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Abstract: Infrared thermal imaging is useful for human body recognition for search and rescue (SAR)
missions. This paper discusses thermal object tracking for SAR missions with a drone. The entire
process consists of object detection and multiple-target tracking. The You-Only-Look-Once (YOLO)
detection model is utilized to detect people in thermal videos. Multiple-target tracking is performed
via track initialization, maintenance, and termination. Position measurements in two consecutive
frames initialize the track. Tracks are maintained using a Kalman filter. A bounding box gating
rule is proposed for the measurement-to-track association. This proposed rule is combined with the
statistically nearest neighbor association rule to assign measurements to tracks. The track-to-track
association selects the fittest track for a track and fuses them. In the experiments, three videos of
three hikers simulating being lost in the mountains were captured using a thermal imaging camera
on a drone. Capturing was assumed under difficult conditions; the objects are close or occluded, and
the drone flies arbitrarily in horizontal and vertical directions. Robust tracking results were obtained
in terms of average total track life and average track purity, whereas the average mean track life was
shortened in harsh searching environments.

Keywords: search and rescue missions; thermal image; object detection; target tracking; bounding
box gating

1. Introduction

Multirotor drones are widely applied in a variety of fields [1]. The ability to hover
and maneuver by the operator or as programmed makes them valuable tools in numerous
industries. By capturing images from various angles and heights, drones can obtain cost-
effective aerial views covering arbitrary areas.

Thermal imaging cameras detect infrared radiation emitted by objects [2,3]. This
radiation is invisible to the human eye, but thermal imaging cameras convert it into a
visible image. Thermal imaging requires no illumination or ambient light, penetrating
obstacles including smoke, dust, haze, and light foliage. However, the resolution of the
thermal image is low, and no texture or color information is provided.

Drones equipped with thermal imaging cameras are highly effective in locating miss-
ing people for search and rescue (SAR) missions and surveillance [4–6]. The technology has
been also applied to wildlife monitoring and agricultural and industrial inspection [7,8].
People detection with thermal images captured by drones has been studied in [9–15]. Per-
sons and animals were detected using the YOLO detection model [9]. Persons and cars
were detected from different observation angles of the drone using the YOLO detection
model [10]. The YOLO detection model was adopted to build a human detection system
using drones [11]. The spatial gray level co-occurrence matrix estimates temperature differ-
ences [12]. In [13], a person is recognized with a two-stage hot-spot detection approach.
People and fire detection were studied with high-altitude thermal images obtained by
optical and thermal sensors [14]. However, the tracking of people in thermal scenes using
drones has been seldom researched [15]. In [15], people tracking with a thermal imaging
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camera mounted on a small drone was performed for the first time. However, object detec-
tion was performed using the k-means algorithm, which resulted in degraded performance
in complex backgrounds.

Tracking of non-living objects using thermal imaging by fixed-wing drones was stud-
ied in [16,17]. The Kalman filter was adopted to track a boat [16], and a colored-noise
measurement model was utilized to track a small vessel [17]. Tracking of people and ani-
mals using fixed thermal imaging cameras has been studied in [18–24]. Foreground objects
were extracted by contour-based background subtraction [18]. The pedestrian detection
was performed by local adaptive thresholding [19]. People in the aerial thermal view were
detected and tracked with a particle filter [20]. The weighted correlation filter tracked the
various targets in the thermal image database [21]. An effective feature representation was
introduced based on correlation energy in [22]. An adaptively multi-feature fusion model
was proposed to integrate hand-crafted features and a convolutional neural network for
thermal object tracking [23]. The Kalman filter was used to detect sports players in thermal
videos for real-time tracking [24]. However, the tracking conditions were limited to fixed
cameras, and a plain background. In [25], a tracking-by-detection approach was studied in
the thermal spectrum. A convolutional neural network, pre-trained with visible images,
was transferred to the thermal tracking [26].

