
Citation: Huang, Y.; Li, H.; Dai, Y.; Lu,

G.; Duan, M. A 3D Path Planning

Algorithm for UAVs Based on an

Improved Artificial Potential Field

and Bidirectional RRT*. Drones 2024, 8,

760. https://doi.org/10.3390/

drones8120760

Academic Editors: Delia Elena

Spridon, Razvan Udroiu and

Adrian Marius Deaconu

Received: 11 November 2024

Revised: 6 December 2024

Accepted: 13 December 2024

Published: 16 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

A 3D Path Planning Algorithm for UAVs Based on an Improved
Artificial Potential Field and Bidirectional RRT*
Yijun Huang 1, Hao Li 1, Yi Dai 1, Gehao Lu 1,* and Minglei Duan 2,*

1 School of Information Science and Engineering, Yunnan University, Kunming 650500, China;
huangyijun@stu.ynu.edu.cn (Y.H.); lihao707@ynu.edu.cn (H.L.); daiyi@mail.ynu.edu.cn (Y.D.)

2 Yunnan Communications Investment & Construction Group Co., Ltd., Yunnan University,
Kunming 650500, China

* Correspondence: glu@ynu.edu.cn (G.L.); 105617@yciccloud.com (M.D.)

Abstract: Efficient and effective path planning can significantly enhance the task execution capabilities
of UAVs in complex environments. This paper proposes an improved sampling-based path planning
algorithm, Bi-APF-RRT*, which integrates an Artificial Potential Field (APF) method with a newly
introduced repulsive coefficient and incorporates dynamic step size adjustments. To further improve
path planning performance, the algorithm introduces strategies such as dynamic goal biasing, target
switching, and region-based adaptive sampling probability. The improved Bi-APF-RRT* algorithm
effectively controls sampling direction and spatial distribution during the path search process,
avoiding local optima and significantly improving the success rate and quality of path planning. To
validate the performance of the algorithm, this paper conducts a comparative analysis of Bi-APF-RRT*
against traditional RRT* in multiple simulation experiments. Quantitative results demonstrate that
Bi-APF-RRT* achieves a 59.6% reduction in average computational time (from 5.97 s to 2.41 s), a
20.6% shorter path length (from 691.56 to 549.21), and a lower average path angle (reduced from
33.28° to 29.53°), while maintaining a 100% success rate compared to 95% for RRT*. Additionally,
Bi-APF-RRT* reduces the average number of nodes in the search tree by 45.8% (from 381.17 to
206.5), showcasing stronger obstacle avoidance capabilities, faster convergence, and smoother path
generation in complex 3D environments. The results highlight the algorithm’s robust adaptability
and reliability in UAV path planning.

Keywords: UAV 3D path planning; improved artificial potential field; bidirectional RRT*; dynamic
goal biasing; sampling probability strategy

1. Introduction

In recent years, with the rapid advancement of technology, UAV (Unmanned Aerial
Vehicle) technology has made significant progress [1], and its application range has become
increasingly extensive, including target recognition and tracking, traffic monitoring, crop
protection, emergency rescue, and various military purposes [2]. Among these applications,
one of the key challenges in UAV technology is how to ensure effective obstacle avoidance
and precise path planning during mission execution [3]. To address this issue, researchers
have proposed various path planning algorithms. Early path planning algorithms are
generally classified into local planning and global planning methods [4]. Local planning
focuses on real-time obstacle avoidance and path adjustment during UAV flight, while
global planning emphasizes the overall design and optimization of the mission path [5].
However, as UAV application scenarios become increasingly complex, single local or global
planning methods are often insufficient. Local planning lacks global information, while
global planning struggles to adapt to rapid changes in dynamic environments [6]. Thus, the
combination of global and local planning methods has gradually become the mainstream
trend in UAV path planning. By leveraging the advantages of both, it is possible to achieve
flexible local obstacle avoidance while ensuring a globally optimal path, which greatly

Drones 2024, 8, 760. https://doi.org/10.3390/drones8120760 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8120760
https://doi.org/10.3390/drones8120760
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://doi.org/10.3390/drones8120760
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8120760?type=check_update&version=2

Drones 2024, 8, 760 2 of 26

enhances the efficiency and success rate of UAV path planning and improves robustness
and safety during flight [7].

After years of development, current UAV path planning algorithms can be mainly
divided into four categories: graph search, optimization, learning-based, and sampling-
based methods [8]. Graph search-based algorithms (such as Dijkstra and A*) typically
model the environment as a grid or graph structure and use search algorithms to find
the optimal path from the starting point to the target point [9]. These algorithms perform
well in low-dimensional and static environments but have high computational costs in
high-dimensional or dynamic environments, making it difficult to respond in real-time
to complex environmental changes [10]. Moreover, graph search algorithms often require
global environmental information, which is difficult to achieve in unknown or partially
known environments, limiting their application scope. Optimization-based algorithms
search for an optimal path by defining an objective function, suitable for path planning
in continuous spaces [11]. Examples include artificial potential field methods, gradient
descent methods, as well as intelligent optimization algorithms such as Particle Swarm
Optimization (PSO), Ant Colony Optimization (ACO), and Genetic Algorithms (GAs) [12].
These algorithms can generate smooth paths, but in complex environments, they are
prone to become trapped in local optima, making it challenging to guarantee global path
validity and safety [13]. Additionally, their adaptability to dynamic environments is
limited, resulting in insufficient real-time obstacle avoidance capabilities [14]. Learning-
based algorithms include machine learning and deep learning methods, such as Deep
Q-Network (DQN) and policy gradient methods [15]. These algorithms mainly focus on
path planning in unknown or dynamic environments and have strong adaptability to
changes in the environment [16]. However, the training process for these algorithms often
requires extensive time and computational resources [17]. When facing environmental
changes, the models may need frequent updates or retraining, posing challenges for real-
time UAV path planning.

In contrast, sampling-based algorithms (e.g., Rapidly exploring Random Trees (RRT)
and Probabilistic Roadmaps (PRM)) have the advantage of not requiring complete environ-
mental information and can quickly generate paths [18]. RRT constructs a tree-like path
through random sampling, effectively handling high-dimensional, dynamic, and complex
environments, making it particularly suitable for obstacle avoidance and path planning
in unknown or partially known environments for UAVs [19]. Therefore, sampling-based
algorithms are more suitable for UAV path planning in terms of balancing real-time perfor-
mance and adaptability to complex environments. However, due to the random sampling
nature of RRT, the quality of the paths found is often suboptimal, lacking global optimality.
Moreover, in dense or dynamic obstacle environments, the local obstacle avoidance capa-
bility of RRT is relatively weak, making it challenging to adjust the path flexibly [20]. To
address these issues, researchers have proposed improved approaches combining RRT with
the Artificial Potential Field (APF) method [21]. APF treats the target point as an attractive
source and obstacles as repulsive sources, guiding the path points to automatically avoid
obstacles and move towards the target point under the influence of these forces [22]. This
effectively compensates for the shortcomings of RRT: the attractive and repulsive forces of
APF guide the path generation, improving the smoothness of the path [23]. Additionally,
APF provides effective guidance for local obstacle avoidance, helping the path planning
avoid getting trapped in obstacle areas [24]. The combination of RRT and APF retains the
global path planning capability of RRT while incorporating the local obstacle avoidance
advantages of APF, significantly enhancing the reliability and adaptability of UAV path
planning [25].

To improve the sampling efficiency of the RRT algorithm, researchers have proposed
the enhanced RRT* algorithm. Subsequently, various RRT* variants have been intro-
duced [26]. These include RRT*Smart, which accelerates the convergence of RRT* through
intelligent sampling; Quick-RRT*, which optimizes paths by trimming; F-RRT*, which
further reduces path costs by selecting new parent nodes; and Informed-RRT*, proposed

Drones 2024, 8, 760 3 of 26

by Gammell et al., which improves sampling efficiency by refining the sampling space [27].
Additionally, there are several variants that incorporate target-bias strategies, such as
Heuristic-guided RRT* (hRRT*), Potential-field-based RRT* (P-RRT*), Improved Potential-
field RRT* (PF-RRT*), and Bidirectional APF-RRT* [28]. Among these, P-RRT* is a repre-
sentative variant that iteratively guides random sampling states using attractive potential
fields, increasing the probability of reaching the target while avoiding collisions. However,
these RRT* variants have certain limitations [29]. Firstly, while RRT*Smart, Quick-RRT*,
and F-RRT* have made improvements in accelerating convergence and optimizing paths,
they may still fall into local optima in complex obstacle environments, with limited obstacle
avoidance performance. Informed-RRT* improves efficiency by refining the sampling
space, but its obstacle avoidance capabilities in densely cluttered areas are insufficient.

Heuristic-guided RRT* (hRRT*), Potential-field-based RRT* (P-RRT*), and PF-RRT*
algorithms incorporate target bias and artificial potential field strategies [30]. However,
existing APF integration methods face limitations in handling complex environments,
dynamic obstacles, and global optimization. These methods are prone to becoming trapped
in local minima, leading to path planning failures or inefficiencies, and they often exhibit
oscillations in dense obstacle regions, resulting in unsmooth paths [31]. Additionally, the
paths generated by these methods are typically not smooth enough and come with high
computational complexity. The algorithms are sensitive to initial positions, which may
cause convergence problems, and they often lack global optimization capabilities, leading
to suboptimal planned paths [32]. To address these challenges, this paper proposes Bi-
APF-RRT*, an improved algorithm integrating an enhanced APF. The proposed algorithm
combines the advantages of APF while introducing a series of optimizations to overcome
its limitations. By introducing dynamic repulsive force coefficients, the algorithm mitigates
the problem of traditional APF being prone to local optima in complex environments,
enabling UAVs to adapt more flexibly to environmental changes [33]. Furthermore, the
algorithm leverages the bidirectional structure of RRT*, optimizing the path search strategy
by conducting simultaneous searches from the start and end points, which significantly en-
hances search efficiency and reduces planning time. In addition, Bi-APF-RRT* incorporates
strategies such as target switching, dynamic step size, and regional sampling probability to
further improve adaptability and flexibility [34]. These enhancements effectively prevent
the generation of overly lengthy or unsmooth paths, ensuring a more efficient, reliable, and
robust path planning process.

