊗ I3)
−1d + 1N ⊗ ξ0

(14)

5. Design of Disturbance Observer Based on Homogeneous Differentiation

The Disturbance Observer (DOB) represents an advanced control strategy specifically
tailored to estimate and subsequently compensate for external disturbances that may arise
within a system. We will design a DOB based on homogeneous differentiation to observe the
system disturbances and compensate for them within the controller. Additionally, we will
prove the convergence of this disturbance observer to ensure its stability and effectiveness.

Definition 1. We define
sigα(x) = sign(x)|x|α (15)

where 0 ≤ α ≤ 1, and sign denote the sign function.

We assume that the disturbances in the system are denoted as κ = [κ1; κ2], and under
these conditions, for the i-th UAV:

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi

v̇i = ui,1 + κ1, ω̇i = ui,2 + κ2
(16)

Assumption 1. The disturbance κ acting on the system is bounded, meaning that there exists an
ι > 0 such that |κ| < ι.

Theorem 1 ([23]). The exponent power terms of the homogeneous differential observer possess a
degree of flexibility, allowing them to be tuned within a predefined range. This adaptability enhances
the performance and versatility of the observer. The expression below exemplifies a specific form of
the homogeneous differential observer, showcasing its structural characteristics:

˙̂x1 = x̂2 − msig1+α(x̂1 − g)
˙̂x2 = −nsig1+2α(x̂1 − g)

(17)

where − 1
2 < α < 0, m > 0, n > 0, x̂1 and x̂2 are, respectively, the estimated values of g and ġ. If

|g̈(t)| < C

m ≥
(

2
1

1+α −1(1 + (2λ1 + 2)λ2 + λ3)n
) 1

2

n > C

(18)
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where C is a constant, λ1 = 1
1+α

(
1−2α
2+α + 3+4α

2+α 2
1

1+α

)
, λ2 = 1+2α

2+α 2
−α

1+α

(
2

1
1+α 1−α

2+α

) 1−α
1+2α ,

λ3 = 1
1+α

3+4α
2+α 2

1
1+α .

Then, the aforementioned homogeneous differential observer exhibits a property of finite-time
convergence. This signifies that the estimation error generated by the observer rapidly diminishes and
converges precisely to zero within a predetermined, finite time interval. In contrast, it does not follow
the traditional asymptotic convergence pattern where the error tends to zero as time approaches
infinity. The finite-time convergence feature ensures that the observer’s estimates accurately reflect
the actual values in a timely and efficient manner.

Lemma 3. By using Theorem 1, we can draw the following conclusion: A homogeneous differential
disturbance observer in the following form

˙̂v = −msig(1 + α)(v̂ − v) + κ̂ − κ + u

˙̂κ = −nsig(1 + 2α)(v̂ − v),
(19)

can track the internal disturbances within the system within a finite time. That is, κ̂ will converge to κ
within a finite time. Where − 1

2 < α < 0, m > 0, n > 0, κ̂ is the output of the disturbance observer.

Proof. Define the Estimated value x1 and x2 of this homogeneous differential disturbance
observer as

x1 = v̂

x2 = κ̂
(20)

Therefore, we can obtain the dynamic equation of the estimation error as follows:

ẋ1 = −msig1+α(x1 − v) + x2

ẋ2 = −nsig1+2α(x1 − v)
(21)

If the homogeneous differential observer is transformed into this particular form, it
becomes readily apparent that it fulfills the necessary criteria stipulated by Theorem 1.
Consequently, the estimation κ̂ of the disturbance κ generated by this tailored observer
exhibits the property of finite-time convergence. This implies that the estimation error
converges precisely to zero within a finite time interval, ensuring the timely and accurate
reflection of the actual disturbance value.

After offsetting the estimated value of the disturbance against the actual disturbance
for the i-th UAV is as follows:

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi

v̇i = (ui,1 − κ̂1) + κ1, ω̇i = (ui,2 − κ̂2) + κ2
(22)

6. Implementation of Fixed-Wing UAV Formation Control Based on
Non-Cooperative Game

We have presented the designed controller and proven its feasibility.

