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Abstract: To balance the real-time and robustness of UAV visual tracking on a single CPU, this
paper proposes an object tracker based on spatio-temporal context (STCT). STCT integrates the
correlation filter and Siamese network into a unified framework and introduces the target’s motion
model, enabling the tracker to adapt to target scale variations and effectively address challenges
posed by rapid target motion, etc. Furthermore, a spatio-temporal regularization term based on
the dynamic attention mechanism is proposed, and it is introduced into the correlation filter to
suppress the aberrance of the response map. The filter solution is provided through the alternating
direction method of multipliers (ADMM). In addition, to ensure efficiency, this paper proposes the
average maximum response value-related energy (AMRE) for adaptive tracking state evaluation,
which considers the time context of the tracking process in STCT. Experimental results show that the
proposed STCT tracker can achieve a favorable balance between tracking robustness and real-time
performance for UAV object tracking while running at ~38 frames/s on a low-cost CPU.

Keywords: UAV object tracking; the correlation filter; Siamese networks; spatio-temporal context

1. Introduction

Unmanned aerial vehicles (UAVs) are favored in both military and civilian fields due
to their small size, flexible movement, and low cost [1,2]. Visual object tracking plays a
pivotal role in the collaborative reconnaissance process of unmanned aerial vehicles. The
primary objective of visual object tracking is to accurately predict the spatial location in
successive consecutive frames, leveraging an initial frame as a basis. Therefore, robust and
real-time object tracking algorithms are crucial [3,4].

However, the challenges of UAV visual object tracking are more complex compared
with general tracking scenarios. It is mainly manifested in the following aspects: (i) Rapid
motion problem. UAVs are highly maneuverable. The rapid motion of the target, as well as
the relative motion of the UAV and target, makes the tracking task more difficult. (ii) Scale
variation and aspect ratio change [5]. During the course of movement, the morphology of
the target may change. In addition, viewpoint variations lead to substantial alterations of
the target scale. The majority of contemporary real-time object trackers that are dependent
on a sole CPU have a fixed size or aspect ratio of the target tracking frame, which cannot
cope well with the challenge posed by target scale variations and aspect ratio changes.
(iii) Partial occlusion and target appearance change. In scenarios where the target undergoes
partial occlusion or moves partially out of the field of view, its appearance may experience
significant deformations. Failing to adaptively update the tracking model in real-time
can result in the failure of the tracking process. (iv) Scarcity of computational resources.
According to practical applications, object tracking algorithms need to be deployed on
onboard processors or ground portable mobile platforms. However, due to limited battery
capacity and constrained computational resources, higher requirements are placed on
the real-time performance of target tracking algorithms [6]. Therefore, the pursuit of
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stable, precise, and instantaneous object tracking amidst intricate surroundings stands as a
formidable task.

Currently, there are two main classes of mainstream object tracking algorithms: dis-
criminative correlation filter (CF) trackers and Siamese network-based trackers. Due to their
remarkable computational efficiency, correlation filters have garnered immense prominence
in the realm of UAV object tracking. Their extensive adoption within this domain stems
from their capacity to handle real-time tracking scenarios adeptly while minimizing com-
putational overhead. It adopts an ‘online learning” mechanism, which leverages Fourier
transformation to perform complex convolution operations in the frequency domain rather
than the spatial domain. This innovative technique significantly boosts the computational
speed. Although the traditional CF can achieve relatively strong real-time performance, its
limited search regions and issues such as boundary effects result in relatively lower success
rates and precision in complex and dynamic environments [7].

Recently, emerging deep learning techniques have attained remarkable triumphs in
the domains of image classification, target detection, and image segmentation [8]. The
deep learning theory provides new ideas to solve the object tracking problem. Among
them, Siamese network-based trackers are getting more and more attention. It adopts an
‘offline learning’ mechanism. The target deep features are extracted by convolutional neural
networks (CNNs), which have stronger adaptability.

Despite the significant improvement in tracking success and precision of Siamese
networks, the ensuing problem is that the large network structure takes up a large amount
of computational resources. However, the high performance of Siamese networks is
usually realized on GPUs, and such algorithms consume relatively large amounts of power.
The scarcity of computational resources in processors based on a single CPU limits the
application of deep learning-based object tracking algorithms. Therefore, the pursuit of
robust and real-time object tracking in intricate scenarios continues to present an arduous
challenge that demands meticulous attention and resolution.

Aiming at the limitations observed in current methodologies, this paper proposes
a real-time object tracking method for UAVs. It fuses spatial and temporal contexts by
considering the spatial contextual information of the tracking process, as well as the motion
information and global response changes in the time series. Robust tracking based on a
single CPU has been achieved while ensuring real-time tracking performance.

The main contributions are summarized as follows:

(i) STCT integrates correlation filtering and Siamese networks into a unified vision
architecture to strike a balance between robustness and real-time performance in a single
CPU platform.

(ii) A spatio-temporal regularity term based on a dynamic attention mechanism is
proposed to suppress aberrations and improve tracking robustness.

(iii) The average maximum response value related energy (AMRE) is proposed for
adaptive tracking state assessment, making the tracking algorithm more efficient.

