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Abstract: Forests are critical for providing ecosystem services and contributing to human well-being,
but their health and extent are threatened by climate change, requiring effective monitoring sys-
tems. Traditional field-based methods are often labour-intensive, costly, and logistically challenging,
limiting their use for large-scale applications. Drones offer advantages such as low operating costs,
versatility, and rapid data collection. However, challenges remain in optimising data processing and
methods to effectively integrate the acquired data for forest monitoring. This study addresses this
challenge by integrating drone-based LiDAR and multispectral data for forest species classification
and health monitoring. We developed the methodology in Ticino Park (Italy), where intensive field
campaigns were conducted in 2022 to collect tree species compositions, the leaf area index (LAI),
canopy chlorophyll content (CCC), and drone data. Individual trees were first extracted from Li-
DAR data and classified using spectral and textural features derived from the multispectral data,
achieving an accuracy of 84%. Key forest traits were then retrieved from the multispectral data using
machine learning regression algorithms, which showed satisfactory performance in estimating the
LAI (R2 = 0.83, RMSE = 0.44 m2 m−2) and CCC (R2 = 0.80, RMSE = 0.33 g m−2). The retrieved traits
were used to track species-specific changes related to drought. The results obtained highlight the
potential of integrating drone-based LiDAR and multispectral data for cost-effective and accurate
forest health monitoring and change detection.

Keywords: drone; multispectral; LiDAR; canopy height model; tree detection; leaf area index; canopy
chlorophyll content; machine learning; Gaussian processes regression; classification; random forest

1. Introduction

Maintaining and expanding forest resources is crucial for sustainable development,
biodiversity conservation and the provision of essential ecosystem services, including
climate mitigation through carbon storage and the provision of goods essential for human
well-being [1]. However, forest ecosystems face increasing threats from economic pressures,
natural hazards, and human-induced disturbances, exacerbated by climate change [2,3]. In
this context, accurate data are essential for the development of targeted forest management
strategies aimed at the improvement and long-term conservation of forest ecosystems.
Traditional field-based monitoring methods involving in situ data collection are often
labour-intensive, costly, logistically challenging, and generally limited to small-scale ap-
plications [4]. As a result, remote sensing has proven to be a viable way to implement
forest monitoring on a large scale, enabling the cost- and time-effective acquisition of
different vegetation properties, especially structural data [5,6]. Among the remote sens-
ing technologies, drones are gaining popularity due to their ability to efficiently collect
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high-spatial-resolution data, their ease of use, low operational cost, versatility in hosting
different sensors, and high-intensity data collection [5,7]. Drones can be employed in a wide
range of applications, like forest inventory, species mapping, and biophysical properties
estimation at different scales, from forest landscapes to individual trees and leaves [8,9].
However, despite the advances in drone technology, challenges remain in optimising data
processing techniques and methodologies for effective forest monitoring [5,10,11].

This study aims to advance methods and data processing techniques for drone-based
forest monitoring by integrating Light Detection and Ranging (LiDAR) and optical sen-
sors, which together can provide complementary information on forest structure and
biophysical properties.

LiDAR technology has become an important tool for assessing and characterising
forest ecosystems [12,13]. LiDAR generates high-resolution three-dimensional (3D) point
clouds that can provide detailed information on forest structure, including canopy height
models, crown density, biomass, and other morpho-functional parameters essential for
effective forest management, e.g., [11,14].

In parallel, multispectral optical cameras can provide other valuable data by measur-
ing vegetation reflectance at different wavelengths. Traditionally, vegetation indices like the
NDVI (Normalised Difference Vegetation Index), the EVI (Enhanced Vegetation Index), and
other similar vegetation indices are frequently utilised as a proxy of plant health [15]. How-
ever, these do not provide a direct measurement of physiological changes in plants; rather,
they evaluate variations in tree greenness as an indicator of vegetation health, which does
not allow for the immediate or direct identification of plants’ physiological states [16,17].
To overcome this limitation, the retrieval and monitoring of specific plant traits, such as
the leaf area index (LAI) and canopy chlorophyll content (CCC) are essential in forest
ecosystem monitoring, as they can provide a more direct insight into the physiological
status of trees [18–20]. The LAI, which measures the total leaf area per unit ground area,
expresses the forest photosynthetic capacity, canopy structure, and tree productivity [21].
Similarly, CCC reflects the chlorophyll content of plants, which is essential for photosyn-
thesis and provides an indication of plant health and nutrient status [22]. Both the LAI
and CCC are directly related to tree structure and functioning, making them essential
metrics for assessing vegetation health and understanding how vegetation responds to
environmental change and stressors [19,20,23,24]. Despite their importance, only a few
studies have investigated the possibility of retrieving the LAI and CCC from drone-based
multispectral sensors in forest ecosystems, e.g., [25,26].

With the overall goal of demonstrating how drones can properly support effective
forest monitoring, we conducted a study in 2022 in the Ticino Forest (Northern Italy) aiming
to achieve the following objectives:

- Detect individual trees within a natural broadleaf forest using LiDAR drone point
cloud data;

- Identify tree species by applying object-based classification techniques to multispectral
drone imagery;

- Retrieve plant traits (i.e., LAI and CCC) from multispectral imagery using machine
learning algorithms;

- Analyse vegetation trait changes in the Ticino Regional Park Forest during the 2022
summer drought by examining the multifactorial interactions between species-specific
responses and microclimatic variability.

By addressing these objectives, this study will provide insights into how drone-based
technologies can advance forest monitoring and management practises.

2. Materials and Methods
2.1. Study Area

This study was carried out in the “La Fagiana” Nature Reserve in Magenta (MI),
located in Ticino Regional Park, Italy (Figure 1). The park has a total area of 91,800 ha, of
which 22,000 ha is the natural forest. It belongs to the Ticino Val Grande Verbano Biosphere
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Reserve (UNESCO—Man and Biosphere Programme), one of the largest natural riverside
parks in Europe. Ticino Regional Park plays a key role in preserving biodiversity in one of
the most urbanised areas in Europe. It represents a unique refuge for autochthonous
vegetation and constitutes a fundamental ecological corridor between the Alps and the
Apennines. The Ticino temperate mixed forests are dominated by oaks (typically English
oak, Quercus robur L.) and white hornbeam (Carpinus betulus L.), with a more scattered
presence of black alder (Alnus glutinosa L.), sweet chestnut (Castanea sativa Mill.), pines
(Pinus spp.), and allochthonous invasive species such as black cherry (Prunus serotina Ehrh.)
and black locust (Robinia pseudoacacia L.). The forest of “La Fagiana” is largely dominated
by the presence of English oak, white hornbeam, and black locust. The reserve includes
areas characterised by different microclimatic conditions: xerophilic (red shaded area in
Figure 1), mesophilic (yellow shaded area in Figure 1), and meso-hygrophilic (green shaded
area in Figure 1). Each of them was classified based on plant species composition, density,
and tree habits. The xerophilic area is characterised by the sporadic presence of English
oak, which, due to the low soil moisture availability, exhibits shorter heights and different
growth habits compared to trees of similar age in the mesophilic and meso-hygrophilic
areas. The mesophilic area is characterised by the prevalence of English oak, while the meso-
hygrophilic one is composed primarily of the English oak–white hornbeam association [27].
The Ticino Forest experienced an unprecedented severe and prolonged drought in the
summer of 2022, with detrimental impacts on vegetation health [28,29].
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Figure 1. (a) RGB image of the “La Fagiana” nature reserve. The red dots indicate the centre of the
sites (15 m × 15 m) where the plant traits were sampled, and the yellow dots are the centre of the
validation sites (30 m × 30 m) for the individual tree detection. The shaded areas indicate the three
main forest areas classified according to the microclimatic condition of the forest: meso-hygrophilic
(green), mesophilic (yellow), and xerophilic (red). The Google satellite image of the area in grey scale
is used as the basemap. (b) The extension of Ticino Park in Northern Italy (green polygon) and the
location of the Fagiana area (red polygon).
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2.2. Field Plant Trait Data Collection