A multiple-target tracking system consists of a sensing system that observes the
movement of multiple objects in a dynamic environment and a target tracking algorithm
that simultaneously estimates the attributes (position, velocity, acceleration, etc.) of multiple
objects based on the observation. As a result, a multi-target tracking system forms a
trajectory (track) for each target; so, it is essential to establish the identity of the same
target while it is present, and this can be achieved by accurately matching the established
track with the observation. However, due to high and various maneuvering, close or
occluded objects, low object detection, or high false alarms, tracks may be missed, broken,
or overlapped on the same target.

In this paper, tracking of people in the mountains is studied using thermal imaging by
a drone. The overall process comprises two stages: object detection and multiple-target
tracking. For object detection, YOLOv5 is adopted to generate a bounding box of objects.
YOLO’s deep learning framework has garnered immense popularity for its versatility, ease
of use, and high performance [27]. The centroid of the bounding box is considered the
measured position (observation) for target tracking.

Multiple-target tracking is performed via three stages: track initialization, mainte-
nance, and termination [28–30]. The track maintenance consists of measurement-to-track
association (measurement association), track update, and track-to-track association (track
association). Figure 1 shows an entire block diagram of target tracking with infrared ther-
mal videos acquired by drones. Bold fonts inside red bold line boxes include the newly
proposed contents in this paper. A scheme of the nearest neighbor measurement association,
followed by track association, track termination, and validity testing, has been developed
in previous works showing robust performance in ground target tracking from visible
images acquired by a drone [29,30].
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Figure 1. Block diagram of thermal image target tracking.

To the best of my knowledge, ref. [15] was the first study to track people with a thermal
imaging camera mounted on a small drone. This paper has been substantially improved
from [15]. The contributions of this paper are (1) the YOLO detection mode is applied
to extract the position information of the thermal target. The YOLO detection model is
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pre-trained with visible image datasets, but it was transferred to thermal object detection
for multiple-target tracking. (2) A bounding box gating scheme is proposed for the mea-
surement association. This scheme allows track updates if the intersection over union (IoU)
between the bounding box of the current frame and the bounding box of the previous frame
is sufficiently high. The centroid of the current frame bounding box is the measurement
that is statistically nearest to the position prediction at the current frame and the centroid
of the previous frame bounding box is the measurement associated with updating the tract
at the previous frame. (3) The framework combining the measurement association and the
track association with the Kalman filter shows robust tracking performance of the mobility
of the platform in complex backgrounds. In the presented scenarios, thermal objects are
closely located and heavily occluded, and the sensing platform is allowed to move fast.

In the experiments, the drone flies at a height of 40~60 m. The video shows three
hikers simulating being lost in the mountains on a winter night with no ambient light.
The drone moves rapidly in horizontal and vertical directions, and the perspective of the
camera is arbitrary. People are often occluded by other people or trees and leaves. Figure 2
shows three sample scenes extracted from the three videos, respectively. The experimental
results show the average total track lives (TTLs) for the three videos are obtained as 0.987,
0.993, and 0.894, respectively. The corresponding average mean track lives are 0.987, 0.442,
and 0.151, respectively. The average track purities (TPs) are obtained as 1, 0.999, and 0.995,
respectively, for the three videos. The average MTL is reduced for two videos due to the
track breakage in the harsh environments.
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The rest of the paper is organized as follows: the YOLOv5 training process is explained
in Section 2. Section 3 describes each step of multiple-target tracking. The experimental
results are presented in Section 4, and conclusions follow in Section 5.

2. YOLOv5 for Thermal Videos

YOLOv5 is the 5th iteration of the YOLO object detection model [27]. It is designed to
provide high-speed, high-accuracy results in real-time. YOLOv5 has several pre-trained
models with a visible image dataset; YOLOv5x shows the best performance among them.
The output of YOLO is multiple bounding boxes surrounding the object of interest, along
with the object’s class name and confidence level.