The subsequent segments of this paper are organized as follows: Section 2 delves into
an exploration of pertinent literature in the field. Section 3 elucidates the proposed STCT
tracker, providing comprehensive details regarding its underlying methodology. Section 4
showcases the experiments and corresponding results. Section 5 is a discussion about the
proposed methods. Finally, Section 6 encapsulates the paper with a conclusive summary.

2. Related Works

For completeness, a concise overview of the most relevant works is presented
as follows.

2.1. Correlation Filters for Online Object Tracking

In 2014, MOSSE [9] applied the correlation filtering method to object tracking for the
first time. It achieved online template updates by minimizing the sum of squares error.
On this basis, Henriques et al. proposed KCF [10], which adds a regularization term to
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the optimization equation to prevent overfitting. It constructs the correlation filter by
ridge regression. For feature extraction, KCF introduces a multi-channel histogram of
oriented gradient (HOG) feature to describe the target shape information, which replaces
the single-channel grayscale feature and extends the feature to a multi-channel nonlinear
feature space. In addition, KCF utilizes cyclic shift sampling to construct dense samples,
overcoming the problem of insufficient training samples in MOSSE. DSST [11] pays more
attention to the target scale estimation. It considers the object tracking issue as a pair of
distinct challenges: the translation of the target’s center position and the adjustment of
its scale variation. The displacement correlation filter is trained using the HOG features,
and then another scale filter is trained for predicting the scale change, which improves the
precision and success rate. However, the speed is slightly slower compared with KCE. To
improve the discriminative ability, the SRDCF [12] algorithm introduces a spatial domain
regularization component and filter coefficients that penalize the boundary region based on
KCF optimization objectives. The Gauss—Seidel iteration is used for filter solving. However,
the real-time performance of SRDCF is poor. Subsequently, Danelljan et al. proposed
ECO-HC [13], which provides a new optimization method with respect to the dimensions
of the model, the size of the training set, and the update strategy of the model, respectively.
ECO-HC achieved better results in UAV object tracking tasks. In 2017, Gloogahi et al.
proposed the background awareness correlation filter (BACF) [14], which abandons the
negative samples generated through cyclic shifting. It employs negative samples generated
by real shifting instead, which contain a larger search region and can better suppress the
boundary effect. Since then, some methods [15-17] improved on BACF to enhance the
adaptability of target tracking. CSR-DCEF [18] is different from BACEF in that it adds a
mask to the filter from the spatial domain to suppress the boundary effect. In this case,
the mask is constructed from color histograms of the foreground and background. CSR-
DCEF constructs the weighting coefficients of different channels using the response map
information of different channels. STRCF [19] and RISTrack [20] improve on SRDCF by
introducing regular term constraints. In addition, STRCF employs ADMM iteration to
solve the filter, thereby enhancing its real-time capabilities.

To summarize, the above classical correlation filters possess their individual strengths
and weaknesses in terms of performance on object tracking datasets in different domains.
So far, on the dataset of UAV object tracking, ECO-HC and STRCF showcase impressive
results on CPU [21].

2.2. Siamese Network-Based Trackers for Online Object Tracking [22,23]

Except for some correlation filters that introduce the deep-CNN in feature extrac-
tion, such as ECO [13], DeepSTRCEF [19], etc., the most widely researched deep learning
object tracking algorithms are based on the structure of Siamese networks [24]. In 2016,
SiamFC [25] first applied the twinned convolutional neural network structure to object
tracking. The Siamese network uses two identical CNN branches, one of which extracts the
target features and the other extracts the search image features. Finally, the response map
of the target position is generated through feature matching using the cross-correlation
operation. However, SiamFC encounters challenges in effectively handling issues related
to target scale variations. For this reason, SiamRPN [26] borrows the region proposal
network (RPN) for predicting target scales in a new image. Instead of directly performing
the mutual correlation operation after its backbone network extracts template features
and search image features, both feature maps are fed into respective branches of the RPN,
wherein they perform the discernment of target probability and the refinement of the target
bounding box through meticulous prediction and regression. In addition, advanced deep
trackers like SiamRPN++ [27] and SiamMask [28] are built on the foundation of Siamese
network architecture. Currently, the feature extraction module of Siamese networks mainly
uses a pre-trained backbone such as AlexNet [29], VGG [30], and ResNet [31]. The feature
extraction network serves as the very essence of the Siamese network, playing a pivotal
role in the extraction of target templates and the search for image features. The pre-trained
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feature extraction network only needs to traverse the computation in a feed-forward man-
ner to obtain the similarity score for target localization. However, the feature extraction
network has a large structure and parameter size. Its superior performance is usually
realized on GPUs with high performance. It cannot meet real-time requirements when
running on processors with only a single CPU. This limitation hinders the application of
Siamese network trackers within the realm of UAV visual object tracking.

2.3. Discussion of Related Works

In the realm of visual object tracking, prior to 2020, the majority of research centered
around correlation filters, which can be implemented to achieve real-time performance on
CPUs. Although the correlation filter has made some achievements in the field of object
tracking, it still cannot well solve the problems of restricted search area and boundary
effects. Efforts should be devoted towards refining the tracking precision and success rate
for further improvements.