In the summer of 2022, plant traits were sampled within two time windows: 21–22 June
(1st campaign) and 7–8 September (2nd campaign). The field measurements were collected
in the correspondence of five sampling sites of ~30 m × 30 m. The sampling sites were
geo-located with a Garmin GPSMAP 66sr (Garmin Ltd., Schaffhausen, Switzerland) and are
shown as red squares in Figure 1a. The LAI was estimated through digital hemispherical
photos in correspondence of 4 subplots (~15 m × 15 m) for each sampling site. In each
subplot, we acquired 5 up-looking digital hemispherical photos (i.e., centre and corners of
each subplot) with a Laowa 4 mm f/2.8 fish-eye lens (Venus Optics, Hefei, China) mounted
on a Canon EOS M50 Mark II (Canon Inc., Tokyo, Japan). The LAI of the overstory was
then calculated using the CAN-EYE software v6.4.95 (https://www6.paca.inrae.fr/can-eye,
accessed on 10 October 2024). We processed one subplot at a time and obtained a mean and
standard deviation for each subplot, for a total of 20 LAI values in both June and September
2022 (n = 40).

The LCC was obtained from destructive measurements conducted on leaf disc samples.
In each site, for each species recognised as dominant, we collected samples from three differ-
ent trees. From each tree, we sampled 12 leaves from different sunlit branches pulled down
with a slingshot from the top of the canopy. Three pigment extractions, i.e., twelve 0.635 cm
diameter leaf discs each, were conducted from twelve leaves. In total, we sampled 56 trees,
which included 31 English oaks (372 leaves, 93 pigment extractions), 13 white hornbeams
(156 leaves, 39 pigment extractions), and 12 black locusts (144 leaves, 36 extractions). The
methodology used for the sample preparation is described in [30]. The concentrations
of chlorophyll a (Chla) and b (Chlb) were then determined by spectrophotometry (V-630
UV-VIS, Jasco, Pfungstadt, Germany) in a 100% methanol extract at 665.2 and 652.4 nm,
respectively, while turbidity was checked by measuring absorbance at 750 nm. Chla and
Chlb concentrations were calculated using the extinction coefficients proposed by [31]. The
LCC (µg cm−2) was calculated according to Equation (1):

LCC =
(Chla + Chlb)

Areatot
(1)

The LCC values of the single trees were aggregated at the sampling site level by
weighting for the abundance of the corresponding species. The CCC of each sampling site
was then calculated according to Equation (2):

CCC = LAI × LCC (2)

2.3. Drone Data Collection

The drone surveys were conducted using a DJI Matrice 300 RTK (DJI Ltd., Shenzhen,
China) mounting different payloads (Table 1): a LiDAR DJI Zenmuse L1 sensor (DJI
Ltd., Shenzhen, China), a high-resolution RGB camera Zenmuse P1 (DJI Ltd., Shenzhen,
China), and a multispectral MAIA S2 camera (SAL Engineering S.r.l., Russi, Italy; EOPTIS,
Trento, Italy; Fondazione Bruno Kessler, Trento, Italy).

The DJI Zenmuse L1 laser scanner combines data from an RGB sensor and the IMU
unit in a stabilised 3-axis gimbal, providing a true-colour point cloud from the RGB sensor.
The L1 laser scanner has a beam divergence of 0.28◦ (vertical) × 0.03◦ (horizontal) and
a maximum of 3 registered reflections. It can operate at a maximum distance of 450 m at
80% reflectivity (190 m at 10% reflectivity) with a recording speed of 480,000 points/second
for multiple return acquisition (240,000 points/second for single return). It has a horizontal
and vertical system accuracy of 10 cm and 5 cm per 50 m, respectively, and a distance
measurement accuracy of 3 cm per 100 m. The DJI Zenmuse P1 camera was used to
acquire data for photogrammetric processing. The sensor is a 45 Mpixel CMOS with a size
of 35.9 × 24 mm and a pixel size of 4 µm, capable of taking photos with a resolution of
8192 × 5460 pixels. In this study, the camera was mounted with the DL 35 mm F2.8 LS
ASPH lens. Detailed information on the L1 and P1 cameras can be found in [32]. L1

https://www6.paca.inrae.fr/can-eye
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and P1 flights were performed with a vertical gimbal pitch of −90◦ (i.e., nadiral) at an
altitude of 80 m and 120 m above ground, respectively. LiDAR acquisition results in
a point cloud density of 459 points/m2, while a ground sampling distance of 1.5 cm was
obtained for RGB imagery. DJI Pilot software was used for the acquisition, following
a single-grid flight pattern with a constant height relative to the take-off point. The flat
terrain ensured a constant pixel size and point density in the model without the use of
a terrain adaptive flight.

Table 1. Summary of the sensors and technical details of the drone acquisitions performed in Ticino
Park in 2022.