The YOLO pre-trained models are trained with thermal images; the number of training
images is 197 and a total of 548 rectangular boxes are manually drawn in them. The training
images were obtained from a different video than the ones used for the tracking experiments.
Each rectangular box indicates the instance of a person in the scene. The rectangular boxes
were manually drawn using the graphical image annotation tool LabelImg [31]. During
training, all instances are named with only one class, ‘walking’. Three pre-trained models,
YOLOv5s, YOLOv5l, and YOLOv5x, were transferred to detect thermal objects. They were
trained with 100 epochs. No data augmentation was applied, and no background was
used for training. Figure 3 shows five sample images, each image containing three blue
rectangular boxes. Supplementary Video S1 shows a movie of all 197 images containing 548
rectangular boxes. The experimental results of detection testing will be shown in Section 4.
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Figure 3. Sample training images with thermal object instances.

3. Multiple-Target Tracking

A block diagram of multiple-target tracking is shown in Figure 4. Tracks are initialized
with two-point differencing between the measurements in consecutive frames after the
initial speed gating. Tracks are maintained by track update, measurement association,
and track association. Measurement association is necessary in multiple-target and clutter
environments. The track association aims to handle multi-sensor environments [32], but it
has been improved to fuse tracks generated with a single sensor [30]. The state of the target
is estimated using the Kalman filter. The track is terminated if no measurement is available
or track-fusion occurs. The validity of the track is tested with the track-life length after
track termination. Each step of the block diagram is described in the following subsections.
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3.1. System Modeling

For the nearly constant velocity motion, the process noise following a Gaussian distri-
bution imposes uncertainty on the kinematic state of the target. The discrete state equation
of a target is

x(k + 1) = F(∆)x(k) + q(∆)v(k), (1)

F(∆) =


1∆00
0100
001∆
0001

, q(∆) =


∆2/2 0

∆ 0
0 ∆2/2
0 ∆

, (2)

where x(k) =
[
x(k) vx(k) y(k) vy(k)]T is the state vector of a target at frame k, x(k) and

y(k) are positions in the x and y directions, respectively, vx(k) and vy(k) are velocities in the
x and y directions, respectively, T denotes the matrix transpose, ∆ is the sampling time, and
v(k) is a process noise vector, which is Gaussian white noise with the covariance matrix
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Qv = diag
([

σ2
x σ2

y

])
. The measurement equation representing the positions in the x and y

directions of the target is

z(k) =
[

zx(k)
zy(k)

]
= Hx(k) + w(k), (3)

H =

[
1000
0010

]
, (4)

where w(k) is a measurement noise vector, which is Gaussian white noise with the covari-
ance matrix R = diag

([
r2

x r2
y

])
.

3.2. Two-Point Initialization

A track is initialized by two positions in consecutive frames if those two positions are
close enough to pass the initial speed gating. The initial state and covariance of track t at
frame k are estimated as, respectively,

x̂t(k|k) =


x̂t(k|k)
v̂tx(k|k)
ŷt(k|k)
v̂ty(k|k)

 =


ztx(k)

ztx(k)−ztx(k−1)
∆

zty(k)
zty(k)−zty(k−1)

∆

, Pt(k|k) =


r2

x
r2

x
∆ 0 0

r2
x

∆
2r2

x
∆2 0 0

0 0 r2
y

r2
y

∆

0 0
r2

y
∆

2r2
y

∆2

, t = 1, . . . , N(k),

(5)
where N(k) is the number of established tracks at frame k, which increases by 1 when a
track is initialized and decreases by 1 when it terminates. The initial speed is bounded as√
[v̂tx(k|k)]2 +

[
v̂ty(k|k)

]2 ≤ Vmax, where Vmax is the maximum initial speed of the target.