However, since 2020, Siamese neural networks have garnered widespread attention
for their remarkable robustness and have progressively surpassed correlation filters. In fact,
most Siamese network trackers have demonstrated superior performance in both tracking
success rates and accuracy compared with correlation filters so far.

However, the Siamese network tracker has a large neural network structure and
parameters. It is usually deployed on GPU-based platforms. The tracking speed is very
slow on CPU-based platforms. In some areas of object tracking tasks, platforms with larger
computational resources can be provided for Siamese network trackers. However, the
research context of this paper is UAV visual object tracking, where the computational
resources of an onboard processor carrying only a CPU are limited. Therefore, in the field
of UAV visual object tracking, despite the excellent performance of the Siamese network
tracker, its weakness in achieving real-time on CPU-based processors is a key limiting
factor for its application.

To address the above issues, the algorithm presented in this paper is a real-time
tracker proposed for CPU platforms. The importance of CPU deployment is reflected in
the following points:

(i) Computational resource limitations: In the field of visual object tracking for UAVs,
onboard processors or portable ground processors are often limited by their computational
capabilities and may only be equipped with CPUs, lacking GPUs. In such cases, the
effectiveness and computational efficiency of the algorithms must be validated in an
environment that relies solely on CPU resources.

(ii) The payload limitations of small UAVs: Processing boards equipped with GPUs
are heavier, which poses a challenge to the payload capacity of small UAVs. It is essential to
consider their effective payload when designing a UAV. Therefore, in certain cases, opting
for CPU deployment can better balance performance and weight, enabling the UAV to
undertake a wider variety of tasks.

(iii) Economic considerations: The visual object tracking examined in this paper
provides a foundation for future intelligent autonomous UAV swarms for cooperative
reconnaissance. Utilizing CPUs for calculations can significantly reduce costs. In large-scale
deployments, selecting cost-effective and low-power computing solutions will greatly
enhance the overall feasibility and universality of the system.

This paper proposes a real-time target tracking algorithm that incorporates spatio-
temporal context. The subsequent sections will provide a detailed overview of the proposed
methodology, along with the experimental results, discussions, and conclusions.

3. Object Tracking Based on Spatio-Temporal Context (STCT)
3.1. The Algorithm Framework
The correlation filter exhibits excellent real-time performance but typically searches in a

relatively constrained region. In situations where the target exhibits swift motion, the center
of search in CF falls behind the target, consequently leading to subpar tracking performance.
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In contrast, Siamese neural networks have a larger search area. Utilizing convolutional
neural networks, it harnesses the power of deep feature extraction for capturing intricate
details of the target. The deep features are highly robust when the target undergoes local
occlusion or background interference. In addition, the correlation filter performs scale
estimation by scale pooling or scale filtering. However, the aspect ratio of the target
size is usually kept constant during scale estimation by CE. When the viewpoint changes
significantly, the original scale cannot adapt well to the new target appearance. Siamese
networks demonstrate greater scale adaptability. Therefore, this paper proposes an object
tracking method incorporating spatio-temporal context (STCT), which invokes the Siamese
network to expand the search space when necessary. Simultaneously, it performs online
calibration of the scale parameters for the correlation filter, enabling the algorithm to
balance robustness and real-time performance in visual object tracking.

Figure 1 shows the framework of the STCT algorithm proposed in this paper. The
algorithm contains the following four components:

(i) The correlation filter.

If the tracking state is deemed satisfactory, the correlation filter undergoes online
updates to accurately predict both the target’s position and scale. The response Gy of the
k-th frame is computed by Equation (1):

Gy = #0 f, (1)

Among them, © represents element-wise multiplication. £ is the target feature after Fourier
transformation in frame kth, and f, is the CF in the frequency domain. The CF algorithm
computes the anticipated target position in the present frame by identifying the location
associated with the utmost response value.

(ii) The Siamese network.

When the tracking state evaluation metric reaches the preset condition, SiamRPN is
invoked to perform the target search in a larger spatial range. Its output Yy is directly used
as the result for the current frame (Equation (2)).

Y = f(x/ zk) 2)

Among them, Y} is the similarity score, x is the target map, and zj is the search map. In
SiamRPN, the target position predicted in the current frame is determined by identifying
the position exhibiting the utmost resemblance score.

Simultaneously, the search area and the fundamental target dimensions are adjusted
based on the size [w**™, h%*"] of the tracking box (Equation (3)), and the initialization
parameters of the CF are corrected. Then, the correlation filter is trained.

)

wszam hSlllm :|

SZ =
base { sc | sc

where sc is the scale factor.

(iii) The target motion model.

To address the challenge of a lagging search focal point during swift target motion,
this paper extracts the target positions of adjacent two frames in the time series to establish
a motion model, enabling the prediction of its potential location in the upcoming frame.
Since the time interval of consecutive frames is very short, it can be assumed that the target
exhibits uniform linear motion in a short time.

Take the system state variable as X = [uf, uR, oR, oR|T
Let
1 T 0 0
01 00
p(k+1,k) = 001 T (4)
0 0 0 1
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where T represents the sampling interval of the discrete system, and ¢ is the state transition
matrix.
Establish a target motion model through observation data:

X(k+1) = ¢(k+1,k)X (k) ®)

(iv) Tracking status evaluation.