Drone Platform DJI Matrice 300 RTK

DJI Zenmuse L1 DJI Zenmuse P1 MAIA S2

Dates of Acquisition 28/04/22 28/04/22 01/07/22 and
31/08/22

Flight Height 80 m 120 m 110 m
Point Cloud Density 459 point/m2 - -

Ground Sampling
Distance (GSD) - 1.5 cm 5.5 cm

Acquisition Speed 5 m/s 10 m/s 6 m/s
Side Overlap 50% 70% 70%

Forward Overlap 80% 80% 90%

MAIA S2 is composed of an array of nine monochromatic sensors, each with a 1.2 Mpixel
resolution (pixel resolution: 1280 × 960, pixel size: 3.75 × 3.75 µm) and their relative
pass-band filters. The sensors have the same central wavelength and bandwidth as the
first nine bands of the ESA Sentinel-2 multispectral instruments [33] and acquire data
simultaneously using global shutters, allowing synchronised multi-band measurements in
a single shot. The sensors have a horizontal and vertical field of view of 35 and 26 degrees,
respectively, with a fixed focal length of 7.6 mm. The system is equipped with a GNSS
receiver to record the position and time of each camera shutter activation. The shutter speed
was set to automatic mode to minimise motion blur, aiming for 20% exposure. To accurately
estimate the reflectance factor, the incoming radiation was measured simultaneously with
the multispectral acquisition and in the same bands using a cosine incident light sensor
(ILS) mounted on top of the DJI Matrice 300 RTK. The ILS features a GNSS receiver which
allowed the ILS and MAIA S2 shots to be synchronised using the GPS time to produce
reflectance images with the incoming radiation measured at the exact time of each MAIA
S2 acquisition. The images were acquired following a single-grid flight pattern at a constant
altitude of 110 m above ground, resulting in a ground sampling distance of 5.5 cm.

The DJI Matrice 300 RTK has a vertical and horizontal hovering accuracy (i.e., manu-
facturer’s declared values) of ±0.1 m in D-RTK mode [34]. Drone GNSS receivers imple-
menting the Network Real-Time Kinematic (NRTK) technique were used in the study areas
as GNSS signals and mobile network coverage were available. Ref. [32] conducted full-scale
tests on the DJI Zenmuse L1 sensor, demonstrating a positioning accuracy better than the
manufacturer’s claim, with a precision of 3.5 cm in all directions. Reference [35] combined
the use of LiDAR and multispectral data for forest biodiversity measurements by using
the initial georeferencing provided by the GNSS systems. LiDAR and RGB drones with
Real-Time (RTK) or Post-Processing Kinematic (PPK) georeferencing systems were tested
by [36]. These authors showed that these technologies have potential in hard-to-reach areas
(e.g., forest) and produce unbiased point clouds, being the most cost-effective method.
According to the previous study, we considered the georeferencing accuracy provided
by the NRTK systems to be adequate for our study, and the co-registration or manual
alignment of the drone products (i.e., LiDAR point cloud, RGB and MAIA orthophotos)
was not necessary.
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2.3.1. LiDAR Data Processing

The LiDAR point cloud data were acquired with a DJI Zenmuse L1 mounted on a DJI
Matrice 300 RTK in April 2022 for individual tree detection (ITD) and segmentation (ITS).
The flight plan settings are shown in Table 1.

Raw point cloud (Figure 2a) data were first optimised using DJI Terra software (DJI
Ltd., Shenzhen, China), manually cleaned from noise and outliers with CloudCompare [37]
and then processed in the R environment using “lidR”, “rLidar”, and “ForestTools” pack-
ages [38–40]. Those packages are widely used to process point cloud data in forestry
applications [41]. The ground point classification (Figure 2b) was performed using a pro-
gressive morphological filter (PMF) described by [42]. After point ground classification,
a 1 m resolution digital terrain model (DTM) was generated (Figure 2c) using an Inverse
distance weighting (IDW) method. The point cloud was normalised (Figure 2d) to create
a canopy height model (hereafter CHM). The CHM was generated using point-to-raster
(P2R) algorithms, which consist of creating a grid and assigning each pixel the elevation
of the highest point it belongs to; in our case, we set the CHM resolution grid to 0.2 m.
An IDW method was used to interpolate “empty pixels”. Although some authors suggest
smoothing the CHM with filters (e.g., Gaussian filter, median filter) prior to crown delin-
eation, our preliminary test showed that smoothing decreased the accuracy of delineation;
this issue was also noted by [43]. In addition, the CHM smoothing could also affect tree
height estimation [44]. For these reasons, we decided not to smooth the CHM. For the
ITD (Figure 2e), a local maximum filter (LMF) described by [45] was applied to the CHM.
According to previous studies, we chose a circular shaped window [46] with a 5 m diameter
and a minimum height of 2 m.
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For the ITS, many segmentation algorithms are described in the literature [43,47]
showing high accuracy especially for coniferous forests, while, for deciduous forests, there
is still a need for further research, as no widely accepted method has yet been established.
We used a marker-controlled watershed (MCWS) method for ITS [48]. The markers used
to guide the segmentation process were treetops determined by previous ITD. To avoid
the tree edges overlapping, shadowing, and possible geometric shifts between LiDAR and
MAIA products, we decided to use circular regions of interest (ROI) of 4 m diameter centred
on the treetop instead of crown polygons for the classification step, which required the
most rigorous training definition. Crown polygons were used only for mapping purposes.

Reference data for the ITD included field observations and photo-interpretations
of 15 square 30 m × 30 m plots distributed across the study area (Figure 1a), as in [49].
A detected tree was considered matched if the distance between the treetop to the reference
tree (treetop/trunk) was less than 2.5 m. To evaluate the detection accuracy, which is
assumed to be point accuracy [50], the recall (r), precision (p), and F-score (F) equations
from [51,52] were calculated according to Equations (3)–(5):

r =
TP

TP + FN
(3)

p =
TP

TP + FP
(4)
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F =
2rp

r + p
(5)

where TP is the number of treetops correctly detected, FN is the number of trees not
detected, and FP is the number of extra trees (commission error). r measures the number of
trees detected, p is the fairness of detected trees, or precision, and F is the harmonic mean
of r and p, thus representing the overall accuracy. All these indices range from 0 to 1. The
higher the F value, the better the accuracy of tree detection.

2.3.2. RGB and Multispectral Imagery Processing

Drone-based RGB imagery of our study area was acquired on the same date as LiDAR
data with a DJI Zenmuse P1 sensor (DJI Ltd., Shenzhen, China) mounted on a DJI Matrice
300 RTK. Sensor characteristics are shown in Table 1. High-resolution imagery was used to
verify the position of trees and to identify tree species. The flight patterns were designed
in DJI Pilot GUI, (see Table 1 for the main settings). All acquired imagery was processed
using Drone2Map software (ESRI, Redlands, CA, USA) to generate two orthomosaics
(i.e., one for each flight) with a spatial resolution of 1.5 cm. Drone-based multispectral
imagery was acquired using a MAIA S2 multispectral camera. Multispectral image process-
ing followed [53]. The raw MAIA S2 imagery underwent geometric and radial distortion
correction using MultiCam Stitcher Pro (SAL Engineering S.r.l., Russi, Italy). The software,
which is integrated with the MAIA, allows the images from each band to be co-registered
into a single multispectral image with precise pixel-to-pixel alignment. Pseudo-reflectance
was calculated for each pixel as the ratio of the radiance measured by the MAIA S2 to the in-
cident solar radiation measured by the ILS in each spectral channel. The pseudo-reflectance
images were then imported in Agisoft Metashape v1.7.2 (Agisoft, St. Petersburg, Russia) to
produce the multispectral orthomosaic. The empirical line method [54] was finally applied
to the pseudo-reflectance orthomosaic to obtain at-ground multispectral reflectance using
the calibration coefficients described in [53].