In Bi-APF-RRT*, the attractive and repulsive forces of APF are dynamically adjusted to
guide the generation of sampling points, making path planning more efficient and precise.
Compared to existing APF integration methods, the Bi-APF-RRT* algorithm significantly
enhances obstacle avoidance capabilities in dynamic environments and effectively avoids
common local optimum issues in path planning, enabling smoother, safer, and more efficient
path planning. These optimizations make the Bi-APF-RRT* algorithm more adaptable
and practical for 3D path planning on mobile platforms such as UAVs. Additionally,
addressing the limitation of previous RRT* variants that primarily conducted simulations
in 2D environments, this paper utilizes a 3D random simulation environment to validate
the superior performance of the improved algorithm.

The main contributions of this paper are as follows:

1. An improved traditional APF: Dynamic adjustment of repulsive coefficients, intro-
duction of obstacle density factors, and an exponential decay factor make the algo-
rithm more flexible in obstacle avoidance and generate smoother paths in complex
environments.

2. Introduction of dynamic target bias: Dynamic adjustment of target sampling prob-
ability based on the distance to the target and the number of iterations increases
the likelihood of reaching the target, avoiding local optima and improving planning
efficiency and convergence speed.

Drones 2024, 8, 760 4 of 26

3. Dynamic step size strategy: Adjusting the step size based on the density of sur-
rounding obstacles enhances obstacle avoidance in cluttered areas and speeds up
exploration in open spaces, improving efficiency and adaptability.

4. Target switching strategy: Random switching of target points with a certain probability
increases the exploration space and flexibility, avoiding local optima and increasing
the chance of finding the global optimal path.

5. Regional sampling probability strategy: Adjusting the sampling probability based
on the distance to the start and target points concentrates sampling near potential
paths, reducing invalid samples, accelerating convergence, and improving plan-
ning efficiency.

6. Three-dimensional random environment simulations: Experiments conducted in a
3D random environment demonstrate the actual performance and adaptability of the
proposed algorithm.

2. Related Work
2.1. RRT*

The Rapidly exploring Random Tree (RRT) is a path planning algorithm based on
random sampling that can quickly generate feasible paths in complex environments [35]. It
constructs nodes through random sampling and incrementally expands a tree structure
towards the target region to find a path [36]. The process of RRT path planning is illustrated
in Figure 1. The goal of the RRT algorithm is to quickly find a feasible path; however, the
generated path is typically not optimal. To address this issue, RRT* was introduced as an
improved version of RRT. RRT* optimizes the generated path by reconnecting new nodes
with existing nodes, gradually approaching the optimal solution [37]. Compared to RRT,
RRT* has a slightly higher time complexity but significantly improves the quality of the
resulting path.

Figure 1. Illustration of the Rapidly exploring Random Tree (RRT) Path Planning Process.

The core idea of the RRT algorithm is to iteratively expand the tree through multiple
iterations. First, a point xrand is randomly sampled from the search space with a uniform
probability distribution, which serves as a direction for expanding the search tree. After

Drones 2024, 8, 760 5 of 26

obtaining the coordinates of the sampled point xrand, the algorithm computes the nearest
point xnearest among all vertices in the search tree. Then, using a guiding function Steer(),
the algorithm moves xnearest towards xrand by a given step size, resulting in a new node
xnew. After obtaining the new node xnew, the path from xnearest to xnew is checked for
obstacles. If there are no obstacles along this path, the node xnew is added to the search tree
as a new node. This process repeats iteratively until a path to the target is found or the
maximum iteration limit of the algorithm is reached.

The RRT* algorithm is an optimal path planning algorithm, and its pseudocode is
shown in Algorithm 1. In RRT*, after a new node xnew is generated, the algorithm searches
within a certain radius (rnear) around the new node for other nodes and selects the node
with the lowest path connection cost as the parent node (“choose parent”). This step
reduces the cost of reaching the new node, gradually optimizing the path [38]. Furthermore,
after the new node xnew is connected to the tree, RRT* checks all nodes in the vicinity of
xnew to determine if connecting these neighboring nodes through xnew would reduce the
overall path cost. If it does, the algorithm reconnects these neighbor nodes to the new node,
further optimizing the path. This process, known as “rewiring,” ensures that more nodes
can be reached with minimal cost. By continuously adjusting the connections between
parent nodes and neighboring nodes, RRT* reduces redundant nodes and unnecessary
bends in the path, resulting in a smoother, shorter path with lower overall path cost. The
RRT algorithm does not include path optimization steps, and the quality of the generated
path depends heavily on random sampling, so the path may not be optimal. In contrast,
the quality of the RRT* path improves as the number of iterations increases, and the path
gradually converges towards the global optimal solution. Therefore, with a sufficient
number of iterations, RRT* can yield a near-optimal path [39].

Algorithm 1: RRT* Algorithm
Input :Xfree, xinit, xgoal, Xobs, ∆s (Step Size)
Output : A path T from xinit to xgoal

1 T .init();
2 for i← 1 to n do
3 xrand ← Sample(Xfree);
4 xnearest ← Nearest(xrand, T);
5 xnew ← Steer(xnearest, xrand, ∆s);
6 if CollisionFree(Xfree, xnearest, xnew,Xobs) then
7 Xnear ← Near(xnew, T , rnear);
8 xmin ← xnearest;
9 foreach x ∈ Xnear do

10 if CollisionFree(Xfree, x, xnew,Xobs) and
Cost(x) + Cost(Edge(x, xnew)) < Cost(xmin) + Cost(Edge(xmin, xnew))
then

11 xmin ← x;

12 T .addNode(xnew);
13 T .addEdge(xmin, xnew);
14 foreach x ∈ Xnear do
15 if CollisionFree(Xfree, xnew, x,Xobs) and

Cost(xnew) + Cost(Edge(xnew, x)) < Cost(x) then
16 Update T : Rewire x to xnew;

17 if xnew = xgoal then
18 return Success;

Drones 2024, 8, 760 6 of 26

In Algorithm 1 (pseudocode), the explanations for the related functions and parameters
are as follows:

- Xfree: The search space, representing the environment where the algorithm explores
paths. This space may include obstacles or other constraints.

- xinit: The initial point, which is the starting location of the path. The algorithm begins
expanding from this point.

- xgoal: The goal point, representing the target destination of the path. The algorithm
aims to find a path from xinit to xgoal.

- T : The tree structure, composed of nodes and edges, used to represent the path
explored by the RRT* algorithm. The tree grows from xinit and gradually expands
towards xgoal.

- Xobs: The obstacle space, a set of obstacles that must be avoided by the algorithm
during path planning.

- xrand: A random sample point, a point randomly generated within the search space
Xfree, used to guide the direction of tree expansion.

- xnearest: The nearest node, which is the node in the current tree T that is closest to
xrand. It serves as the starting point for expansion.

- xnew: The new node, generated by extending xnearest towards xrand by a given step
size ∆s. This node is added to the tree if the path is collision-free.

- Xnear: The set of nearby nodes, a collection of nodes within a radius rnear around xnew.
- xmin: The optimal parent node, which is the node in Xnear with the minimum path

cost. It is chosen as the parent node for xnew.
- rnear: The neighborhood radius, used to define the range of the nearby node set Xnear.

It typically decreases as the number of sampled points increases.
- ∆s: The step size, which limits the maximum distance between xnearest and xnew

during expansion.
- Sample(Xfree): The sampling function, which generates a random sample point xrand

within the search space Xfree.
- Nearest(xrand, T): The nearest node search function, which finds the node xnearest in

the tree T that is closest to xrand.
- Steer(xnearest, xrand, ∆s): The steering function, which extends from xnearest towards

xrand, generating a new node xnew within a distance not exceeding ∆s.
- CollisionFree(Xfree, xnearest, xnew): The collision detection function, which checks

whether the path between xnearest and xnew is free of obstacles.
- Near(xnew, T , rnear): The nearby node search function, which finds all nodes in the

tree T that are within a distance less than rnear from xnew.
- ChooseParent(Xnear, xnew, xnearest): The parent node selection function, which chooses

the node in Xnear with the minimum cost as the parent of xnew.
- addNode(xnew): The node addition function, which adds the new node xnew to the

tree T .
- addEdge(xmin, xnew): The edge addition function, which adds an edge between xmin

and xnew in the tree T .
- Rewire(T , xnew, x): The rewire function, which attempts to reconnect a neighboring

node x to xnew in order to further optimize the path.
- Cost(x): The path cost function, which calculates the cumulative cost from the initial

point xinit to the node x, used for selecting the optimal path.
- Success(): Indicates that a path has been found, and the algorithm has succeeded.

2.2. Bi-RRT*

The Bi-RRT* algorithm combines the advantages of bidirectional RRT and RRT*, utiliz-
ing the bidirectional growth of two trees and path optimization to allow faster convergence
towards a near-optimal solution [40]. The pseudocode for the Bi-RRT* algorithm is shown
in Algorithm 2. In the Bi-RRT* algorithm, the root nodes of two trees are first initialized
at the starting point and the goal point, respectively. A random sample point xrand is

Drones 2024, 8, 760 7 of 26

then generated in the search space. When extending in the direction of xrand, one of the
two trees—the start tree or the goal tree—is selected as the **active tree** for expansion,
while the other tree is designated as the **passive tree**. In the active tree, the nearest node
to xrand is identified as xnearest. Using the steering function Steer(), the algorithm extends
from xnearest towards xrand by a step size, resulting in a new node xnew. Next, the algorithm
checks if the path from xnearest to xnew is collision-free (i.e., it does not intersect with any
obstacles Xobs). If the path is collision-free, the new node xnew is added to the active tree.
After adding xnew to the tree, the active tree performs the “Choose Parent” and “Rewire”
operations to optimize the path structure.