Following the tracking outcomes, a comprehensive assessment of the object tracking
state is performed to determine whether it is necessary to invoke SiamRPN to correct CF in
the next frame. The state evaluation method combined with temporal context proposed in
this paper is detailed in Section 3.3.

- ~
( Si RPN\
Q Siam

Feature

; I« ------- Target
Bo
Sdracton X;!Motion Model I
> Scale

Scale
estimation

Score
.

\ Feature extraction CF )

Figure 1. The algorithmic framework of STCT.

3.2. Aberration Suppression Correlation Filtering Based on Dynamic Attention Mechanism

The STRCF algorithm serves as the foundational framework in this paper. The ob-
jective in frame k is to minimize the following function in order to acquire the optimal
correlation filter:

P10 il | K 2
+§d§1Hw'f H +§Hf_fk71|| (6)

D
argmin1 in*fd—y
A

Among them, xg represents the extracted target feature from frame k, d = 1,2,...,D

denotes the quantity of channels, fd represents the filter trained on the d-th channel of
frame k, y represents the expected Gaussian response, and f_; is the filter trained in frame
k — 1. % represents a convolution operator. - represents the Hadamard product.

Although STRCF has demonstrated promising performance in UAV visual object
tracking, it does have two inherent limitations:

(i) The target scale aspect ratio setting is fixed during the scale estimation process. It is
determined by the labeled box in the first frame. This problem is addressed in Section 3.1
of this paper.

(ii) The spatial regularity term of the STRCF is fixed, making it difficult to achieve
adaptability in scenarios where the target appearance undergoes unforeseen transforma-
tions during the tracking process.
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Therefore, to tackle the aforementioned limitations, this paper introduces a spatio-
temporal regularization term based on STRCF to suppress the aberrance in the response
map. A dynamic attention module is devised to fine-tune the hyperparameters associated
with the spatio-temporal regularization terms, rendering them adaptable and automatic.
To accelerate the computational speed of the algorithm, the color features extracted in
the baseline algorithm are discarded. In lieu of that, it amalgamates the HOG features,
grayscale attributes, and color histogram features to extract intricate features.

First of all, the Euclidean paradigm is used to define the level of difference between
the two response maps Rj_; and Ry as follows:

2
HAIIS—LkH = |[Re1[9g:.0.) — R

D

Y (x L+ ) [$ag] — Zxk*fk

d=1

2 (7)

where Ry_; and Rj denote the response maps at frames k-1 and k, respectively; 4; and
g» denote the differences of the peak coordinates in the response maps R;_1 and Ry,
respectively. To facilitate the computation of differences between the response in the
continuous time series, the peaks of R;_; and Ry, are overlapped by cyclically shifting ¢, 4,
When the target is abnormal, Ry suddenly changes, the similarity between Ry and Ry_1

2
decreases, and the value of HA,IS_1 r H increases. Anomalies can be recognized by judging

2
4815
To suppress the impact of response map aberrance on filter learning, the minimization
objective function is designed as Equation (8) in this paper, where the third and fourth
terms capture the temporal context and spatial context information for filter learning,
respectively. When SiamRPN is called to correct CF, the temporal and spatial constraints of
the correlation filter will be relaxed while the scale parameters are adjusted.

2
RV ST

D
argmin1 in*fdfy
fo2lis

where By, is the dynamic attention module designed in this paper, which dynamically
adjusts the intensity of attention in different regions according to the spatial context infor-
mation, making the filter more focused on the changes of the response map near the target
and ignoring the secondary information, which in turn improves the performance
Assume that the coordinates of the response map in frame k is p, = (1R, vR). The

peak coordinates p; = (i}, o) can be defined as follows:
[, 6] = arg max Ry’ 9)
L)

The weight By should be assigned to each region is

Bi(ul, of) = pp + ;4337“‘7"7%“/”%“ (10)

Subsequently, the optimization objective pursued in this manuscript can be succinctly
articulated as follows:

2
4y fl_y +;§Hw.de2+P§)Hffk—1H2

(11)
+ % || Bx(Rk—1[tg,,9,) — %k * fy) ||2
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3.3. Optimization Through ADMM

The optimal solution of Equation (11) is obtained by the alternating direction method
of multipliers (ADMM). First of all, an auxiliary variable is introduced:

§=rf (12)
Further, the augmented Lagrangian formulation of Equation (11) can be written as
follows:
L(f,8v) Pxff -yl +5 ZHW gH +V0Hf el
(13)
%uskmk_lml,qz] a4 (- g+ £y |-
d=1 d=1
Introduce ,
u=-v 14
0 (14)
Then, Equation (13) can be written as
L(f,8,0) —y‘ +5 ZHw 8 H + 2 el
(15)

2
+ %HBk(Rk—l[‘/’m,qz] — x8y) ||2 + gdz Hfd —g'+ udH
-1

The above equation can be decomposed into three sub-problems by ADMM iteration:

2
-y

frp1 = argn}in( : d +V0Hf—fk1H2+P||f—g+u|2> (16)
=

D 2
Sk1 = afgngn(ZHw'gdH + p1|| B (Ri—1 [y, —xkgk)||2+P|f—g+u||2> (17)
i1

Upy1 =g+ fry — 8kt (18)

(i) Solution of subproblem f
According to Parseval’s theorem, the subproblem f (Equation (16)) can be elegantly
reformulated in the Fourier domain as follows:

2

N ~ 2 N 2
o _argmm( o+ sollF— Fua [ ol ) )

where f represents the discrete Fourier transform (DFT) of the filter f. It is evident that
the j-th component of the label § solely relies on the j-th component of the filter f and the
sample £y.