2.4. Dataset Preparation for Classification

An object-based classification was performed on the multispectral image collected in
July 2022. In total, 190 trees were selected, representing the most common tree species in
the study area: 80 English oaks, 80 white hornbeams, and 30 black locusts. The number of
samples per species reflects the proportion of each species in the study area. The locations
of trees in this area were originally collected by GPS and manually improved using the
high-resolution RGB orthomosaics.

For each treetop location, a circular ROI of 4 m in diameter was defined and used to
extract the spectral and textural features used as input to the random forest classifier.

Regarding the texture features, a grey level co-occurrence matrix (GLCM) was cal-
culated in ENVI 5.6.1 (NV5 Geospatial Solutions Inc., Broomfield, CO, USA) on the red
and NIR bands of the multispectral orthomosaic using a 5 × 5 pixel-size window, and the
following features were extracted: mean, variance, homogeneity, contrast, dissimilarity,
entropy, second moment, and correlation.

The classification was performed with the Random Forest classifier. It is an ensemble
classifier that utilises a set of classification and regression algorithms (CARTs) to make
a prediction [55]. The classification result (the response) is determined by a majority vote for
each tree [56]. In the last few years, RF has become widely used in several remote sensing
applications [56–58]. Thereby, the RF classifier was chosen to classify the tree species in “La
Fagiana” Forest in the Ticino Park Valley. The training set was composed of 133 randomly
selected trees. After the training phase, the RF algorithm was applied to the output of the
segmentation, consisting of a polygon per tree crown with associated average spectral and
textural features extracted from the MAIA S2 data.

The RF classification was performed using the R package “randomForest” [59], one
of the most used RF implementations [56]. According to [60], the parameter Ntree was
set to 500, and Mtry used for each node was the square root of the total number of input
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variables. The accuracy of the tree species classification using MAIA multispectral images
was assessed through the confusion matrix (CM), by calculating the overall accuracy (OA),
Kappa coefficient (k), producer’s accuracy (PA), and user’s accuracy (UA) [61].

2.5. Plant Trait Retrieval Workflow
2.5.1. Machine Learning

Plant trait retrieval was performed using a machine learning approach developed
using a broader forest dataset of LAI and CCC field measurements coupled with hyperspec-
tral data acquired by the PRISMA spaceborne sensor [62]. The dataset consists of 50 paired
field and spectral data (n = 50) and was collected in Ticino Park over a considerably larger
area that could not be covered by the drone flights [63]. This allowed a wide range of condi-
tions in terms of forest microclimatic conditions, structures and condition to be included in
the training dataset. The PRISMA spectra were resampled to the MAIA S2 bands (Figure 3),
and several State-of-the-Art machine learning regression algorithms (MLRAs) were tested
within the Automated Radiative Transfer Model Operator (ARTMO) machine learning
regression algorithm toolbox [64,65]. The MLRA tested included: Gaussian Processes Re-
gression (GPR), Support Vector Regression (SVR), Partial Least Squares Regression (PLSR),
Neural Networks (NNs), and Random Forest (RF).
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Figure 3. (a) Hyperspectral reflectance spectra collected by the PRISMA satellite in correspondence
of the sampling sites where the field data were collected (n = 50); (b) PRISMA spectra resampled to
the MAIA S2 spectral bands and used for the training of the machine learning regression algorithms
(n = 50).

The MLRA models were cross-validated using a k-fold cross validation strategy (k = 6),
and the model performance was evaluated in terms of standard goodness-of-fit statistics: coef-
ficient of determination (R2), root mean square error (RMSE), normalised RMSE (nRMSE) (i.e.,
RMSE/range of measured values), bias (i.e., mean of estimated values—mean of measured
values), and relative bias (rbias) (i.e., bias/mean of measured values) between measured and
estimated values. The developed models were then applied to the real MAIA S2 spectra
collected in Ticino Park and validated against the independent field dataset collected in the
Fagiana Forest near simultaneously the drone overpasses and described above (n = 40). To
produce the drone-based maps, the MLRA models that provided the best results for the
LAI and CCC were applied to the segmentation output, consisting of a polygon per tree
crown with the associated average MAIA S2 spectrum. The maps were generated for the
MAIA S2 images collected on both 1 July 2022 and 31 August 2022.
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2.5.2. Analysis of Plant Traits

A statistical analysis was carried out to test whether the retrieved traits (i.e., the LAI
and CCC) differed based on three factors: forest microclimatic condition, species, and
time. The latter was tested to analyse whether the drought that occurred in the summer
of 2022 had an effect on the LAI and CCC, considering that plants in the Ticino Park
normally enter the senescence phase towards late October. Instead, here, we tested the
differences between the values obtained from the drone images taken in early (1 July 2022)
and late (31 August 2022) summer. The analysis was performed using a three-way analysis
of variance (ANOVA). Where results were significant, a post hoc Tukey test was performed
to test the significance of the differences between pairs of group means. Both tests were
performed in R 3.6.3.

3. Results and Discussion
3.1. Individual Tree Detection

The implementation of ITD from LiDAR data gave satisfactory results for the 236 trees
analysed. The overall recall rate (r) was 0.73, ranging from 0.53 to 1, the overall precision
rate (p) was 0.74, also ranging from 0.53 to 1, and the overall F-score was 0.74, with a range
from 0.55 to 1 (Table 2). These metrics indicate a robust performance for tree detection.
Higher F-scores were obtained in stands with lower tree density and reduced canopy
overlap, while denser canopies and greater crown overlap resulted in lower F-scores. This
trend is common in deciduous mixed forests, where complex crown shapes and vertical
structures can reduce the detection accuracy [43,50]. The lower accuracy of some plots may
be linked to the use of an LMF to define the treetop, which can lead to overcounting in
trees with complex canopy structures, such as in oak–hornbeam forests, where it is often
not straightforward to identify a single crown centre treetop [66,67]. Furthermore, in dense
forest stands with a closed canopy, crown overlap further complicates the search for and
the correct identification of local maxima [68,69].

Table 2. Individual tree detection (ITD) accuracy from LiDAR. TP = number of correctly detected treetops;
FN = number of trees not detected; and FP = number of extra trees (commission error).