Theorem 2. Assuming that the objective of the UAVs is to minimize the cost function Ji(ξ), if a
gradient control strategy is designed as follows:

ui = ξ̈0 − Ψ̇i(ξ)− c(Ψi(ξ) + νi − ξ̇0) (23)

then the UAVs will gradually converge to the Nash equilibrium state, where c is a coefficient to be
determined.
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Proof. Let ν = [νT
1 , . . . , νT

N]
T and u = [uT

1 , . . . , uT
N]

T. Then, the following relationships hold:

ξ̇ = ν, ν̇ = u (24)

Feasibility is proved using backstepping theory [35]. Initially, let ε1 = ξ − ξ∗, and choose
the Lyapunov function as follows:

V1 = εT
1 (P ⊗ I3)ε1 (25)

where P is a positive definite matrix. It follows that

V̇1 =(ξ − ξ∗)T(P ⊗ I3)(ν − 1N ⊗ ξ̇0)

+ (ν − 1N ⊗ ξ̇0)
T(P ⊗ I3)(ξ − ξ∗)

(26)

Using the fact that Ψ(ξ∗) = 03N , we have

V̇1 =(ξ − ξ∗)T(P ⊗ I3)(Ψ(ξ) + ν − 1N ⊗ ξ̇0)

− (ξ − ξ∗)T(P ⊗ I3)(Ψ(ξ)− Ψ(ξ∗))

+ (Ψ(ξ) + ν − 1N ⊗ ξ̇0)
T(P ⊗ I3)(ξ − ξ∗)

− (Ψ(ξ)− Ψ(ξ∗))T(P ⊗ I3)(ξ − ξ∗)

(27)

From Ψ(ξ)− Ψ(ξ ) = (Q ⊗ I3)(ξ − ξ ), it can be derived that

V̇1 =(ξ − ξ∗)T(P ⊗ I3)(Ψ(ξ) + ν − 1N ⊗ ξ̇0)

− (ξ − ξ∗)T(PQ ⊗ I3)(ξ − ξ∗)

+ (Ψ(ξ) + ν − 1N ⊗ ξ̇0)
T(P ⊗ I3)(ξ − ξ∗)

− (ξ − ξ∗)T(QT P ⊗ I3)(ξ − ξ∗)

(28)

Given that −PQ−QT P < 0, we define λ = λmin(PQ+QT P), pmax = max(p1, . . . , pN),
and pmin = min(p1, . . . , pN), which leads to the following inequality:

V̇1 ≤− λ||ξ − ξ∗||2

+ 2pmax||ξ − ξ∗|| · ||Ψ(ξ) + ν − 1N ⊗ ξ̇0||
(29)

Let ν∗ = 1N ⊗ ξ̇0 − Ψ(ξ). We can obtain the following:

V̇1 ≤ −λ∥ξ − ξ∗∥2

+ 2pmax∥ξ − ξ∗∥ · ∥Γ(ξ) + ν + ν∗ − 1N ⊗ ξ̇0∥
≤ −λ∥ξ − ξ∗∥2 + 2pmax∥ξ − ξ∗∥ · ∥ν − ν∗∥
≤ −λ∥ξ − ξ∗∥2 + ∥ξ − ξ∗∥2

+ p2
max∥ξ − ξ∗∥ · ∥ν − ν∗∥

(30)

Defining ε2 = ν − νd = ν − ν∗, it can be deduced that

ε̇2 = (Q ⊗ I3)ν − α ⊗ ξ̇0 + ν̇ − 1N ⊗ ξ̈0 (31)

We propose a Lyapunov function for the second part of the system:

V2 =
1
2

εT
2 ε2 (32)
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The derivative of V2 is

V̇2 = (ν − ν∗)T(u − ν̇∗) (33)

If

u = ν̇∗ − c(ν − ν∗)

= 1N ⊗ ξ̈0 − Ψ̇(ξ)− k(Ψ(ξ) + ν − 1N ⊗ ξ̇0)
(34)

then

V̇2 = −c(ν − ν∗)T(ν − ν∗) ≤ 0 (35)

where c is a positive real number. Choose the total Lyapunov function

V1 + V2 = εT
1 (P ⊗ I3)ε1 +

1
2

εT
2 ε2 ≥ 0 (36)

Since P ⊗ I3 is a positive definite matrix, then λmax(P ⊗ I3) > 0, which implies that

εT
1 (P ⊗ I3)ε1 ≤ λmax(P ⊗ I3)ε

T
1 ε1 (37)

As a result

V1 + V2 ≤ λmax(P ⊗ I3)ε
T
1 ε1 +

1
2

εT
2 ε2

≤ λ1(ε
T
1 ε1 + εT

2 ε2) (38)

where λ1 = max{λmax(P ⊗ I3), 1
2}. At the same time, we have

V̇1 + V̇2 = (ξ − ξ∗)T(P ⊗ I3)(ν − 1N ⊗ ξ̇0)