Define V;(f) € RP to be a vector that is composed of the j-th element of the filter f
across all channels. Then, Equation (19) can be further partitioned into subproblems, with
each individual subproblem designated as follows:

afglf}}(i]g;(HVj(ffk)TVj(f) —g "+ i vk || o (D - viie) + Vi) HZ) (20)
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Let
v =7;Vi(®) + 1Vi(fi1) +pVi(8) — pVi(@) (21)
Then, the closed-form solution of V;( f) can be derived:
A R A N\T -1
Vith) = (V&)@ + (o +0)1) o
(o4 p) |1 —NEVE )
po +p + V;(®) TVi (%)

(ii) Solution of subproblem g
Taking the derivative of Equation (17) and equating it to zero yields a closed-form
solution.

g = (WIW +uB2x? + oI) " 11 B xR 1 [Yg,,00) + o (f + 1)) (23)
where W denotes the diagonal matrix concatenated with D diagonal, matrices Diag(w).

3.4. Adaptive Object Tracking Status Evaluation

In terms of tracking state assessment, the information of the response map is cru-
cial for the state assessment of object tracking. Currently widely adopted tracking state
evaluation metrics, such as maximum response Rmax, average peak-to-correlation energy
(APCE [32]), peak-to-sidelobe ratio (PSR), and so on, solely consider the response result
of the current frame, ignoring the temporal context information. In this regard, this paper
proposes the average maximum response value related energy (AMRE), an adaptive object
tracking state assessment function considering time series. It learns the tracking state
change characteristics to assess the dependability of the tracking outcomes, which is served
as a basis for model correction in STCT.

First, normalize the response map Ry in current frame. The normalized response map
R f is

R —min (R )
Ry = / ! (24)
max (Rf) — min (Rf)

Select the top M largest response peaks maxy; (R, ) from the current response map;
Ri . is the response peak of ranked i. Then, the expectation y of the response peaks can be
calculated according to Equation (25):

M . .
=) Ropa P(Rinay) (25)

where P(Rinax) is the probability that the response peak Rinax occurs.
Define

(26)

where R:nax and anax are the values of the primary and secondary peaks in the response
map Ry, respectively.

Based on the maximum N MRE values from all past frames and the average of the
MRE values from the last three frames, define AMRE as Equation (27):

AMRE — MRE'-MRE (27)

{ MRE' = mean(maxy(MRE[0 : k —1]) + MRE[k — 4 : k —1])
MRE’
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When the tracking performance is excellent, the value of MREy approaches MRE'
in the frame [0 : k — 1], so that AMRE presents a relatively small value. On the contrary,
if the tracking status deteriorates, MREy will suddenly decrease, so that AMRE presents
a relatively large value. Then, it is considered that the object in the current frame has
undergone an abnormality such as a variation in scale, partial occlusion, or a shift in
the background.

In this paper, the weighted average value is used as the judgment threshold. Smooth
the AMRE curve according to Equation (28):

[ AMREift<1
o = { Adi_1 + (1 —A)AMRE @8)
Calculate the adaptive threshold T as
T=mn-0+1n0 (29)

where A is the interpolation coefficient, 7 is the amplification factor, and 7 is the intercept.
The timing for STCT invoking the Siamese network and correcting correlation filtering is:

if AMRE > T (30)

Taking the Car6 sequence in the UAV123 dataset as an example, the target is partially
occluded at frame 1140 ~ frame 1386 due to being out of the visual range. It reappears
completely after frames 1386. In addition, the size of the car varies a lot due to the changes
in perspective. At this point, the filter template is prone to missing information if the
CF is continuously called. When the target reappears, the CF will continue to learn the
previous template. Instead, in the algorithm proposed in this paper, when AMRE exceeds a
given threshold, the STCT calls SiamRPN to correct the object tracking and achieve scale
adaptation. The change curves of AMRE value and the adaptive threshold, object tracking
results, and response map changes during this process are shown in Figure 2.

1 |
1140 1190 1240 1290 1340 1390 1440

Figure 2. The dynamic adjustment process of AMRE.
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4. Experiments and Results

In order to evaluate the algorithm performance, the proposed algorithm STCT is sub-
jected to comparative experiments with other target trackers. The comparison algorithms
mainly include EMCEF, RISTrack, MRCF, MSCF, STRCE, BACE, KCF-CN, KCF-HOG, DSST,
CSRDCE ECO-HC, and SiamRPN.