Site ID Ground-Truth/Photointerp. ITD TP FN FP Recall Rate (r) Precision Rate (p) F-Score (F)

1 7 8 7 0 1 1 0.875 0.933
2 21 20 15 6 5 0.714 0.75 0.731
3 9 9 9 0 0 1 1 1
4 16 17 9 7 8 0.562 0.529 0.545
5 19 16 14 5 2 0.737 0.875 0.8
6 5 7 4 1 3 0.8 0.571 0.667
7 16 17 13 3 4 0.812 0.765 0.788
8 16 16 9 7 7 0.562 0.562 0.562
9 15 14 8 7 6 0.533 0.571 0.552

10 19 18 15 4 3 0.789 0.833 0.811
11 20 23 16 4 7 0.8 0.696 0.744
12 17 13 10 7 3 0.588 0.769 0.667
13 16 18 13 3 5 0.812 0.722 0.765
14 26 21 20 6 1 0.769 0.952 0.851
15 14 17 11 3 6 0.786 0.647 0.709

Total 236 234 173 63 61 0.733 0.739 0.736

Our accuracy results were achieved by testing many processing parameter combina-
tions, such as local maxima window size (3, 5, and 7 m diameter) and filtering (e.g., Gaus-
sian). In fact, the choice of point cloud processing parameters, such as CHM resolution [70],
filtering method [44], size and shape of the local maxima window [46,71], and segmentation
algorithm used [47,72] strongly influence the ITD accuracy.

Our results are consistent with similar studies conducted in structurally complex
mixed forests. Reference [12] reported an average F-score of 0.66 ± 0.01 using a similar
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algorithm in a mixed broadleaved forest. The higher accuracy achieved in our study might
have been determined by the use of an unprocessed CHM, which, according to [44], is
more reliable than the smoothed CHM because of the more accurate reproduction of the
crown shapes. Ref. [47] achieved, in mixed natural forest plots, an r of 0.72–0.85, a p of
0.58–0.51, and an F-score of about 0.64 using a local maximum algorithm. Notably, the
stands analysed by [47] are made up of a mixture of deciduous and coniferous species,
a feature that simplifies the treetop identification process and therefore probably determines
the higher precision of tree identification in some stands compared to our results. This
was also the case of [49]. They applied a similar workflow to mixed plots dominated
by longleaf pine (Pinus palustris) and turkey oak (Quercus laevis Walter), achieving an F-
score of 0.86. Their higher tree detection performance is likely due to the inclusion of
both deciduous and evergreen coniferous species. In fact, coniferous species are generally
easier to detect and distinguish due to their characteristic conical crown shape, which
makes treetop identification easier compared to broadleaved trees [43,47]. Moreover, as
highlighted by [50], most segmentation algorithms assume a conical crown structure,
thus ensuring better results when applied to coniferous species. On the contrary, tree
identification for deciduous forests is still an open challenge, as there is no widely accepted
and accurate method.

In addition to the species composition, variations in ITD accuracy can be linked to
other ecological factors such as canopy closure [46,47,73]. Reference [46] tested different
LM window sizes in forest types with different density conditions, finding that the optimal
LM window size is highly species- and density-specific, significantly influencing detection
accuracy (F-scores = 0.82–0.91). In our study, we used a single LM window size across all
species and canopy density conditions due to the presence of mixed-species plots in our
study area, which likely explains our comparatively lower accuracy. Ref. [72] achieved
an r of 0.85, a p of 0.70, and an F-score of 0.77 in a mixed plot dominated by sycamore
(Acer pseudoplatanus L.) and English oak using an MCWS algorithm. Overall, the better
F-score value may be related to the number of reference trees used, which was significantly
lower than ours.

3.2. Classification of Forest Species

The random forest classification achieved a high overall accuracy of 84% and a Kappa
coefficient of 0.74 (Table 3). Black locust was classified with 100% accuracy, while some
misclassification occurred between white hornbeam and English oak (PA = 75% and 88%,
respectively) due to their higher spectral similarity. The algorithm was trained with 133 tree
crown objects and validated with 57 tree crown objects. The resulting drone-based species
map (Figure 4) illustrates the spatial distribution of English oak, white hornbeam, and
black locust.

Table 3. Accuracy of random forest (RF) classification of three tree species based on 133 trees for
training and 57 independent trees for validation. PA = Producer Accuracy; UA = User Accuracy;
k = Kappa coefficient; and OA = Overall Accuracy.

Reference

Class White
hornbeam

English
oak

Black
locust Total UA

White hornbeam 18 3 0 21 0.86
Classification English oak 6 21 0 27 0.78

Black locust 0 0 9 9 1

Total 24 24 9 57 OA = 0.84
PA 0.75 0.88 1 k = 0.74
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Comparing our results with other studies is not so straightforward due to differences
in the number of species classified, training size, and the different features taken into
consideration. However, examining comparable research on object-based tree species
classification reveals several factors likely contributing to the high accuracy in our study.

Firstly, the inclusion of textural metrics in addition to spectral features in our classi-
fication process likely enhanced accuracy. For instance, our classification accuracy was
slightly higher than similar studies that did not incorporate textural metrics, such as [74],
who reported 78% accuracy with four species. Similar findings were reported by [75] (73%
of accuracy), [76] (64.85% of accuracy), [77] (77% of accuracy), and [7] (78% of accuracy)
who consistently observed improved results when texture-based metrics were included
in the classification process. Secondly, the fact that MAIA S2 is one of the multispec-
tral sensors with the highest number of spectral channels likely contributed to our im-
proved classification performance compared to studies that used lower-resolution sensors,
such as [74,75].

However, our accuracy was lower compared to studies focusing on conifer species.
Ref. [74] reported a user accuracy of 87% in a coniferous forest using multispectral drone
images. Ref. [78] achieved 95% accuracy and a Kappa coefficient of 0.95 in an RF classifica-
tion in a temperate forest, where two of the four species were coniferous, using the eight
spectral bands of the WorldView-2 satellite (comparable to those of the MAIA sensor used
in this study). In general, conifers are characterised by easier tree top identification and
a greater spectral differentiation between species [50]. These findings were also confirmed
by [79], who achieved an overall species classification accuracy of 90% for conifers and 80%
for broadleaves when analysing multi-temporal datasets of Sentinel-2 images.

Concerning the species distribution in our study area, Figure 4 shows how English
oak is the dominant species in the xerophilic area of the Fagiana Forest (highlighted in
red in Figure 1), although it is also evident that English oak density is relatively low. This
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likely reflects the trees’ adaptation to the limited water availability. Indeed, reduced forest
density increases the trees’ resistance to water scarcity by minimising competition for scarce
resources [80].

In the mesophilic areas of the Fagiana Forest (highlighted in yellow in Figure 1),
a noticeably denser English oak canopy cover can be observed (Figure 4), indicating more
favourable soil moisture conditions, which also support the sporadic presence of white
hornbeam [81]. The meso-hygrophilic areas of the Fagiana Forest (highlighted in green in
Figure 1) are dominated by white hornbeam trees, which, mixed with English oaks, form
an oak–hornbeam association, typical of the Ticino Forest. This association is indicative
of moister soil conditions, as evidenced by the taller tree and denser foliage compared to
the xerophilic zones. In contrast, black locust is the least represented species, confined to
distinct patches mainly along the edges of the mapped area, and with few individual trees
scattered throughout the different forest microclimatic conditions (Figure 4).