After the above steps, once the active tree successfully expands to include xnew, the
algorithm attempts to connect xnew to the passive tree. In the passive tree, the nearest
node to xnew is identified as xconnect. If the path from xnew to xconnect is collision-free, the
algorithm attempts to connect the two trees, forming a candidate path λsol from the start
point to the goal point. The cost of this path is denoted as csol. If csol < cbest, the optimal
path is updated to λsol, and the best cost is updated to csol, indicating that the current best
path from the start point to the goal point has been found.

Algorithm 2: Bi-RRT* Algorithm
Input : xinit, xgoal, Xobs, X (Space), ∆s (Step Size)
Output : A path T from xinit to xgoal

1 V1 ← {xinit}, V2 ← {xgoal};
2 E1 ← ∅, E2 ← ∅;
3 T1 ← (V1, E1), T2 ← (V2, E2);
4 Cbest ← ∞;
5 for iter← 1 to MaxIter do
6 xrand ← Sample(X);
7 xnearest ← Nearest(xrand, T1);
8 xnew ← Steer(xnearest, xrand, ∆s);
9 if CollisionFree(X , xnearest, xnew,Xobs) then

10 Xnear ← Near(xnew, T1, rnear);
11 xmin ← xnearest;
12 foreach x ∈ Xnear do
13 if CollisionFree(X , x, xnew,Xobs) and

Cost(x) + Cost(Edge(x, xnew)) < Cost(xmin) + Cost(Edge(xmin, xnew))
then

14 xmin ← x;

15 T1.addNode(xnew);
16 T1.addEdge(xmin, xnew);
17 foreach x ∈ Xnear do
18 if CollisionFree(X , xnew, x,Xobs) and

Cost(xnew) + Cost(Edge(xnew, x)) < Cost(x) then
19 Update T1: Rewire x to xnew;

20 xconnect ← Nearest(T2, xnew);
21 (xsol, Csol)← ConnectGraphs(T2, xconnect, xnew);
22 if Csol < Cbest then
23 Cbest ← Csol;
24 Tbest ← T1 ∪ T2;

25 Swap(T1, T2);

26 return Success;

Drones 2024, 8, 760 8 of 26

In Algorithm 2 (pseudocode), the explanations for the related functions and parameters
are as follows:

- V1: The set of nodes for the first tree T1, initialized with the starting point xinit.
- V2: The set of nodes for the second tree T2, initialized with the goal point xgoal.
- E1: The set of edges for the first tree T1, initially empty.
- E2: The set of edges for the second tree T2, initially empty.
- cbest: The cost of the current best path. It is initially set to infinity, allowing updates

when a better path is found.
- iter: The current iteration count of the algorithm.
- MaxIter: The maximum number of iterations, used to limit the runtime of the algorithm.
- xconnect: The nearest node in the second tree T2 to the new node xnew. It is used to

attempt a connection between T1 and T2.
- (csol, λsol)← ConnectGraphs(T2, xconnect, xnew): Attempts to connect trees T1 and T2,

generating a new path λsol and calculating its cost csol.
- csol: The cost of the new path generated by connecting xnew and xconnect.
- λsol: The new path formed by connecting xnew and xconnect.
- Cost(Edge(xnew, x)): Calculates the cost of the edge from xmin to xnew. This is used to

determine if the new path cost is better when selecting the optimal parent node.
- ConnectGraphs(T2, xconnect, xnew): Attempts to connect trees T1 and T2 through nodes

xconnect and xnew, forming a complete path and enabling the bidirectional RRT* con-
nection to find a feasible path from the start to the goal point.

- Swap(T1, T2): Swaps the roles of trees T1 and T2. This alternating expansion of both
trees improves the efficiency of path searching in bidirectional exploration.

2.3. APF-RRT*

The APF-RRT* (Artificial Potential Field-RRT*) algorithm combines the strengths of
the Artificial Potential Field (APF) and RRT*, as shown in Algorithm 3. By introducing
potential field methods into the RRT* framework, the algorithm enhances the efficiency
of path planning and improves path quality [41]. The APF-RRT* algorithm builds upon
the traditional RRT* algorithm by incorporating attractive and repulsive forces to guide
the growth of the tree, resulting in more efficient and smoother path planning while
accelerating the planning process.

In the APF-RRT* algorithm, the tree is first initialized with the root node at the starting
point [42]. During each iteration, a random sample point xrand is drawn from the search
space. The sample point is then adjusted using the attractive force, which pulls it towards
the goal, and the repulsive force, which pushes it away from obstacles, resulting in an
adjusted sample point xapf. The algorithm then finds the nearest node in the tree to this
adjusted point, denoted as xnearest, and generates a new node xnew in this direction. If the
path from xnearest to xnew is collision-free, the algorithm proceeds to the “Choose Parent”
step, where it selects the optimal parent node from the neighborhood of xnew. It also
performs the “Rewire” operation, attempting to reconnect nearby nodes to further optimize
the path structure. If the new node reaches the goal region, the algorithm outputs the
current tree as the solution path.

In Algorithm 3 (pseudocode), the explanations for the related functions and parameters
are as follows:

- Katt: The attractive force coefficient, used to control the magnitude of the attraction
exerted by the goal point on the sample point.

- Krep: The repulsive force coefficient, used to control the magnitude of the repulsion
exerted by obstacles on the sample point.

- InfluenceRadius: The radius of influence for the repulsive force. Only obstacles within
this radius affect the sample point.

- Fatt: The attractive force vector, generated by the attraction exerted by the goal point
xgoal on the sample point xrand.

Drones 2024, 8, 760 9 of 26

- AttractiveForce(xnearest, xgoal, Katt): The function for calculating the attractive force,
based on the current node xnearest, the goal point xgoal, and the attractive force coeffi-
cient Katt.

- Frep: The repulsive force vector, generated by the repulsion exerted by obstacles on
the sample point xrand.

- RepulsiveForce(xnearest,Xobs, Krep, InfluenceRadius): The function for calculating the
repulsive force, based on the current node xnearest, the set of obstacles Xobs, the repul-
sive force coefficient Krep, and the influence radius InfluenceRadius.

- Ftotal: The total force vector, which is the vector sum of the attractive force Fatt and the
repulsive force Frep. This vector controls the adjusted direction of the sample point.

- xapf: The adjusted sample point after applying the artificial potential field, obtained
by adding the total force Ftotal to the original sample point xrand.

Algorithm 3: APF-RRT* Algorithm
Input : xinit, xgoal, Xobs, X (Space), ∆s (Step Size), Katt, Krep, rinf (Influence

Radius)
Output : A path T from xinit to xgoal

1 T .init(xinit);
2 for iter← 1 to MaxIter do
3 xrand ← Sample(X);
4 Fatt ← AttractiveForce(xnearest, xgoal, Katt);
5 Frep ← RepulsiveForce(xnearest,Xobs, Krep, rinf);
6 Ftotal ← Fatt + Frep;
7 xapf ← xrand + Ftotal;
8 xnearest ← Nearest(xapf, T);
9 xnew ← Steer(xnearest, xapf, ∆s);

10 if CollisionFree(X , xnearest, xnew,Xobs) then
11 Xnear ← Near(xnew, T , rnear);
12 xmin ← xnearest;
13 foreach x ∈ Xnear do
14 if CollisionFree(X , x, xnew,Xobs) and

Cost(x) + Cost(Edge(x, xnew)) < Cost(xmin) + Cost(Edge(xmin, xnew))
then

15 xmin ← x;

16 T .addNode(xnew);
17 T .addEdge(xmin, xnew);
18 foreach x ∈ Xnear do
19 if CollisionFree(X , xnew, x,Xobs) and

Cost(xnew) + Cost(Edge(xnew, x)) < Cost(x) then
20 Update T : Rewire x to xnew;

21 if xnew = xgoal then
22 return Success;

2.4. Informed-RRT*

The Informed-RRT* (Informed Rapidly exploring Random Tree Star) algorithm is
an improved version of RRT* that accelerates convergence and enhances path planning
efficiency by constraining the sampling space based on the known path [43]. Unlike RRT*,
Informed-RRT* dynamically reduces the sampling area after finding an initial feasible path,
focusing on regions with lower path costs to gradually optimize the path quality [44]. The
pseudocode for Informed-RRT* is shown in Algorithm 4. In the Informed-RRT* algorithm,

Drones 2024, 8, 760 10 of 26

the tree is first initialized with the root node at the starting point, and the cost of the optimal
path is set to infinity. During each iteration, if a feasible path already exists (i.e., the cost of
the found path is less than infinity), an ellipsoid S is generated, with the start point and
goal point as its foci and the semi-major axis equal to the current best path cost [45]. The
sampling is then restricted to this ellipsoid to focus on more promising regions. Otherwise,
sampling is performed over the entire space [46]. The algorithm then finds the nearest node
in the tree to the sampled point, denoted as xnearest, and extends towards the sampled point
by a step size to generate a new node xnew. If the path from xnearest to xnew is collision-free,
the algorithm proceeds with the “Choose Parent” operation to connect the new node to
the optimal parent node, followed by the “Rewire” operation to attempt reconnection with
neighboring nodes for further path optimization [47]. If the new node reaches the goal
region, the optimal path is updated, and the algorithm completes.