4.1. Experimental Details

Datasets: This paper compares the STCT algorithm with other algorithms on the
UAV123 and UAV20L datasets. The UAV123 dataset collected through rotor drones is
specifically designed for testing object tracking algorithms in the UAV domain. It contains
123 low-altitude video sequences totaling about 110,000 frames. UAV123 covers a variety
of environments and scenarios, including cities, countryside, oceans, forests, harbors,
etc. Furthermore, UAV123 covers 12 attributes, including illumination change (IV), scale
variation (SV), partial occlusion (POC), full occlusion (FOC), out-of-view (OV), fast motion
(FM), camera motion (CM), background clutter (BC), similar object (SOB), aspect ratio
change (ARC), viewpoint change (VC), and low resolution (LR). Due to the rapid relative
motion between the target and UAV, combined with the significant variations in viewpoint,
there is a substantial alteration in both the size and aspect ratio of the target bounding
box compared with the initial frame, which fully simulates the complexity of the real
application. The UAV20L dataset is a long-term object tracking dataset for UAVs. It contains
20 video sequences with an average sequence length of 2934 frames. Compared with the
UAV123 dataset, the UAV20L dataset has a longer duration, more specific tasks, and greater
challenges. Therefore, we chose these two datasets for the algorithms” evaluation in this
paper.

Implementation details: Due to MATLAB’s convenience and efficiency in numerical
computation, most existing correlation filters are implemented in MATLAB. However, in
practical applications, these algorithms are typically deployed using C++ or Python. There-
fore, the correlation filtering algorithms developed in MATLAB require further translation
into the corresponding languages for engineering deployment. Although Python-based
correlation filtering object tracking algorithms tend to run more slowly, they are closer
to engineering deployment and have better portability and cross-platform capabilities.
To eliminate any potential impacts arising from the mixed use of different programming
languages in engineering applications, all operations of the proposed algorithm, includ-
ing the correlation filtering, are implemented using the Python programming language.
Unfortunately, most of the existing open-source correlation filters are implemented only
in MATLAB, limiting their flexibility and accessibility in practical applications. Based on
this, the PyCFTrackers project has optimized and adjusted the official MATLAB code to
implement Python versions of various related filtering tracking algorithms. Currently, the
following correlation filters written in Python are implemented in PyCFTrackers: STRCF,
BACF, KCF-CN, KCF-HOG, DSST, CSRDCF, and ECO-HC. SiamRPN is implemented in
the open-source object tracking research platform PySOT. These algorithms will participate
in the speed testing experiments in this paper. However, the EMCEF, RISTrack, MRCF,
and MSCEF algorithms do not have a Python version available, lacking code suitable for
engineering deployment. Therefore, this paper will still utilize the code provided in the
original work, which is written in MATLAB, for implementation.

All comparison experiments have been conducted on a standardized platform with
Lenovo R9000K hardware configuration and AMD Ryzen 9 5900HX CPU. In addition, to
evaluate the real-time capabilities of different algorithms under constrained computational
resources, this paper only conducted algorithm speed testing on the CPU. The parameters
of STCT are set as follows: A = 0.9, = 1.6,179 = 0.03, 19 = 16,11 = 0.04, o = 0.5, u3 = 2.
When SiamRPN is called to correct CF, the temporal and spatial constraints of the correlation
filter are relaxed such that py =1, u; = 0.006.
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4.2. Comprehensive Evaluation

The evaluation of target trackers employs the one-pass evaluation (OPE) [33]. In the
UAV123 and UAV20 datasets, the overall performance evaluation results of all trackers
on the CPU are shown in Figures 3 and 4 and Tables 1 and 2. Among them, the most
representative Siamese network, SiamRPN, performs optimally in terms of both tracking
success rate and precision. The STCT proposed in this paper has a success rate of 0.649 and
a precision of 0.717 on the UAV123 dataset, and a success rate of 0.671 and a precision of

0.790 on the UAV20L dataset, ranking second to SiamRPN.
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Figure 4. Overall performance of CPU-based trackers on UAV20L.

Table 1. Overall performance evaluation on UAV123.

Algorithms AUC Precision Algorithms AUC Precision

SiamRPN 0.724 0.774 CSRDCF 0.544 0.676
STCT 0.649 0.717 STRCF 0.505 0.634

ECO-HC 0.584 0.704 DSST 0.491 0.577

RISTrack 0.583 0.693 BACF 0.460 0.594
MRCF 0.579 0.686 KCF-HOG 0.371 0.536
EMCF 0.578 0.692 KCE-CN 0.091 0.241
MSCF 0.576 0.695
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Table 2. Overall performance evaluation on UAV20L.
Algorithms AUC Precision Algorithms AUC Precision
SiamRPN 0.756 0.819 CSRDCF 0.600 0.688
STCT 0.671 0.790 STRCF 0.492 0.656
ECO-HC 0.624 0.724 DSST 0.593 0.696
RISTrack 0.634 0.768 BACF 0.494 0.696
MRCF 0.636 0.743 KCF-HOG 0.316 0.648
EMCF 0.609 0.725 KCF-CN 0.095 0.301

MSCF 0.617 0.732

More specifically, in the UAV123 datasets, STCT (0.649, 0.717) improves 28.5% in terms
of success rate and 13.1% in terms of tracking precision compared with the benchmark
algorithm STRCEF (0.505, 0.634). Compared with the third-ranked ECO-HC (0.584, 0.704),
STCT shows advantages of 11.1% in tracking success rate and 1.8% in tracking accuracy. In
the UAV20L dataset, STCT (0.671) has advantages of 5.2% and 5.8% in tracking success rate
over the third-ranked MRCF (0.636) and the fourth-ranked RISTrack (0.634), respectively.
In terms of tracking precision, STCT (0.790) outperforms the third-ranked RISTrack (0.768)
and the fourth-ranked MRCF (0.743) by 2.9% and 6.3%, respectively.