3.3. Plant Trait Retrieval

The cross-validation statistics of the models calculated between the measured field data
and the estimated data retrieved from the PRISMA dataset resampled to the MAIA S2 spec-
tral configuration (n = 50) are shown in Table 4. Overall, both the LAI and CCC showed very
high performance in cross-validation. More specifically, the LAI was estimated with high
accuracy with all the investigated MLRA (R2 = 0.84–0.90, nRMSE = 8.66–11.01%), whereas
CCC showed a more variable performance depending on the MLRA used (R2 = 0.68–0.83,
nRMSE = 9.17–13.08%). Among the MLRA, the kernel-based algorithms (i.e., SVR, GPR)
and PLSR showed the highest predictive capacity.

Table 4. Summary of the cross-validated statistics (k = 6) calculated on the coupled, measured,
and estimated values retrieved from the PRISMA dataset resampled to the MAIA S2 spectral con-
figuration (n = 50) for leaf area index (LAI) and canopy chlorophyll content (CCC): algorithm
(GPR = Gaussian processes regression; SVR = support vector regression; PLSR = partial least squares
regression; NN = neural network; and RF = random forest), the coefficient of determination (R2), root
mean square error (RMSE), normalised RMSE (nRMSE), bias, and relative bias (rbias).

Plant Traits Algorithm R2 RMSE nRMSE bias rbias

LAI

GPR 0.90 0.26 m2 m−2 8.66% 0.0108 m2 m−2 0.49%
SVR 0.90 0.27 m2 m−2 8.81% 0.0059 m2 m−2 0.27%
PLSR 0.90 0.28 m2 m−2 9.04% 0.0113 m2 m−2 0.51%
NN 0.85 0.33 m2 m−2 10.69% 0.0125 m2 m−2 0.57%
RF 0.84 0.34 m2 m−2 11.01% 0.0032 m2 m−2 0.15%

CCC

GPR 0.68 0.23 g m−2 13.08% 0.0370 g m−2 3.89%
SVR 0.83 0.16 g m−2 9.17% −0.0051 g m−2 −0.54%
PLSR 0.83 0.17 g m−2 9.33% 0.0084 g m−2 0.88%
NN 0.79 0.19 g m−2 10.69% −0.0488 g m−2 −5.13%
RF 0.70 0.22 g m−2 12.22% 0.0153 g m−2 1.61%

The goodness-of-fit metrics calculated between the field dataset collected near-
simultaneously the drone acquisitions and the drone-based retrievals obtained by ap-
plying the developed MLRA models to the MAIA S2 spectra (n = 40) are shown in Table 5.
As expected, the results obtained using an independent validation dataset are slightly
worse than those obtained in cross-validation on the PRISMA dataset resampled to the
MAIA S2 spectral resolution. Still, both the LAI and CCC were accurately estimated. GPR,
SVR, and PLSR showed the highest predictive capacity for both the LAI (R2 = 0.81–0.83,
nRMSE = 14.18–16.39%) and CCC (R2 = 0.79–0.80, nRMSE = 22.45–27.7%). Using the fully
independent dataset and the actual MAIA S2 data, all models showed a slight to moderate
tendency to overestimate compared to the field data (rbias = 4.8–43.23%), especially for
CCC. The scatter plots showing the measured and estimated values obtained from the
MAIA S2 sensor for the LAI and CCC are shown in Figures 5 and 6, respectively.
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Table 5. Summary of the statistics calculated on the coupled measured and estimated values re-
trieved from the MAIA S2 sensor (n = 40) for leaf area index (LAI) and canopy chlorophyll con-
tent (CCC): algorithm (GPR = Gaussian processes regression; SVR = support vector regression;
PLSR = partial least squares regression; NN = neural network; RF = random forest), the coefficient of
determination (R2), root mean square error (RMSE), normalised RMSE (nRMSE), bias, and relative
bias (rbias).

Plant Trait Algorithm R2 RMSE nRMSE bias rbias

LAI

GPR 0.83 0.44 m2 m−2 16.39% 0.24 m2 m−2 14.35%
SVR 0.81 0.39 m2 m−2 14.36% 0.08 m2 m−2 4.80%
PLSR 0.81 0.38 m2 m−2 14.18% 0.09 m2 m−2 5.34%
NN 0.75 0.44 m2 m−2 16.53% 0.20 m2 m−2 11.74%
RF 0.58 0.59 m2 m−2 22.00% 0.29 m2 m−2 17.12%

CCC

GPR 0.80 0.33 g m−2 24.02% 0.26 g m−2 35.10%
SVR 0.79 0.31 g m−2 22.45% 0.23 g m−2 31.03%
PLSR 0.79 0.38 g m−2 27.70% 0.32 g m−2 43.23%
NN 0.71 0.27 g m−2 19.95% 0.08 g m−2 11.57%
RF 0.58 0.27 g m−2 19.84% 0.10 g m−2 13.41%
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Figure 5. Scatter plots showing the measured and estimated leaf area index (LAI) values obtained from
the MAIA S2 sensor with different machine learning regression algorithms: (a) Gaussian processes
regression (GPR); (b) support vector regression (SVR); (c) partial least squares regression (PLSR);
(d) neural network (NN); and (e) random forest (RF). The grey shaded areas indicate the confidence
intervals (0.95) of the regression lines (solid lines) using reduced major axis (RMA) regression. The
dotted line represents the 1:1 line.