+ (ν − 1N ⊗ ξ̇0)
T(P ⊗ I3)(ξ − ξ∗)

+ (ν − ν∗)T(u − ν̇∗)

≤ −λ∥ξ − ξ∗∥2 + ∥ξ − ξ∗∥2

+ p2
max∥ξ − ξ∗∥ · ∥ν − ν∗∥

− c(ν − ν∗)T(ν − ν∗)

(39)

By Lemma 2, p2
max∥ξ − ξ∗∥ · ∥ν − ν∗∥ can be calculated by the following:

p2
max||ξ − ξ∗||·||ν − ν∗||

≤ p2
maxγ

2
||ξ − ξ∗||2 + γ−1 p2

max
2

||ν − ν∗||2
(40)

where γ is a positive number. By substituting (40) into (39), we obtain

V̇1 + V̇2 ≤− (λ − 1 − p2
maxγ

2
)||ξ − ξ∗||2

− (c − γ−1 p2
max

2
)||ν − ν∗||2

(41)

Letting γ = λ
p2

max
> 0, we obtain that

V̇1 + V̇2 ≤ −(
λ

2
− 1)(εT

1 ε1)− (c − p4
max
2λ

)(εT
2 ε2) (42)
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Since the parameters c and λ can be adjusted by modifying the controller gains and

the matrix P, if selecting appropriate values to satisfy c ≥ p4
max
2λ and λ ≥ 2, it can be

concluded that

V̇1 + V̇2 ≤ −λ2(ε
T
1 ε1 + εT

2 ε2) (43)

where λ2 = min
{

λ
2 − 1, c − p4

max
2λ

}
> 0. This, combined with (38), leads to the following:

V̇1 + V̇2 ≤ −λ2(ε
T
1 ε1 + εT

2 ε2) ≤ −λ2

λ1
(V1 + V2) (44)

Defining λ3 = λ2
λ1

> 0, we arrive at the conclusion:

V̇1 + V̇2 ≤ −λ3(V1 + V2) (45)

Since V1 + V2 is positive definite and V̇1 + V̇2 is negative definite, we determine that
the system is exponentially stable. It follows that ε1, ε2 → 0 as t → ∞, ξ → ξ∗ while
t → ∞. Through the above derivation, it can be concluded that under the given control law,
the UAV cluster will gradually converge to the Nash equilibrium state.

7. Simulation and Validation

We utilize MATLAB R2023b as our simulation platform to validate the effectiveness of
the proposed control algorithm.

In our simulation, we set N = 4, representing a cluster of four UAVs. These UAVs
are designed to operate in a coordinated manner, following a predetermined overall path.
The desired path ξ0 is configured as a circular trajectory. This choice of trajectory allows us
to evaluate the algorithm’s performance in a continuous and repetitive pattern.

To visualize the formation and coordination of the four UAVs, we present a schematic
diagram (Figure 2), which depicts their relative positions and orientations within the
formation. 1, 2, 3, and 4 are their respective identification numbers, corresponding to the
first, second, third, and fourth UAVs. The UAVs are arranged in a specific pattern, which
ensures optimal coverage and coordination during flight.

Figure 2. Schematic diagram of the UAV formation with four UAVs.
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When the network connectivity relationships between the UAVs are established,
the values of the adjacency matrix for the UAV connection graph can be determined.
This matrix serves as a fundamental mathematical representation of the connectivity and
information flow between the UAVs.

The adjacency matrix for the UAV connection graph is defined as follows:

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 (46)

To accurately quantify the pose differences among the UAVs within a network, we
introduce a matrix representation called the pose difference matrix, which denoted by D∗,
provides a structured view of the variations in position and orientation among the UAVs.
The matrix D∗ is structured as follows:

D∗ =


d11 d12 d13 d14
d21 d22 d23 d24
d31 d32 d33 d34
d41 d42 d43 d44

 =



0 10 0 10
0 0 10 10

−10 0 −10 0
0 0 10 10
0 10 0 10

−10 −10 0 0
−10 0 −10 0
−10 −10 0 0


(47)

To accurately determine the pose differences between the UAVs and the reference path
points, we first establish a matrix representation of these differences. Specifically, we define
the matrix P∗ = [pT

1 , pT
2 , pT

3 , pT
4 ]

T , where pT
i represents the transpose of the pose difference

vector for the i-th UAV with respect to the corresponding reference path point. In this
example, P∗ = [−5,−5, 5,−5,−5, 5, 5, 5]T .