Runtime is an important metric to measure real-time performance. In the field of visual
object tracking, the main concern is the inference time of the algorithm for online tracking.
Since speed testing experiments need to be conducted on the same platform for fairness,
this paper compares the running speed of the trackers written in Python on a single CPU.
The results are shown in Table 3, where Ty; denotes the online training time of the algorithm
and T denotes the testing time, i.e., the online object tracking time. The correlation filter of
STCT proposed in this paper is trained online, while the Siamese network tracker is trained
offline. Only forward computation is needed in the actual tracking process. Therefore, the
online training time of STCT consists solely of the training time for the correlation filter.
The test time is the online tracking time, i.e., the average inference time for tracking each
frame of the video sequence, which contains the online training phase. The smaller the
value of the object tracking test time, the more real-time the algorithm is. Therefore, the
real-time performance of the algorithm in the field of object tracking is mainly evaluated
by the test time and FPS. It can be seen from Table 3 that the online training time and test
time of STCT, ECO-HC, BACF, STRCF, and KCF-HOG are relatively short. The inference
speeds of these algorithms all exceed 25FPS, meeting the real-time demands of UAV object
tracking. However, the Siamese network tracker SiamRPN, which performs better in terms
of performance, runs only 7.9FPS on the CPU. The running speed of the STCT proposed in
this paper runs at a speed of 38.0FPS, which is 22.2% faster than the benchmark algorithm.

Table 3. The running time and average tracking speed (FPS) on the CPU of different trackers.

Algorithms  Ty¢ (CPU) T;, (CPU)  FPS(CPU) Algorithms T,; (CPU) T (CPU)  FPS (CPU)

SiamRPN - 126.6 ms 7.9 DSST 27.8 ms 94.3 ms 10.6
STCT 9.5 ms 26.3 ms 38.0 BACF 8.5 ms 254 ms 39.4

ECO-HC 12.8 ms 28.5 ms 35.1 KCF-HOG 5.3 ms 18.0 ms 55.6

CSRDCF 35.2 ms 107.5 ms 9.3 KCF-CN 32.5ms 73.5ms 13.6
STRCF 9.3 ms 32.2ms 31.1

Additionally, the performance and speed of the tracker are evaluated comprehensively
in this paper. The results are illustrated in Figure 5, wherein the red dashed line delineates
the real-time demarcation. Partial tracking results are presented in Figure 6.
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Figure 5. Comprehensive evaluation of the performance and speed.
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Figure 6. Visualization results of the real-time trackers.

4.3. The Attribute-Based Comparison

In this section, the tracking effectiveness of different algorithms for each attribute
is quantitatively analyzed. The success rates and tracking precision for each attribute
are shown in Figures 7-10. The experimental findings reveal that the proposed STCT
algorithm exhibits better performance compared with other correlation filter trackers that
rely solely on CPU processing in most attribute aspects, thus underscoring its superiority in
performance evidently.

From the attribute evaluation of ARC, SV, and VC in the UAV123 dataset, the tracking
success and precision of STCT surpass those of other correlation filters. Specifically, in the
ARC scenario, the tracking success and precision of STCT (0.581, 0.659) are improved by
45.3% and 15.4%, respectively, compared with the benchmark algorithm (0.400, 0.571). In SV
attribute assessment, STCT (0.621, 0.691) has shown an improvement of 32.4% in tracking
success rate and 13.8% in precision compared with STRCF (0.469, 0.607). Compared with
RISTrack, STCT has a 14.4% advantage. In VC attribute evaluation, STCT (0.628, 0.679) has
improved the success rate and precision of the baseline (0.402, 0.538) by 56.2% and 26.2%,
respectively. This indicates that STCT can effectively cope with complex situations such as
target scale change and aspect ratio changes by combining spatio-temporal context and
adaptively calling CF and Siamese network trackers.
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Furthermore, benefiting from the target motion modeling combined with timing
information in STCT, the attribute evaluation of both CM and FM outperforms that of other
correlation filter trackers. Specifically in the attribute evaluation of CM, STCT achieves a
tracking success rate of 0.656 and a precision of 0.707, which outperforms other correlation
filters. Compared with STRCF (0.498, 0.600), the success rate and precision improved
by 31.7% and 17.8%, respectively. In FM attribute evaluation, the tracking success and
precision of STCT are 0.532 and 0.621, respectively. Compared with STRCF (0.382, 0.529),
the success rate and precision are improved by 39.3% and 1.4%, respectively. Compared
with the third-ranked ECO-HC, STCT has a 20.6% advantage. It can be seen that STCT
demonstrates notable robustness when addressing camera movements and rapid object
motions.
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Figure 7. The testing success rate of each attribute on UAV123.
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Figure 8. The testing precision of each attribute on UAV123.
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Moreover, in OV, POC, and FOC attribute evaluation, STCT ranked second in both
tracking success rate and precision. This shows that the spatio-temporal regularization term
based on the dynamic attention mechanism proposed in this paper is robust in resolving
target appearance changes due to partial occlusion or out-of-view scenarios.
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Figure 9. The testing success rate of each attribute on UAV20L.
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In long-term object tracking, as shown in Figures 9 and 10, the STCT algorithm
demonstrates better success rates than other related filters in the 10 attributes of SOB,
CM, VC, 1V, BC, POC, FOC, LR, ARC, and SV. The tracking precision in the 11 attributes,
excluding OV, surpasses that of other related filters. Notably, in the evaluation of the full
occlusion attribute, STCT (0.750, 0.828) achieves the best tracking accuracy. Compared with
the third-ranked MRCF (0.717, 0.805), STCT shows advantages of 4.6% and 2.8% in success
rate and accuracy, respectively. This indicates that the algorithm proposed in this paper has