Algorithm 4: Informed-RRT* Algorithm
Input : xinit, xgoal, Xobs, X (Space), ∆s (Step Size)
Output : A path T from xinit to xgoal

1 T .init(xinit);
2 Cbest ← ∞;
3 for iter← 1 to MaxIter do
4 if Cbest < ∞ then
5 S ← GenerateEllipsoid(xinit, xgoal, Cbest);
6 xrand ← SampleInformed(S);
7 else
8 xrand ← Sample(X);

9 xnearest ← Nearest(xrand, T);
10 xnew ← Steer(xnearest, xrand, ∆s);
11 if CollisionFree(X , xnearest, xnew,Xobs) then
12 Xnear ← Near(xnew, T , rnear);
13 xmin ← xnearest;
14 foreach x ∈ Xnear do
15 if CollisionFree(X , x, xnew,Xobs) and

Cost(x) + Cost(Edge(x, xnew)) < Cost(xmin) + Cost(Edge(xmin, xnew))
then

16 xmin ← x;

17 T .addNode(xnew);
18 T .addEdge(xmin, xnew);
19 foreach x ∈ Xnear do
20 if CollisionFree(X , xnew, x,Xobs) and

Cost(xnew) + Cost(Edge(xnew, x)) < Cost(x) then
21 Update T : Rewire x to xnew;

22 if xnew = xgoal then
23 Cbest ← Cost(xgoal);

24 return Success;

In Algorithm 4 (pseudocode), the explanations for the related functions are as follows:

- GenerateEllipsoid(xinit, xgoal, cbest): This function generates an ellipsoid based on the
current start point xinit, goal point xgoal, and the current best path cost cbest. The
ellipsoid constrains the sampling space, focusing the sampling on regions that are
more likely to contain the optimal path.

Drones 2024, 8, 760 11 of 26

- SampleInformed(S): This function generates a random sample point xrand within the
ellipsoid S, improving the efficiency of the sampling process by limiting it to the most
promising area.

2.5. Three-Dimensional Environment Setup

Unmanned aerial vehicles (UAVs) often face complex environments during flight. To
better evaluate the performance of path planning algorithms, a randomly generated 3D sim-
ulation environment can effectively mimic real-world scenarios [48]. The 3D environment
in this paper is described using the exponential function in Equation (1):

Z(x, y) =
n

∑
i=1

hi exp

(
−
(

x− xic
xsi

)2
−
(

y− yic
ysi

)2
)

(1)

where:

- Z(x, y): The terrain height at the coordinates (x, y).
- n: The number of hills in the environment.
- hi: The height of the i-th hill.
- (xic, yic): The center coordinates of the i-th hill.
- xsi, ysi: The standard deviations in the x and y directions, controlling the spread of

the hill.

The height contribution of each hill is described by a 2D Gaussian distribution function.
By adjusting the parameters hi, (xic, yic), xsi, and ysi, hills of different heights, positions,
and spread extents can be generated. The final terrain height at any point (x, y) is the
cumulative sum of the height contributions from all the hills, forming a complex 3D
surface. The number of hills n, the center positions (xic, yic), the heights hi, and the spread
parameters xsi and ysi are randomly generated, allowing different 3D terrains to be created
in each run. An example of such a 3D terrain is shown in Figure 2, which is used for path
planning and testing.

Figure 2. Randomly Generated Mountain Peaks in 3D.

Drones 2024, 8, 760 12 of 26

3. Research Methods
3.1. Improved Artificial Potential Field (APF)

The traditional Artificial Potential Field (APF) method is a classical path planning
approach widely used for obstacle avoidance and target tracking in mobile devices such as
robots and UAVs [49]. The core idea of APF is to simulate a virtual “force field” using an
attractive-repulsive force model: the target point generates an attractive force that guides
the robot toward the goal, while obstacles produce a repulsive force that pushes the robot
away to avoid collisions. However, the traditional APF method has limitations in complex
environments; it tends to become trapped in local minima, exhibits oscillation in areas
with dense obstacles, and struggles to converge near the goal. To address these issues,
this paper proposes an improved APF method. First, the repulsive force coefficient is
dynamically adjusted, allowing the repulsive strength to vary based on the complexity
of the environment, thereby avoiding excessive repulsion. Second, an obstacle density
awareness mechanism is introduced to enhance the algorithm’s responsiveness in areas
with dense obstacles. Finally, a distance attenuation mechanism is incorporated to reduce
the impact of repulsive forces when far from obstacles, ensuring a smoother and more stable
path. With these enhancements, the proposed algorithm demonstrates better adaptability
and convergence in complex scenarios, resulting in higher-quality path planning outcomes.

The improved Artificial Potential Field (APF) algorithm proposed in this paper dy-
namically adjusts the repulsive force coefficient, making path planning more flexible in
different environments. When approaching the target, the algorithm reduces the influence
of the repulsive force, mitigating oscillation caused by excessive repulsion, allowing the
robot to more easily reach the goal area. Conversely, when the robot is far from the target
or in regions with dense obstacles, the repulsive force strength is increased to enhance
obstacle avoidance, ensuring safety.

The pseudocode of the algorithm is shown in Algorithm 5. The key functions are
defined as follows:

- AttractionForce (xcurrent, xgoal, Katt): Computes the attractive force towards the goal.
- RepulsionDirection (xcurrent, xobs): Computes the direction of the repulsive force

from obstacles.
- CalculateObstacleDensity (xcurrent, xobstacle): Calculates the density of obstacles around

the current position.

The main procedure of the algorithm is as follows: First, the attractive and repulsive
forces acting on the robot are calculated. Then, the repulsive force coefficient is dynamically
adjusted based on the distance to the target and the obstacle density around the current
position. The final resultant force is determined by combining the attractive force and the
adjusted repulsive force, ensuring that the robot can safely and efficiently reach the target
in complex environments. By dynamically adjusting the repulsive force, the algorithm
adapts to changes in the environment, avoids becoming trapped in local minima, and
generates a smoother, more optimized path. This significantly enhances the adaptability
and performance of the APF algorithm in complex scenarios.

In the improved Artificial Potential Field (APF) algorithm, the magnitude and direction
of the repulsive force are calculated by segmenting and summing the influences of obstacles.
This method calculates the total repulsive force by integrating the effects from multiple
obstacles, combining forces from different directions into a single resultant force, which
allows the robot to better avoid obstacles. The total repulsive force Frep is the cumulative
sum of all obstacle influences, as shown in Equation (2), where N represents the number of
obstacles, and Mi is the influence coefficient of the i-th obstacle.

Frep =
N

∑
i=1

Mi

2

∑
j=1

(
Frep1 + Frep2

)
· êrep (2)

The components Frep1 and Frep2 represent two parts of the repulsive force, calculated
by Equations (3) and (4), respectively. In these equations:

Drones 2024, 8, 760 13 of 26

- Kr: The dynamic repulsive force coefficient, used to control the magnitude of the
repulsive force.

- dobs: The Euclidean distance between the current point and the obstacle.
- Rinfluence: The influence radius of the repulsive force; beyond this radius, the repulsive

force becomes zero.
- dgoal: The distance between the current point and the goal.
- n: The linear control factor of the repulsive force, used to adjust the growth rate of the

repulsive force.

Frep1 = Kr

(
1

dobs
− 1

Rinfluence

)(dn
goal

d2
obs

)
(3)

Frep2 =
n
2
· Kr

(
1

dobs
− 1

Rinfluence

)(dn−1
goal

d2
obs

)
(4)

Algorithm 5: Improved APF Algorithm
Input : xcurrent, xgoal, Xobs, Katt, Krep, rinf (Influence Radius)
Output : Total force Ftotal

1 // Calculate Attraction Force
2 Fatt ← AttractionForce(xcurrent, xgoal, Katt);
3 // Calculate Repulsion Force
4 Frep ← 0;
5 foreach xobs ∈ Xobs do
6 dobs ← Distance(xcurrent, xobs);
7 if dobs < rinf then

8 Frep1 ← Krep ×
(

1
dobs
− 1

rinf

)
×
(

Distance(xcurrent,xgoal)
n

d2
obs

)
;

9 Frep2 ← n
2 × Krep ×

(
1

dobs
− 1

rinf

)
×
(

Distance(xcurrent,xgoal)
n−1

d2
obs

)
;

10 Frep ← Frep + (Frep1 + Frep2)× RepulsionDirection(xcurrent, xobs);

11 // Dynamic Adjustment of Repulsion Coefficient
12 ρdensity ← CalculateObstacleDensity(xcurrent,Xobs);
13 if Distance(xcurrent, xgoal) < rgoal then
14 Krep_adjusted ← Krep × (1− β× ρdensity)× decayFactor;

15 else
16 Krep_adjusted ← Krep × (1 + α× ρdensity)× decayFactor;

17 // Calculate Total Force
18 Ftotal ← Fatt + Krep_adjusted × Frep;
19 return Ftotal;

We introduce a dynamically adjusted repulsive force coefficient Kr in the two com-
ponents of the repulsive force to allow the robot to respond to different repulsive effects
at various positions. When the robot approaches the goal, the repulsive force is reduced,
as described in Equation (5). When the robot is far from the goal, the repulsive force is
increased, as described in Equation (6). In these equations:

- Kr: The initial repulsive force coefficient.
- β: The weakening factor for obstacle density within the goal region, used to reduce

the strength of the repulsive force.
- α: The strengthening factor for obstacle density outside the goal region, used to

increase the strength of the repulsive force.

Drones 2024, 8, 760 14 of 26

- ρdensity: The density of obstacles at the current position.

Kadjusted
r = Kr

(
1− β · ρdensity

)
· decayFactor (5)

Kadjusted
r = Kr

(
1 + α · ρdensity

)
· decayFactor (6)

The **decayFactor** represents a factor for the exponential decay of the repulsive force.
The purpose of introducing the decay factor is to gradually reduce the repulsive force
coefficient as the iteration count increases. This helps prevent excessive force interference
in later stages of the algorithm, thereby reducing oscillations. The calculation of the decay
factor is shown in Equation (7), where **iter** represents the current iteration number.

decayFactor = e−0.01·iter (7)

The unit vector êrep indicates the direction from the obstacle to the current position,
which is also the direction of the repulsive force. The calculation of êrep is given by
Equation (8):

- P⃗current: The position vector of the current location.
- P⃗obs: The position vector of the obstacle.

The term ∥P⃗current − P⃗obs∥ represents the distance between the current position and
the obstacle.