Overall, the results obtained in this study are promising towards the development
of effective and consolidated retrieval schemes for the estimation of forest traits using
drone-based sensors. The LAI and CCC were accurately estimated using an effective
approach based on an MLRA trained on a reasonable amount of data, which could be
easily applied to similar conditions or updated by adding more training samples to extend
its applicability. Previous studies using drone data to estimate plant traits have mainly
focused on crops, e.g., [82–85], while only a few studies have dealt with forests, e.g., [25,26].
The literature reports promising results in the retrieval of leaf or canopy chlorophyll
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content using a look-up table (LUT) or MLRA-based approaches. Ref. [86] used a hybrid
approach based on radiative transfer simulations coupled with an artificial neural network
to estimate the LCC and CCC of apple orchards from DJI Phantom 4 multispectral data,
achieving an R2 of 0.73 and 0.79 and RMSE of 6.63 and 28.48 µg cm−2, respectively. Ref. [84]
used the same sensor to estimate the LCC of sugarcane using the MLRA applied on
vegetation indices, with R2 = 0.68–0.98. Ref. [82] used MicaSense Dual multispectral
data to retrieve the LCC and CCC of maize using an LUT-based approach, obtaining
RMSE = 3.74–4.92 µg cm−2 and RMSE = 33.1 µg cm−2, respectively. Such results are in line
with ours (R2 = 0.80, RMSE = 0.33 g m−2, nRMSE = 24.02%), though we targeted a forest
canopy which adds complexity to the retrieval because of the structure. In these ecosystems,
previous studies have found contrasting results: [26] estimated the LCC of Norway spruce
from Parrot Sequoia data with moderate accuracy (R2 = 0.45–0.49), while [25] achieved very
good results in retrieving the LCC of Himalayan pine from MicaSense RedEdge data using
an LUT-based approach (R2 = 0.94, RMSE = 6.20 µg cm−2).
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The retrieval of the LAI is often reported to be more challenging, especially in complex
canopies with mixed sunlit and shaded pixels [82,86]. The presence of shadows, rows,
and varying leaf angles in fact confounds the signal, posing difficulties in the accurate
quantification of the LAI. Ref. [82] obtained an RMSE of 0.61–0.7 m2 m−2 in the estimation
of the LAI of maize, which has a more complex geometry compared to turbid medium
crops, and [86] achieved R2 = 0.74 and RMSE = 0.28 m2 m−2 in the retrieval of the LAI of
apple orchards. In beech forests, [87] estimated the LAI from a drone-based RGB camera
with R2 = 0.59–0.7. In our study, the good results obtained (R2 = 0.83, RMSE = 0.44 m2 m−2)
indicate that the problem of different lighting conditions at the high spatial resolution
of the drones is probably mitigated by using the average crown reflectance instead of
a pixel-based retrieval, which is in line with the findings of [26].
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Figure 7 shows the LAI and CCC maps of the Fagiana Forest obtained by applying
the best performing MLRA to the MAIA S2 segmented images acquired on 01/07/22 and
31/08/22. A significant reduction in the LAI and CCC (indicative of biomass loss and
chlorosis) is evident between these two dates (Figure 7e,f), likely as a result of the persistent
drought of summer 2022 [28,29]. In the Fagiana Forest, CCC exhibited a stronger decline
(Figure 7f) compared to the LAI (Figure 7e). This suggests that CCC may be a more sensitive
indicator in detecting the effects of water shortage on vegetation functionality compared to
the LAI. This result is consistent with previous studies showing the higher sensitivity of
chlorophyll content compared to the LAI for assessing the condition of English oak trees in
Ticino Park [88,89].
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from drone images collected on 1 July 2022; (c,d) maps of the LAI and CCC obtained from drone im-
ages collected on 31 August 2022; and (e,f) maps of the delta LAI and CCC obtained as the difference
between the LAI and CCC values retrieved from the drone images collected on 31 August 2022 and
1 July 2022.

3.4. Functional Trait Analysis

The ANOVA results showed that LAI values were significantly influenced by time,
forest microclimatic conditions, and species (Table 6). The pairwise interaction between time
and forest microclimatic conditions indicated a poorly significant interaction, suggesting
that the LAI varies consistently through time across the three different microclimatic
conditions. Differently, the pairwise interaction analysis indicated a highly significant
interaction between time and species, suggesting that temporal changes in the LAI differ
considerably across different species (Table 6, Figure 8a). Specifically, the Tukey post hoc
test revealed a significant decrease in the LAI between 1 July 2022 and 31 August 2022 for
both white hornbeam (−16%) and English oak trees (−12%). In contrast, no statistically
significant change was observed for black locust during this period (Figure 8a). Notably,
black locust already had a low mean LAI value in June compared to the other two species.

Table 6. LAI results of the ANOVA test (n = 1700). Significance codes: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05,
‘-’ 0.1.

LAI Df Sum Sq Mean Sq F Value Pr(>F) Significance

Time 1 55.992 55.99 157.27 <1 × 10−16 ***
Forest microclimatic conditions 2 99.38 49.69 139.56 <1 × 10−16 ***
Species 2 244.65 122.32 343.58 <1 × 10−16 ***

Time × Forest microclimatic conditions 2 2.002 1.001 2.81 0.060 -
Time × Species 2 5.42 2.71 7.61 0.0005 ***
Forest microclimatic conditions × Species 4 20.65 5.16 14.50 1.20 × 10−11 ***

Time × Forest microclimatic conditions × Species 4 2.74 0.68 1.92 0.104 no

Residuals 1682 598.83 0.36
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The ANOVA analysis also revealed a statistically significant interaction between forest
microclimatic conditions and species, indicating that the LAI differs significantly across
various forest microclimatic conditions for the same species (Table 6, Figure 8b). For the
black locust species, the LAI of the mesophilic forest is 22% lower than the meso-hygrophilic
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one and 55% lower when comparing the meso-hygrophilic and xerophilic environments
(Figure 8b). In the case of white hornbeam, only the differences in the LAI between meso-
hygrophilic and xerophilic forest were significant (with a reduction of 20%) (Figure 8b). For
English oak, the differences in the LAI among the different forest microclimatic conditions
were also significant, with a reduction of 7% between meso-hygrophilic and mesophilic,
and a reduction of 18% when comparing the meso-hygrophilic and xerophilic forest.

The CCC analysis and, in this case, the ANOVA results, indicated that CCC values
were significantly influenced by time, forest microclimatic condition, and species (Table 7).
A significant interaction between time and species was observed, suggesting that temporal
changes in CCC differ substantially between species (Table 7, Figure 9a). The Tukey post
hoc test revealed a significant decrease in CCC between 1 July 2022 and 31 August 2022
for black locust (−14%), white hornbeam (−21%), and English oak trees (−18%). Similar
to the LAI results, black locust had a lower initial CCC compared to the other two species
(Figure 9a). However, in this case, the decrease in CCC for black locust between July and
the end of August was statistically significant.

Table 7. CCC results of the ANOVA test (n = 1700). Significance codes: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05,
‘-’ 0.1.

CCC Df Sum Sq Mean Sq F Value Pr (>F) Significance

Time 1 38.67959 38.67959 259.817 <1 × 10−16 ***
Forest microclimatic conditions 2 32.07746 16.03873 107.735 <1 × 10−16 ***
Species 2 87.68159 43.8408 294.486 <1 × 10−16 ***

Time × Forest microclimatic conditions 2 0.999662 0.499831 3.35745 0.0351 *
Time × Species 2 1.867992 0.933996 6.27381 0.0019 **
Forest microclimatic conditions × Species 4 6.435499 1.608875 10.8071 1.19 × 10−8 ***

Time × Forest microclimatic conditions × Species 4 1.609187 0.402297 2.70229 0.0291 *

Residuals 1682 250.4032 0.148872
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This suggests that CCC may be a more sensitive indicator of drought-induced vegeta-
tion stress compared to the LAI. In fact, as the product between LCC and the LAI, CCC
can capture information on vegetation plant chlorosis and canopy biomass, thus providing
a deeper insight into the physiological status of plants.