certain advantages in long-term object tracking.

In addition, this paper compares five trackers with better real-time performance based
on a single CPU. Radar charts are used to show their capabilities under different attributes.
The results are shown in Figure 11.
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Figure 10. The testing precision of each attribute on UAV20L.
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Figure 11. Attribute evaluation of real-time trackers.

5. Discussion

In this study, the proposed STCT algorithm excels in several aspects. In terms of
overall performance evaluation, like other CPU-based correlation filters, STCT’s robustness
is slightly inferior to that of Siamese neural network trackers. However, STCT achieved the
best performance with the benchmark algorithm (STRCF) and all other CPU-based real-
time trackers in the comparison. It can be attributed to the "corrective” functionality of the
Siamese network on the correlation filter in the STCT framework. It significantly improves
the robustness and accuracy of the algorithm. Although the supremacy of SiamRPN in
terms of tracking success rate is clearly evident. However, the tracking speed of SiamRPN
falls short of meeting the real-time demands on a single-CPU platform. Among all the
trackers that fulfill the real-time requirements, the STCT algorithm proposed in this paper
achieves the highest tracking success rate and stands out as the foremost real-time tracker
based on a single CPU. In terms of attribute evaluation, it can be seen that STCT exhibits
optimal performance in nine attributes: SOB, CM, FM, OV, POC, FOC, ARC, SV, and VC.
This shows that the STCT algorithm is highly adaptable in dealing with diverse object
tracking scenarios.

To summarize, STCT demonstrates a good balance between tracking robustness and
real-time performance by effectively handling camera motion, illumination variation, low
resolution, target out-of-view, occlusion, viewpoint change, scale variation, and aspect ratio
variation while ensuring tracking efficiency. However, the current study also has some
limitations. The effectiveness of the object tracking algorithm in specific environments
needs further enhancement. Examples include applications in extreme lighting conditions
and the effectiveness of tracking after a target has been occluded or lost for an extended
period. Future research can be centered on strategies to enhance the performance of the
algorithms in extreme conditions and enhance the adaptability of the algorithms in different
scenarios.

6. Conclusions

In this paper, a real-time object tracking algorithm (STCT) that incorporates spatio-
temporal context is proposed. The method integrates the Siamese network, the correlation
filter, and the target motion model into a unified framework, aiming at real-time and robust
tracking on a single CPU platform. Further, in STCT, a spatio-temporal regularization
term based on the dynamic attention mechanism is introduced into CF to overcome the
effects brought by response map aberrance. In addition, this paper proposes a temporal
context-based state evaluation function AMRE, which makes the STCT algorithm more
adaptable. The experimental results show that STCT has a higher tracking success rate
and precision compared with the other real-time trackers. On the UAV123 and UAV20L
datasets, the success rates are 0.649 and 0.671, respectively, while the precision rates are
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0.717 and 0.790, respectively. Compared with the benchmark algorithm, the success rate
and precision are improved by 28.5% and 13.1%, respectively. The STCT shows the best
performance in multiple attribute evaluations. In addition, on the platform with a single
CPU, STCT achieves a tracking speed of ~38FPS, which meets the real-time requirements
for UAV object tracking.

This study particularly emphasizes the importance of CPU deployment, as it accom-
modates the computational limitations of onboard and portable ground processors while
also satisfying the lightweight requirements of small UAVs. Furthermore, it contributes to
reducing economic costs in the future proliferation of UAV swarms. Future work could
explore further enhancements to the STCT framework by improving correlation filtering
and deep learning techniques. These techniques could utilize more powerful correlation
filters to improve the robustness of target tracking in general scenarios or utilize larger
datasets to train Siamese networks to cope with more complex scenarios.
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Nomenclature

The following abbreviations are used in this manuscript:

Abbreviations Symbols
STCT The object tracker based on spatio-temporal context. sc The scale factor.
ADMM Alternating direction method of multipliers. y The expected Gaussian response.
AMRE The average maximum response value related energy. ¢ The state transition matrix.
CF The correlation filter. Ry The response maps at frames k.
OPE One-pass evaluation. By The dynamic attention weight.
Symbols T The adaptive threshold.
Ry The target feature after Fourier transformation in frame k-th. A The interpolation coefficient.
f k The correlation filter in the frequency domain. 7 The amplification factor.
Z The search map. o The intercept.
Tot Online training time. Tty Online object tracking time.
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