êrep =
P⃗current − P⃗obs

∥P⃗current − P⃗obs∥
(8)

3.2. Introduction of Dynamic Goal Biasing

In classical RRT and RRT* algorithms, the sample points (random samples) are typ-
ically distributed randomly throughout the entire search space [50]. However, purely
random sampling has a significant drawback: when the target region is far away or the
environment is complex, random sampling can lead to low algorithm efficiency. A large
number of samples may be required to successfully connect to the target, resulting in
increased computation time and resource consumption. To address this issue, this paper
introduces a **Dynamic Goal Biasing** strategy.

This strategy dynamically adjusts the sampling point generation process during path
planning, making the samples more likely to be distributed closer to the target. The core
idea is to introduce two control coefficients, α1 and β1, which dynamically adjust the
goal sampling rate based on the distance between the current position and the target,
as well as the number of iterations [51]. Specifically, when the distance to the target is
large, the algorithm favors random exploration; as the robot gets closer to the target, the
algorithm biases the samples toward the goal, increasing the probability of connecting to
the target. The pseudocode is shown in Algorithm 6. By introducing dynamic goal biasing,
the algorithm can more effectively guide the sample points toward the target, reducing
excessive exploration in irrelevant areas and significantly improving the efficiency and
convergence speed of path planning.

The dynamic goal biasing formula can generally be adjusted based on the distance
and iteration count, as shown in Equation (9):

Pgoal = Pinitial · e−α1·d · e−β1·k (9)

where

- Pgoal: The probability of sampling directly towards the goal in the current iteration.
- Pinitial: The initial goal sampling probability, set as a constant.
- α1: The coefficient controlling the decrease in goal sampling probability based on the

distance d.

Drones 2024, 8, 760 15 of 26

- β1: The coefficient controlling the decrease in goal sampling probability based on the
iteration count k.

- d: The Euclidean distance between the current sample point and the goal point.
- k: The current iteration count.

As the node xnew gets closer to the goal, the distance d decreases, making e−α1·d

approach 1, thereby increasing the probability of sampling towards the goal. With an
increasing iteration count k, the term e−β1·k gradually decreases, reducing the goal sam-
pling probability and adding more randomness to the sampling process, helping to avoid
local minima.

Algorithm 6: Improved Dynamic Goal Bias
Input : xcurrent, xgoal, Pinitial, α1, β1, MaxIter
Output : Adjusted target sampling probability Pgoal

1 Initialize Goal Bias Parameters:;
2 Pgoal ← Pinitial // Initial target sampling probability
3 for iter← 1 to MaxIter do
4 d← Distance(xcurrent, xgoal) // Calculate distance to the goal
5 Pgoal ← Pinitial × exp(−α1 × d)× exp(−β1 × iter) // Adjust sampling

probability
6 if rand() < Pgoal then
7 xrand ← xgoal // Bias towards the goal point

8 else
9 xrand ← Sample(X) // Sample a random point in space

3.3. Dynamic Step Size

In classical RRT and RRT* algorithms, the step size is usually fixed. However, a fixed
step size has significant limitations in path planning, especially in complex environments.
Specifically, a fixed step size lacks flexibility and is difficult to adapt to environmental
changes. In open areas, a smaller step size results in lower exploration efficiency; in
cluttered environments, a larger step size may cause insufficient path resolution, making
it difficult to avoid obstacles and leading to issues such as unsmooth paths and excessive
resource consumption.

Therefore, in dynamic or cluttered environments, using a fixed step size compromises
both efficiency and precision, making it unsuitable for optimized path planning. To address
this issue, the traditional fixed step size is replaced with a dynamic step size, as shown in
the pseudocode. The pseudocode for this approach is shown in Algorithm 7. In the design
of the dynamic step size, an attenuation factor is introduced, which allows the step size to
adapt to changes in the environment. When the obstacle density increases, the step size
automatically decreases to ensure better precision; when the environment is open, the step
size increases to accelerate exploration and improve path planning efficiency.

This adaptive mechanism enables the algorithm to balance exploration efficiency and
path precision in different environments, improving the overall quality of path planning.
The formula for the dynamic step size is given in Equation (10):

StepSize = StepSizemax · e
−λ·Nobs (10)

where

- StepSizemax: The maximum step size.
- λ: The attenuation factor.
- Nobs: The current number of nearby obstacles.

Drones 2024, 8, 760 16 of 26

Algorithm 7: Dynamic Step Size
Input : ∆smax, λ, xcurrent, xgoal, Xobs
Output : xnew

1 // Calculate the number of obstacles near the current position
2 Nobs ← CalculateNearbyObstacles(xcurrent,Xobs);
3 // Adjust the step size dynamically based on the number of nearby

obstacles
4 ∆s← ∆smax × exp(−λ× Nobs);
5 // Move towards the new position
6 xnew ← MoveTowards(xcurrent, xgoal, ∆s);
7 return xnew;

3.4. Target Switching Strategy

In the traditional Bi-RRT* algorithm, the use of a fixed target point for guidance
often leads to local optima in complex obstacle environments. This issue is particularly
prominent in densely cluttered regions, where the tree expansion can be hindered, resulting
in slower exploration and reduced path planning efficiency. To address this problem, a
target switching strategy is introduced in this paper.

The core idea of this strategy is to randomly switch the target point with a certain
probability Pswitch during each iteration, by introducing a temporary random target point.
The pseudocode for this approach is shown in Algorithm 8. By randomly switching
the target point, the algorithm avoids repeatedly expanding near a single target point,
thus increasing exploration diversity and preventing the algorithm from getting stuck
in local optima or infinite loops. While the introduction of a temporary target point
adds randomness to the search process, the algorithm still maintains a global guidance
toward the final goal, ensuring that the search process ultimately converges towards the
endpoint. In summary, the target switching strategy not only improves the efficiency of
path planning but also enhances the algorithm’s ability to escape local regions and find the
global optimal path.

Algorithm 8: Dynamic Target Switching
Input : Pswitch, xgoal, X (Space)
Output : xtarget

1 if rand() < Pswitch then
2 xtarget ← SelectRandomTarget(X) // Randomly select a new target

point

3 else
4 xtarget ← xgoal // Keep the original goal point

5 return xtarget;

3.5. Different Region Sampling Probability Strategy

In the traditional Bi-RRT* algorithm, the sample points are distributed randomly,
which often results in many samples being spread around the start point and the line
connecting the start and end points, far from the ideal path. This issue is especially
prevalent in complex environments, where the randomly distributed samples tend to
concentrate in areas that do not require exploration. This leads to a large number of
ineffective samples, increasing the computational overhead and reducing the efficiency
of path planning. To address this issue, this paper introduces a region-based adaptive
sampling probability strategy inspired by Thompson sampling. Specifically, the sampling
probability is adjusted based on the Euclidean distance between the current sample and

Drones 2024, 8, 760 17 of 26

the line connecting the start and end points. The sampling probability Psample is higher for
samples that are closer to this line, as shown in Equation (11):

Psample = e−
d2

line
2σ2 (11)

where:

- dline: The distance between the sample point and the line connecting the start and goal
points. The smaller dline, the higher the probability Psample.

- σ: The standard deviation controlling the spread of the sampling distribution.

With this strategy, the samples are concentrated near potential path regions, avoiding
excessive exploration in irrelevant areas and thus significantly improving the efficiency of
the path planning algorithm. The pseudocode for this approach is shown in Algorithm 9.

Algorithm 9: Region-Based Sampling Probability
Input : xinit, xgoal, X (Space), σ
Output : Sampled point xsample

1 function RegionBasedSampling(xinit, xgoal,X , σ);
2 while True do
3 // Randomly sample a point in the search space
4 xrand ← Sample(X);
5 // Calculate the distance from the sample point to the line

connecting start and goal
6 dline ← DistanceToLine(xrand, xinit, xgoal);
7 // Calculate the sampling probability Psample based on Gaussian

distribution

8 Psample ← exp
(
− d2

line
2×σ2

)
;

9 // Select the current sample point with probability Psample
10 if rand() < Psample then
11 return xrand;

12 function DistanceToLine(x, xstart, xend);
13 // Calculate the shortest distance from a point to a line segment

using projection
14 vline ← xend − xstart;
15 vpoint ← x− xstart;

16 proj← dot(vpoint,vline)

dot(vline,vline)
;

17 proj← max(0, min(1, proj)) // Clamp within [0, 1] range
18 xclosest ← xstart + proj× vline;
19 return Distance(x, xclosest);

3.6. The Structure of the Improved Bi-APF-RRT* Algorithm

As shown in Figure 3, the improved Bi-APF-RRT* algorithm begins by initializing
two trees and setting parameters before entering the main loop. In each iteration, a
random temporary target point is introduced with a certain probability using the target
switching strategy, and the sampling point is adjusted through dynamic goal biasing.
Subsequently, regional probability sampling and the Artificial Potential Field (APF) are
applied to optimize the sampling point, producing an adjusted sampling point for further
expansion. During the expansion phase, a dynamic step size strategy is employed to adjust
the expansion range based on environmental complexity, enabling bidirectional tree growth.
If the expansion path is collision-free, the new node is added to the tree, and the algorithm

Drones 2024, 8, 760 18 of 26

checks whether the two trees are successfully connected. If the connection is successful, the
path is output; otherwise, the iterations continue until the termination condition is met or
the optimal path is found.

Figure 3. Flowchart of the Improved Bi-APF-RRT* Algorithm.

Drones 2024, 8, 760 19 of 26

4. Experimental
4.1. Experimental Setup

To evaluate the performance of our improved algorithm in 3D path planning, all
simulation experiments were conducted using MATLAB on a computer equipped with
a single Nvidia GeForce RTX 4090 GPU (24GB VRAM), an Intel Core i9-14900K 24-core
processor, and 64GB of RAM.