We utilize the mathematical formulation represented by Equation (14) to calculate
the Nash equilibrium trajectory for a formation of four UAVs, which symbolizes a state
where the actions of each UAV are balanced with those of the others, resulting in a stable
formation configuration.

By applying Equation (14), we determine the optimal trajectories for each UAV in
the formation. The results of this calculation are illustrated in Figure 3, where the Nash
equilibrium trajectories of the four UAVs are displayed, showing how they coordinate their
movements to follow the desired path while maintaining the required formation.

In Figure 3, the prominent solid black line serves as a representation of the intended
path that the UAV formation is required to follow. Consequently, the calculated Nash
equilibrium trajectories for each individual UAV within the formation are precisely depicted.
Specifically, the Nash equilibrium trajectory for UAV 1 is illustrated in red, UAV 2 in pink,
UAV 3 in green, and UAV 4 in blue.

Additionally, we introduce the disturbance κ = [κ1; κ2] = [4 × sin(t + 1); 3 × cos(2t)],
which represents a significant disturbance with relatively large amplitude and varying
speed. It can be observed that during the period when the disturbance is acting, the esti-
mated value κ̂ from the homogeneous differential disturbance observer rapidly converges
to the actual value κ. By incorporating this estimated disturbance value κ̂ into the control
strategy by subtracting it from the control input ui = [ui,1; ui,2], we effectively counteract
the disturbance’s detrimental effects on the system. As evident from the subsequent graph-
ical representation Figure 4, the homogeneous differential disturbance observer plays a
pivotal role in minimizing the disturbance’s impact, rendering its influence on the system
virtually negligible.

Upon activation of the control signal (23), it begins to influence the four UAVs. Af-
ter a brief period of adjustment and alignment, the UAVs successfully achieve a cohesive
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formation. This unified entity then proceeds to follow the predefined desired trajectory.
As depicted in Figure 5 and Figure 6, the UAVs maintain their relative positions within the
formation, ensuring synchronized movement along the intended path.

The control system diagram is shown in Figure 7.

Figure 3. The computed trajectories of four UAVs at the Nash equilibrium. The trajectories of the
UAVs are colored red for the first UAV, pink for the second UAV, green for the third UAV, and blue
for the fourth UAV.

Figure 4. Actual value of applied disturbance, estimated value of the disturbance by the disturbance
observer and estimation error.



Drones 2024, 8, 698 13 of 16

Figure 5. Trajectories of four UAVs in a simulation environment. The trajectories of the UAVs are
colored red for the first UAV, pink for the second UAV, green for the third UAV, and blue for the
fourth UAV.

(a) (b)

(c) (d)

Figure 6. The pose variation of UAVs during the simulation process. (a) The pose variation of UAV 1
during the simulation process. (b) The pose variation of UAV 2 during the simulation process. (c) The
pose variation of UAV 3 during the simulation process. (d) The pose variation of UAV 4 during the
simulation process.
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Figure 7. The control system diagram of four UAVs.

After careful analysis of the collected data, we conclude that a fixed-wing UAV forma-
tion will reach the desired Nash equilibrium of the specified non-cooperative game within
a set time, assuming its initial state is reasonable. Once the Nash equilibrium is achieved,
the formation will maintain its structure and adhere to the planned trajectory, ensuring
smooth and coordinated flight.

8. Conclusions

Given the widespread application of fixed-wing UAV formations and the communica-
tion and control challenges encountered in the process, this paper proposes a distributed
fixed-wing UAV formation control method based on non-cooperative game theory. Firstly,
we assumed a planar task environment and established a UAV model based on this as-
sumption. We further transformed this model into a double integrator form, which reduces
the complexity of controller design. Next, we implemented a homogeneous differential
disturbance observer based on the UAV model to enhance the UAV’s robustness against
disturbances generated by the system itself during operation. Considering the two objec-
tives in UAV formation tasks: maintaining formation and following the mission trajectory,
we designed a cost function that balances both aspects. The UAV’s goal is to minimize
its own cost function. Therefore, utilizing non-cooperative game theory, we identified
the Nash equilibrium solution. Subsequently, we employed the backstepping method to
design an appropriate controller, which enables the states of the multi-UAV system to
ultimately converge to the Nash equilibrium point. Finally, simulations were conducted to
demonstrate the feasibility of the proposed algorithm.
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