The ANOVA analysis also revealed a statistically significant interaction between forest
microclimatic conditions and species, indicating that CCC differs for the same species
significantly across various forest microclimatic conditions (Table 7, Figure 9b). The Tuckey
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post hoc test confirmed a statistically significant difference in CCC between the meso-
hygrophilic forest and xeric environments for the three species analysed (Figure 8b). In the
case of black locust, the reduction in CCC between meso-hygrophilic and xeric forest was
−56%, whereas, for white hornbeam and English oak, it was −18%.

Overall, both white hornbeam and English oak showed a decrease in the LAI and CCC
when comparing the values obtained on 1 July 2022 and 31 August 2022, thus confirming
the efficiency of the drone-based estimation of functional traits to detect a drought-induced
variation. This result is in line with what was observed by PRISMA in the Ticino Forest
between June and early September [63]. Moreover, in the case of English oak, our results
align with [18], who described discolouration episodes in 10 different English oak stands in
Ticino Park during the 2003 summer heatwave, highlighting the susceptibility of English
oak to water scarcity and high temperatures and the effectiveness of remotely sensed CCC
in detecting English oak stress.

In contrast, black locust showed a less pronounced decline in functional traits between
June and the end of August 2022 compared to the other two species analysed. However,
it already exhibited an unusually low LAI in June, with a mean value of 1.9 m2 m−2, for
a broadleaf species at the peak of the vegetative season. Field observations during the
sampling campaign confirmed that black locust trees had relatively small canopies and
appeared to be in poor health. This pre-existing condition could explain the lack of a signifi-
cant reduction in the LAI over time, as the species was already under stress. Thus, although
black locust is generally recognised for its stress tolerance, its non-significant reduction in
functional traits under drought conditions in the Fagiana Forest context could be due to
its compromised health, rather than a distinctive tolerance to the lack of water. Ref. [90]
reported the decline of this species in the Ticino Forest, underlying the species’ vulnerability
to climate change in this region. Reference [91] further supports this by suggesting that
black locust distribution models predict its decline in Southern Europe, potentially leading
to a northward range shift favoured by future warmer climatic conditions.

The drone-based functional trait retrieval effectively captured the variation in the
LAI and CCC among the three analysed species within the different forest microclimatic
conditions. Both LAI and CCC values were higher in the meso-hygrophilic and mesophilic
forest area, compared with the xerophilic one. This reflects the general smaller tree leaf
size and reduced canopy in the drier forest area, as a form of adaptation to the lower water
moisture availability [92].

3.5. Strength and Limitations

The results of this study highlighted the importance of integrating drone-based multi-
ple sensors, which together provided a comprehensive and accurate analysis of the Fagiana
forest ecosystem. On the one hand, we obtained the precise spatial reconstruction of both
forest structure and species composition. On the other hand, the proposed integrated
approach allowed the accurate quantification of forest functional traits (the LAI and CCC).
The drone-based high-resolution tree-level data obtained offer valuable and detailed in-
sights into forest structure and ecological processes, accounting for variations related to
species and forest microclimatic conditions. The processing workflow was optimised for
automation and based entirely on open-source software, ensuring both efficiency and
accessibility. Therefore, this approach can be applied in similar contexts.

The developed methodology, by providing an automated workflow for the accurate
reconstruction of forest structure and plant trait retrieval, represents an important step
forward in the understanding and parameterisation of process-based ecological models
for estimating the gross primary productivity of forest ecosystems, which is fundamental
for assessing and predicting fluctuations in carbon storage due to inter- and intra-seasonal
variations in climate variables.

Despite the promising results, certain limitations were encountered in the proposed
processing workflow. Firstly, the tree detection accuracy was not always high due to
challenges in segmenting complex canopies and correctly identifying treetops. To address
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this, advances in segmentation algorithms for broadleaf species are needed to improve the
automatic identification of treetops and tree crowns. Moreover, varying the processing
parameters (e.g., CHM resolution, CHM smoothing, and LM window size) according to
canopy conditions (dense or sparse) and species types could further improve detection
accuracy [46]. Secondly, the species classification accuracy could potentially be enhanced
through the use of multitemporal multispectral data [93,94]. Ref. [93] demonstrated that
utilising data from three different acquisition dates significantly improved species classifi-
cation accuracy compared to relying on data from a single date (no further benefits were
observed beyond three dates). Finally, although the plant traits were accurately quantified,
the retrieval approach used has some limitations that may hinder the application of the
workflow in different contexts. Data-driven approaches based on machine regression
algorithms, although remarkably powerful, typically come at the expense of transferabil-
ity [95,96]. In addition, they can be biassed by the characteristics of the sensor used in the
training phase, in this case, the PRISMA data. To broaden the applicability of the developed
methodology, the use of hybrid approaches based on the combination of radiative transfer
simulations and machine learning regression could be explored. However, this task is not
trivial in forest ecosystems and at the high spatial resolution of drones due to the complex-
ity of the canopy structure, which requires the use of geometric models that are difficult
to parameterise and computationally expensive [97,98]. The proposed solution provides
a relatively simple retrieval workflow, which represents a trade-off between generalisability
and operability.

4. Conclusions

In this study, we demonstrated the effectiveness of integrating drone-based LiDAR
and multispectral cameras to support forest monitoring. Specifically, our proposed method
successfully detected individual trees within a dense broadleaf forest using drone-based
LiDAR point cloud data, achieving high accuracy despite the inherent challenges of distin-
guishing broadleaf species, which are generally harder to differentiate than conifers.

The high tree detection accuracy also contributed to the strong performance of the
object-based classification techniques applied to the multispectral MAIA S2 images. The
classification accuracy was slightly higher than in similar studies, likely due to the inclusion
of textural metrics and the higher resolution of the MAIA S2 sensor. Black locust was
classified with greater accuracy compared to white hornbeam and English oak, likely due
to spectral similarities between the latter species.

The retrieval of plant traits such as the LAI and CCC from multispectral imagery using
machine learning models also performed well, showing high accuracy when compared
to field data. The best-performing algorithm for both the LAI and CCC was GPR. The
functional trait maps obtained revealed a significant reduction in the LAI and CCC in the
Fagiana Forest when comparing the acquisition in July and the end of August 2022, as
a consequence of the severe drought in the summer of 2022. English Oak and white horn-
beam species experienced marked reductions in both traits, while black locust showed less
pronounced changes, possibly due to its pre-existing poor health in Ticino Regional Park.

These results underline the effectiveness of the proposed workflow in effectively
collecting information on forest structure and species composition, as well as quantitatively
estimating forest functional traits. This method provides a powerful tool for forest managers
to track and respond to climate impacts on diverse forest species.
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