4.2. Simulation Comparison Experiments
4.2.1. Algorithm Comparison Experiments

When selecting algorithms for comparative experiments, RRT* and its variants were
chosen due to their wide application and representativeness in the field of path planning.
These algorithms are effective in addressing path planning problems in high-dimensional,
dynamic, or partially known environments. Moreover, they improve computational ef-
ficiency and path quality through intelligent sampling and path optimization, making
them suitable for meaningful comparisons with the proposed Bi-APF-RRT* algorithm.
Additionally, while the RRT* series algorithms excel in global path optimization, they are
prone to getting trapped in local minima in complex obstacle environments. Therefore,
choosing these algorithms helps evaluate the advantages of Bi-APF-RRT* in avoiding local
minima, enhancing path smoothness, and improving obstacle avoidance capabilities. Fi-
nally, considering that RRT* and its variants are primarily focused on 2D environments,
this paper conducts experiments in 3D environments to further highlight the strengths
of the Bi-APF-RRT* algorithm, particularly its adaptability and real-time performance in
complex dynamic environments.

To eliminate the impact of random factors, we conducted six sets of experiments to
compare the performance of the improved Bi-APF-RRT algorithm against the baseline
algorithms RRT, Bi-RRT*, and Informed-RRT*. The performance metrics include: **Time**
(runtime), **Path Length**, **Nodes** (number of generated nodes), **Path Angle** (average
turning angle of the path), and **Success Rate** (the success rate of reaching the goal within
the set maximum iterations). To ensure consistent experimental results, we standardized
the following variable settings: the maximum iteration limit (MaxIter) was set to 1000, the
start point was (50, 50, 5), and the goal point was (450, 450, 10). Additionally, the maximum
step size and the average fixed step size of the baseline algorithms were set to 10, and the
search radius was set to half of this value. Under these conditions, the experimental setup
can reliably estimate the computational performance of the algorithms while minimizing
the impact of abnormal variables.

As shown in Figures 4 and 5, the visualized results of one of the experiment groups
clearly indicate that, compared with Informed-RRT* and Bi-RRT*, the improved Bi-APF-
RRT algorithm generates fewer samples while maintaining a comparable search space,
similar to the baseline algorithms. However, unlike RRT*, the improved Bi-APF-RRT
algorithm’s samples tend to concentrate more along the path direction towards the goal
point. This directional bias reduces the number of nodes required for searching and
improves the efficiency of path expansion. The results show that the improved Bi-APF-RRT
and RRT* algorithms yield shorter path lengths compared to Informed-RRT* and Bi-RRT*.
Additionally, it can be observed that, when navigating through cluttered environments,
the improved Bi-APF-RRT algorithm’s paths are smoother and avoid areas with dense
obstacles. This is attributed to the dynamic response system introduced by the improved
APF method, which allows the Bi-APF-RRT algorithm to effectively adapt to complex
environments, ultimately producing safer and smoother paths.

Drones 2024, 8, 760 20 of 26

Figure 4. Comparison of Different RRT Variants for Path Planning. Figure (a) shows the visualization
result of Informed-RRT*, Figure (b) shows the visualization result of Bi-RRT*, Figure (c) shows the
visualization result of RRT*, and Figure (d) shows the visualization result of Improved Bi-APF-RRT*.
In Figures (a–c), yellow nodes represent tree nodes and red represents the final path. In Figure (d),
red nodes represent tree nodes and green represents the final path.

Figures 6 and 7 present detailed experimental data for each group, reflecting the
average performance of various path planning algorithms during the experiments. From
the data in these figures, it can be observed that the improved Bi-APF-RRT* algorithm
clearly outperforms Informed-RRT*, Bi-RRT*, and RRT* in terms of path generation time,
achieving an average planning time of 2.41 s, which is 92.3% faster than Informed-RRT*
(31.19 s), 51.5% faster than Bi-RRT* (4.97 s), and 59.6% faster than RRT* (5.97 s), indicating
a significant improvement in algorithm efficiency. At the same time, the average path
length generated by Bi-APF-RRT* is 549.21, which is 26.3% shorter than Bi-RRT* (745.56)
and 20.6% shorter than RRT* (691.56). While the path length is slightly shorter than
Informed-RRT* (604.44), the latter suffers from a much higher computational cost and
lower efficiency. Specifically, Informed-RRT* requires 1962 nodes on average to complete
the search, compared to only 206.5 nodes for Bi-APF-RRT*, representing an 89.5% reduction
in nodes, which further highlights the computational efficiency of the proposed algorithm.
Moreover, the average path angle of Bi-APF-RRT* is 29.53 degrees, indicating smoother
paths compared to Informed-RRT* (39.32 degrees), Bi-RRT* (35.19 degrees), and RRT*
(33.28 degrees). Additionally, Bi-APF-RRT* achieves a 100% success rate, outperforming
Informed-RRT* (92%), Bi-RRT* (96%), and RRT* (95%), demonstrating its robustness and
reliability. Overall, while Informed-RRT* generates slightly shorter paths due to its larger
sampling space, its much higher computational cost (31.19 s on average) and inefficiency
make it unsuitable for real-time planning scenarios such as UAV applications, where fast
and efficient path planning is critical.

Drones 2024, 8, 760 21 of 26

Figure 5. Three-Dimensional Terrain Path Planning Comparison of RRT Variants. Figure (a) shows
the visualization result of Informed-RRT*, Figure (b) shows the visualization result of Bi-RRT*, Figure
(c) shows the visualization result of RRT*, and Figure (d) shows the visualization result of Improved
Bi-APF-RRT*. In Figures (a–c), yellow nodes represent tree nodes and red represents the final path.
In Figure (d), red nodes represent tree nodes and green represents the final path.

Additionally, the improved Bi-APF-RRT* algorithm incorporates a new force parame-
ter setting. In environments with dense obstacles, the algorithm actively avoids obstacles
by maintaining a safe distance from them, rather than purely pursuing the shortest path.
This approach enhances the safety and robustness of the planned paths. Meanwhile, with
the dynamic adjustments of the step size, dynamic goal biasing, and region-based sampling
probability strategy, the improved Bi-APF-RRT* algorithm shows a significant reduction
in the number of sample nodes and the path angle metric compared to Informed-RRT*,
Bi-RRT*, and RRT*, indicating further optimization in path smoothness and efficiency. In
summary, the experimental results provide strong evidence that the improved Bi-APF-RRT*
algorithm demonstrates significant advantages in search efficiency and path planning
capability, especially in complex 3D environments, where it exhibits strong adaptability
and robustness.

4.2.2. Parameter Comparison Experiments

To thoroughly evaluate the optimization performance of the improved Bi-APF-RRT*
algorithm and identify the optimal parameter combinations, we conducted a single-factor
experimental analysis of the key parameters. Table 1 presents the detailed experimental
data. In the experiments, we observed that the force parameters and the dynamic step size

Drones 2024, 8, 760 22 of 26

adjustment of the Bi-APF-RRT* algorithm had a significant impact on performance. There-
fore, we focused on comparing different combinations of force parameters and dynamic
step sizes.

Table 1. Comparison of Experimental Results with Different Step Size and Force Parameters.

StepSizemax α β Time (s) Path Length Nodes in Tree Avg Path Angle

10 0.1 0.1 2.95 630.77 278 24.98
10 0.3 0.3 2.73 627.55 239 25.57
10 0.5 0.5 2.16 584.47 217 28.59
10 0.7 0.7 3.49 672.48 281 29.00
10 0.9 0.9 3.18 697.92 379 33.87
15 0.1 0.1 2.86 587.25 141 29.81
15 0.3 0.3 2.07 517.24 120 31.87
15 0.5 0.5 3.79 606.79 151 38.83
15 0.7 0.7 4.85 674.72 216 40.15
15 0.9 0.9 3.89 678.73 259 37.34
20 0.1 0.1 2.71 581.49 135 34.01
20 0.3 0.3 3.77 609.82 210 40.91
20 0.5 0.5 4.20 673.37 238 42.92
20 0.7 0.7 4.63 632.60 248 47.94
20 0.9 0.9 4.96 631.95 270 48.59

Figure 6. Evaluation of Informed-RRT, Bi-RRT, RRT*, and Improved Bi-APF-RRT* on Key Metrics.
Figure (a) shows the comparison of execution times between our algorithm and the comparative
algorithms. Figure (b) shows the comparison of generated path lengths between our algorithm and
the comparative algorithms. Figure (c) shows the comparison of the total number of nodes generated
during the execution process of our algorithm and the comparative algorithms. Figure (d) shows
the comparison of the average path angle during the execution process of our algorithm and the
comparative algorithms.

Drones 2024, 8, 760 23 of 26

Figure 7. Average Performance Metrics of Informed-RRT, Bi-RRT, RRT*, and Improved Bi-APF-
RRT*. Figure (a) shows the comparison of average execution times between our algorithm and the
comparative algorithms. Figure (b) shows the comparison of average path lengths generated by our
algorithm and the comparative algorithms. Figure (c) shows the comparison of the average number
of nodes generated during the execution process of our algorithm and the comparative algorithms.
Figure (d) shows the comparison of the total average path angles during the execution process of our
algorithm and the comparative algorithms. Figure (e) shows the comparison of execution success
rates between our algorithm and the comparative algorithms.

From the data in the table, it can be seen that in the 3D environment settings used in
this paper, under the same conditions, an increase in the maximum step size StepSizemax
leads to a noticeable decrease in the number of sample nodes, indicating improved search
efficiency. However, as the step size increases, the average path turning angle (average
path angle) also tends to increase, possibly due to a greater inclination towards straight-line
expansion, resulting in sharper turns. Further analysis shows that when the maximum step
size is set to 15 and the force parameters α = 0.3, β = 0.3, the algorithm achieves a balance
between fewer sample nodes, shorter path length, and a smaller average turning angle.
When the step size is set to 15, and the force parameters α = 0.3, β = 0.3, the algorithm
exhibits the best performance, with a high success rate and reduced path oscillations. On
the other hand, when the step size is increased to 20 and the force parameters are adjusted
to α = 0.1, β = 0.1, the algorithm still achieves good performance, avoiding excessive force
that could lead to path oscillations.

In summary, the best parameter combination for the improved Bi-APF-RRT* algorithm,
as verified in the 3D simulation experiments, is a maximum step size StepSizemax of 15,
and force parameters α = 0.3 and β = 0.3. This configuration enables the algorithm to
dynamically adjust both the step size and force parameters across different environments,

Drones 2024, 8, 760 24 of 26

producing smooth and optimized paths while reducing the number of sample nodes,
enhancing search efficiency, and achieving reliable path planning performance.

5. Conclusions

In this paper, we propose an improved sampling-based path planning algorithm,
Bi-APF-RRT*, which is based on the guided sampling approach of RRT*. The proposed
algorithm integrates an improved Artificial Potential Field (APF) method with a newly
introduced repulsive coefficient, while also utilizing a dynamic step size. Additionally, it
incorporates three strategies: dynamic goal biasing, target switching, and region-based
adaptive sampling probability.

In multiple sets of simulation experiments, the improved Bi-APF-RRT* algorithm
demonstrated significant performance enhancements. Experimental results show that the
proposed algorithm effectively controls the sampling space and direction during the initial
path generation phase, making the search process more efficient and stable. It avoids getting
stuck in local optima, significantly improving both the success rate and the quality of the
path planning. Moreover, the results also confirm the algorithm’s reliability in 3D path
planning scenarios. Compared with the traditional RRT* and its variants, the improved
Bi-APF-RRT* algorithm not only exhibits superior obstacle avoidance capabilities and faster
convergence in complex environments, but also generates smoother and more reasonable
paths, validating the advantages and practicality of this method in real-world applications.

Despite the outstanding performance of the improved Bi-APF-RRT* algorithm in
the 3D path planning simulations for UAVs, there is still room for further improvements.
Specifically, the generated paths are often discrete after the planning phase, which may
lead to instability or increased energy consumption if directly applied to UAV flights.
Therefore, future research will focus on how to further smooth the planned paths to better
align with the motion characteristics and flight requirements of UAVs. This would not
only enhance the flight efficiency but also improve the feasibility and safety of the paths,
especially in complex and dynamic environments. Moreover, incorporating path smoothing
techniques such as Bézier curves, spline interpolation, or optimal control methods could
further enhance the application performance of the improved Bi-APF-RRT* algorithm.

Author Contributions: Conceptualization, Y.H.; methodology, Y.H.; software, Y.H.; investigation,
Y.H.; writing—original draft preparation, Y.H.; data curation, H.L.; validation, H.L.; formal analysis,
Y.D.; resources, Y.D.; writing—review and editing, G.L.; visualization, G.L.; supervision, M.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original data presented in the study are included in the article.
Any further inquiries can be directed to the corresponding author.

Conflicts of Interest: Author Minglei Duan was employed by the company Yunnan Communications
Investment & Construction Group Co., Ltd. The remaining authors declare that the research was
conducted in the absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

References
1. Yang, J.; Guo, Z.; Liu, J.; Liu, S. Research on APF-Bi-RRT Algorithm of Adaptive Step Strategy for Robot Path Planning. Arab. J.

Sci. Eng. 2024, 1–14. [CrossRef]
2. Xu, X.; Zhang, F.; Zhao, Y. Unmanned Aerial Vehicle Path-Planning Method Based on Improved P-RRT* Algorithm. Electronics

2023, 12, 4576. [CrossRef]
3. Fan, J.; Chen, X.; Liang, X. UAV trajectory planning based on bi-directional APF-RRT* algorithm with goal-biased. Expert Syst.

Appl. 2023, 213, 119137. [CrossRef]
4. Zhao, W.; Tan, A.; Ren, C. An Innovative Path Planning Algorithm for Complex Obstacle Environments with Adaptive Obstacle

Density Adjustment: AODA-PF-RRT*. Electronics 2024, 13, 4047. [CrossRef]
5. Tian, Z.; Li, L.; Wang, Y.; Wang, X.; Zan, P. An Environment Adaptation Algorithm Based on RRT for Manipulator Path Planning.

In Proceedings of the 2023 42nd Chinese Control Conference (CCC), Tianjin, China, 24–26 July 2023 ; pp. 2821–2825. [CrossRef]

http://doi.org/10.1007/s13369-024-09642-x
http://dx.doi.org/10.3390/electronics12224576
http://dx.doi.org/10.1016/j.eswa.2022.119137
http://dx.doi.org/10.3390/electronics13204047
http://dx.doi.org/10.23919/CCC58697.2023.10240745

Drones 2024, 8, 760 25 of 26

6. Chen, J.; Jiang, Y.; Pan, H.; Yang, M. Path Planning in Complex Environments Using Attention-Based Deep Deterministic Policy
Gradient. Electronics 2024, 13, 3746. [CrossRef]

7. Dai, J.; Li, D.; Zhao, J.; Li, Y. Autonomous Navigation of Robots Based on the Improved Informed-RRT* Algorithm and DWA. J.
Robot. 2022, 2022, 3477265. [CrossRef]

8. Liu, T. D.; Chen, X.; He, M.; Fu, X.P.; Wu, X.M.; Shao, G.F. Improved Artificial Potential Field based Parallel RRT Star for Fast Path
Planning. In Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22–24 October 2021; pp. 5801–5806.
[CrossRef]

9. Jones, M.; Djahel, S.; Welsh, K. Path-Planning for Unmanned Aerial Vehicles with Environment Complexity Considerations: A
Survey. ACM Comput. Surv. 2023, 55, 1–39. [CrossRef]

10. Zhou, Y.; Zhang, E.; Guo, Y.; Li, H. Lifting Path Planning of Mobile Cranes Based on an Improved RRT Algorithm. Adv. Eng.
Informatics 2021, 50, 101376. [CrossRef]

11. Xu, J.; Song, K.; Dong, H.; Yan, Y. A Batch Informed Sampling-Based Algorithm for Fast Anytime Asymptotically-Optimal Motion
Planning in Cluttered Environments. Expert Syst. Appl. 2020, 144, 113124. [CrossRef]

12. Yafei, L.; Anping, W.; Qingyang, C.; Yujie, W. An Improved UAV Path Planning Method Based on RRT-APF Hybrid Strategy. In
Proceedings of the 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian, China,
19–20 September 2020; pp. 81–86.

13. Liao, B.; Wan, F.; Hua, R.; Zhu, S.; Qing, X. F-RRT*: An Improved Path Planning Algorithm with Improved Initial Solution and
Convergence Rate. Expert Syst. Appl. 2021, 184, 115457. [CrossRef]

14. Li, Y.; Wei, W.; Gao, Y.; Wang, D.; Fan, Z. PQ-RRT*: An Improved Path Planning Algorithm for Mobile Robots. Expert Syst. Appl.
2020, 152, 113425. [CrossRef]

15. Liu, Y.; Qi, J.; Wang, M.; Wu, C.; Sun, H. Path Planning for Large-Scale UAV Formation Based on Improved SA-APF Algorithm.
In Proceedings of the 2022 41st Chinese Control Conference (CCC), Hefei, China, 25–27 July 2022; pp. 4472–4478.

16. Huang, T.; Huang, D.; Qin, N.; Li, Y. Path Planning and Control of a Quadrotor UAV Based on an Improved APF Using Parallel
Search. Int. J. Aerosp. Eng. 2021, 2021, 5524841. [CrossRef]

17. Armstrong, D.; Jonasson, A. AM-RRT*: Informed Sampling-Based Planning with Assisting Metric. In Proceedings of the 2021
IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 10093–10099.

18. Wang, K.; Xu, J.; Song, K.; Yan, Y.; Peng, Y. Informed Anytime Bi-Directional Fast Marching Tree for Optimal Motion Planning in
Complex Cluttered Environments. Expert Syst. Appl. 2023, 215, 119263. [CrossRef]

19. Wang, J.; Chi, W.; Shao, M.; Meng, M.Q.-H. Finding a High-Quality Initial Solution for the RRT Algorithms in 2D Environments.
Robotica 2019, 37, 1677–1694. [CrossRef]

20. Li, Y.; Xu, Y.; Xue, X.; Liu, X.; Liu, X. Optimal Spraying Task Assignment Problem in Crop Protection with Multi-UAV Systems
and Its Order Irrelevant Enumeration Solution. Biosyst. Eng. 2022, 214, 177–192. [CrossRef]

21. Zhou, Q.; Liu, G. UAV Path Planning Based on the Combination of A-Star Algorithm and RRT-Star Algorithm. In Proceedings of
the 2022 IEEE International Conference on Unmanned Systems (ICUS), Guangzhou, China, 28–30 October 2022; pp. 146–151.

22. Pu, H.; Wan, X.; Song, T.; Schonfeld, P.; Peng, L. A 3D-RRT-star algorithm for optimizing constrained mountain railway alignments.
Eng. Appl. Artif. Intell. 2024, 130, 107770. [CrossRef]

23. Yin, X.; Dong, W.; Wang, X.; Yu, Y.; Yao, D. Route planning of mobile robot based on improved RRT star and TEB algorithm. Sci.
Rep. 2024, 14, 8942. [CrossRef] [PubMed]

24. Mohammed, H.; Romdhane, L.; Jaradat, M.A. RRT* N: An Efficient Approach to Path Planning in 3D for Static and Dynamic
Environments. Adv. Robot. 2021, 35, 168–180. [CrossRef]

25. Chen, Z.; Zhang, X.; Wang, L.; Xia, Y. A Fast Path Planning Method Based on RRT Star Algorithm. In Proceedings of the 2023 3rd
International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 6–8 January 2023;
pp. 258–262.

26. Wang, W.; Gao, H.; Yi, Q.; Zheng, K.; Gu, T. An Improved RRT* Path Planning Algorithm for Service Robot. In Proceedings of the
2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China,
12–14 June 2020; Volume 1, pp. 1824–1828.

27. Wang, W.; Gao, H.; Yi, Q.; Zheng, K.; Gu, T. UAV Path Planning Using Optimization Approaches: A Survey. Arch. Comput.
Methods Eng. 2022, 29, 4233–4284.

28. Ahmad, A.; Qadeer, K.; Naquash, A.; Riaz, F.; Hasan, M.; Qyyum, M.A.; Lee, M. Particle Swarm-Assisted Artificial Neural
Networks for Making Liquefied Natural Gas Processes Feasible Under Varying Feed Conditions. Front. Energy Res. 2022, 10,
917656. [CrossRef]

29. Liu, P.; Zhang, B. An Autonomous Quadrotor Exploration Combining Frontier and Sampling for Environments with Narrow
Entrances. In Proceedings of the 2022 41st Chinese Control Conference (CCC), Hefei, China, 25–27 July 2022; pp. 3656–3661.

30. Fan, J.; Chen, X.; Wang, Y.; Chen, X. UAV Trajectory Planning in Cluttered Environments Based on PF-RRT* Algorithm with
Goal-Biased Strategy. Eng. Appl. Artif. Intell. 2022, 114, 105182. [CrossRef]

31. Alzahrani, B.; Oubbati, O.S.; Barnawi, A.; Atiquzzaman, M.; Alghazzawi, D. UAV Assistance Paradigm: State-of-the-Art in
Applications and Challenges. J. Netw. Comput. Appl. 2020, 149, 102706. [CrossRef]

32. Aggarwal, S.; Kumar, N. Path Planning Techniques for Unmanned Aerial Vehicles: A Review, Solutions, and Challenges. Comput.
Commun. 2020, 149, 270–299. [CrossRef]

http://dx.doi.org/10.3390/electronics13183746
http://dx.doi.org/10.1155/2022/3477265
http://dx.doi.org/10.1109/CAC53003.2021.9728386
http://dx.doi.org/10.1145/3570723
http://dx.doi.org/10.1016/j.aei.2021.101376
http://dx.doi.org/10.1016/j.eswa.2019.113124
http://dx.doi.org/10.1016/j.eswa.2021.115457
http://dx.doi.org/10.1016/j.eswa.2020.113425
http://dx.doi.org/10.1155/2021/5524841
http://dx.doi.org/10.1016/j.eswa.2022.119263
http://dx.doi.org/10.1017/S0263574719000195
http://dx.doi.org/10.1016/j.biosystemseng.2021.12.018
http://dx.doi.org/10.1016/j.engappai.2023.107770
http://dx.doi.org/10.1038/s41598-024-59413-9
http://www.ncbi.nlm.nih.gov/pubmed/38637556
http://dx.doi.org/10.1080/01691864.2020.1850349
http://dx.doi.org/10.3389/fenrg.2022.917656
http://dx.doi.org/10.1016/j.engappai.2022.105182
http://dx.doi.org/10.1016/j.jnca.2020.102706
http://dx.doi.org/10.1016/j.comcom.2019.10.014

Drones 2024, 8, 760 26 of 26

33. Puente-Castro, A.; Rivero, D.; Pazos, A.; Fern, ez-Blanco, E. A Review of Artificial Intelligence Applied to Path Planning in UAV
Swarms. Neural Comput. Appl. 2022, 34, 153–170. [CrossRef]

34. Zhang, Z.W.; Jia, Y.W.; Su, Q.Q.; Chen, X.T.; Fu, B.P. ATS-RRT*: An improved RRT* algorithm based on alternative paths and
triangular area sampling. Adv. Robot. 2023, 37, 605–620. [CrossRef]

35. Liang, Y.; Zhao, H. CCPF-RRT*: An improved path planning algorithm with consideration of congestion. Expert Syst. Appl. 2023,
228, 120403. [CrossRef]

36. Wang, D.; Zheng, S.; Ren, Y.; Du, D. Path Planning Based on the Improved RRT* Algorithm for the Mining Truck. Comput. Mater.
Contin. 2022, 71. [CrossRef]

37. Xue, W.; Wang, B.; Huang, X.; Yang, B.; Wen, Z.; Zhang, H.; Li, S. Spacecraft attitude maneuver planning with multi–sensor
pointing constraints using improved RRT–star algorithm. Adv. Space Res. 2023, 72, 1485–1495. [CrossRef]

38. Wang, H.; Li, G.; Hou, J.; Chen, L.; Hu, N. A path planning method for underground intelligent vehicles based on an improved
RRT* algorithm. Electronics 2022, 11, 294. [CrossRef]

39. Ding, J.; Zhou, Y.; Huang, X.; Song, K.; Lu, S.; Wang, L. An improved RRT* algorithm for robot path planning based on path
expansion heuristic sampling. J. Comput. Sci. 2023, 67, 101937. [CrossRef]

40. Wu, D.; Wei, L.; Wang, G.; Tian, L.; Dai, G. APF-IRRT*: An improved informed rapidly-exploring random trees-star algorithm by
introducing artificial potential field method for mobile robot path planning. Appl. Sci. 2022, 12, 10905. [CrossRef]

41. Guo, J.; Xia, W.; Hu, X.; Ma, H. Feedback RRT* algorithm for UAV path planning in a hostile environment. Comput. Ind. Eng.
2022, 174, 108771. [CrossRef]

42. Suwoyo, H.; Adriansyah, A.; Andika, J.; Ubaidillah, A.; Zakaria, M.F. An Integrated RRT* SMART-A* Algorithm for solving the
Global Path Planning Problem in a Static Environment. IIUM Eng. J. 2023, 24, 269–284. [CrossRef]

43. Zhang, J.; Li, X.; Liu, X.; Li, N.; Yang, K.; Zhu, H. Navigation Method Based on Improved Rapid Exploration Random Tree
Star-Smart (RRT*-Smart) and Deep Reinforcement Learning. J. Donghua Univ. (Engl. Ed.) 2022, 39 . [CrossRef]

44. Cao, Y.; Cheng, X.; Mu, J. Concentrated Coverage Path Planning Algorithm of UAV Formation for Aerial Photography. IEEE Sens.
J. 2022, 22, 11098–11111. [CrossRef]

45. Zhang, W.; Li, J.; Yu, W.; Ding, P.; Wang, J.; Zhang, X. Algorithm for UAV Path Planning in High Obstacle Density Environments:
RFA-Star. Front. Plant Sci. 2024, 15, 1391628. [CrossRef] [PubMed]

46. Wang, L.; Zhang, X.; Zheng, H.; Wang, C.; Gao, Q.; Zhang, T.; Li, Z.; Shao, J. A Butterfly Algorithm That Combines Chaos
Mapping and Fused Particle Swarm Optimization for UAV Path Planning. Drones 2024, 8, 576. [CrossRef]

47. Wu, T.; Zhang, Z.; Jing, F.; Gao, M. A Dynamic Path Planning Method for UAVs Based on Improved Informed-RRT* Fused
Dynamic Windows. Drones 2024, 8, 539. [CrossRef]

48. Abhishek, B.; Ranjit, S.; Shankar, T.; Eappen, G.; Sivasankar, P.; Rajesh, A. Hybrid PSO-HSA and PSO-GA Algorithm for 3D Path
Planning in Autonomous UAVs. Soc. Netw. Appl. Sci. 2020, 2, 1805. [CrossRef]

49. Liu, J.; Yan, Y.; Yang, Y.; Li, J. An Improved Artificial Potential Field UAV Path Planning Algorithm Guided by RRT Under
Environment-Aware Modeling: Theory and Simulation. IEEE Access 2024, 12, 12080–12097. [CrossRef]

50. Huang, C.; Tang, B.; Guo, Z.; Su, Q.; Gai, J. Agile-RRT*: A Faster and More Robust Path Planner with Enhanced Initial Solution
and Convergence Rate in Complex Environments. IEEE Access 2024, 12, 58703–58714. [CrossRef]

51. Yang, F.; Fang, X.; Gao, F.; Zhou, X.; Li, H.; Jin, H.; Song, Y. Obstacle avoidance path planning for UAV based on improved RRT
algorithm. Discret. Dyn. Nat. Soc. 2022, 2022, 4544499. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00521-021-06569-4
http://dx.doi.org/10.1080/01691864.2023.2174817
http://dx.doi.org/10.1016/j.eswa.2023.120403
http://dx.doi.org/10.32604/cmc.2022.022183
http://dx.doi.org/10.1016/j.asr.2023.04.024
http://dx.doi.org/10.3390/electronics11030294
http://dx.doi.org/10.1016/j.jocs.2022.101937
http://dx.doi.org/10.3390/app122110905
http://dx.doi.org/10.1016/j.cie.2022.108771
http://dx.doi.org/10.31436/iiumej.v24i1.2529
http://dx.doi.org/10.19884/j.1672-5220.202202458
http://dx.doi.org/10.1109/JSEN.2022.3168840
http://dx.doi.org/10.3389/fpls.2024.1391628
http://www.ncbi.nlm.nih.gov/pubmed/39483676
http://dx.doi.org/10.3390/drones8100576
http://dx.doi.org/10.3390/drones8100539
http://dx.doi.org/10.1007/s42452-020-03498-0
http://dx.doi.org/10.1109/ACCESS.2024.3355275
http://dx.doi.org/10.1109/ACCESS.2024.3392926
http://dx.doi.org/10.1155/2022/4544499

	Introduction
	Related Work
	RRT*
	Bi-RRT*
	APF-RRT*
	Informed-RRT*
	Three-Dimensional Environment Setup

	Research Methods
	Improved Artificial Potential Field (APF)
	Introduction of Dynamic Goal Biasing
	Dynamic Step Size
	Target Switching Strategy
	Different Region Sampling Probability Strategy
	The Structure of the Improved Bi-APF-RRT* Algorithm

	Experimental
	Experimental Setup
	Simulation Comparison Experiments
	Algorithm Comparison Experiments
	Parameter Comparison Experiments

	Conclusions
	References