3.3. Prediction and Filter Gain

The state and covariance predictions are iteratively computed as

x̂t(k|k − 1) = Fx̂t(k − 1|k − 1), (6)

Pt(k|k − 1) = FPt(k − 1|k − 1)FT + Q, (7)

Q = q(∆)Qvq(∆)T , (8)

where x̂t(k|k − 1) and Pt(k|k − 1), respectively, are the state and the covariance prediction
of track t at frame k. The residual covariance St(k) and the filter gain Wt(k), respectively,
are obtained as

St(k) = HPt(k|k − 1)HT + R, (9)

Wt(k) = Pt(k|k − 1)HTSt(k)−1. (10)

3.4. Measurement-to-Track Association with Bounding Box Gating

The measurement association assigns a suitable measurement to the established track
in the multi-target and clutter environments. The nearest-neighbor association rule se-
lects the mtk-th measurement, which has the shortest statistical distance to the position
prediction as

mtk = argmin
m =1,...,M(k)

∥∥∥νtm (k)T
[
St(k)]−1νtm(k)

∥∥∥, (11)

νtm(k) = zm(k)− Hx̂t(k|k − 1), (12)
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where zm(k) is the m-th measurement vector at frame k, and M(k) is the number of measure-
ments at frame k. The speed and measurement gating are defined as

∥zmtk (k)− [x̂t(k|k) ŷt(k|k)]T∥
∆

≤ Smax & νtmtk (k)
T [St(k)]−1νtmtk (k) ≤ γ f , (13)

where Smax is the maximum target speed, γ f is a gating size of the measurement validation
region, and ‘&’ is the AND operation. The measurement gating is the chi-square hypothesis
testing on Gaussian measurement residuals [32].

The bounding box gating is proposed as

IoU(mtk, m̂tk−1) =
|Bbox(mtk) ∩ Bbox(m̂tk−1)|
|Bbox(mtk) ∪ Bbox(m̂tk−1)|

≥ θ f , (14)

where the m̂tk−1-th measurement is already associated with track t at frame k − 1, Bbox(·)
is the set of pixels in the bounding box obtained by YOLO detection, |·| is the operator
that counts the pixels in a set, and θ f is a threshold for the bounding box gating; if the
mtk-th measurement satisfies Equation (14), that is, the IoU of two bounding boxes is equal
to or more than the threshold value, the mtk-th measurement is associated with track t
at frame k. Figure 4 illustrates the measurement gating and the bounding box gating.
In Figure 5a, mtk is located inside the validation region and is associated with track t,
whereas in Figure 5b, it is outside the validation region, but its IoU is high enough for
the measurement to be associated with track t. As a consequence, the statistically nearest
measurement is associated with a track if it passes the speed-measurement gating or the
bounding box gating. If the measurements are not associated with any target, they are used
for the track initialization at the current or previous frame.

Drones 2024, 8, x FOR PEER REVIEW 6 of 15 
 

where zm(k) is the m-th measurement vector at frame k, and M(k) is the number of meas-
urements at frame k. The speed and measurement gating are defined as ||𝒛ೖ()ି[௫ො(|)   ௬ො(|)]||௱ ≤ 𝑆௫ &  𝝂௧ೖ(𝑘)்[𝑆௧(𝑘)]ିଵ𝝂௧ೖ(𝑘) ≤ 𝛾,  (13)

where 𝑆௫ is the maximum target speed, 𝛾 is a gating size of the measurement valida-
tion region, and ′&′ is the AND operation. The measurement gating is the chi-square hy-
pothesis testing on Gaussian measurement residuals [32]. 

The bounding box gating is proposed as IoU(𝑚௧, 𝑚ෝ௧ିଵ) = |௫(ೖ) ∩ ௫(ෝ ೖషభ)||௫(ೖ) ∪ ௫(ෝ ೖషభ)|  𝜃,   (14)

where the 𝑚ෝ௧ିଵ-th measurement is already associated with track t at frame k-1, Bbox(∙) 
is the set of pixels in the bounding box obtained by YOLO detection, |∙| is the operator 
that counts the pixels in a set, and 𝜃 is a threshold for the bounding box gating; if the 𝑚௧-th measurement satisfies Equation (14), that is, the IoU of two bounding boxes is equal 
to or more than the threshold value, the 𝑚௧-th measurement is associated with track t at 
frame k. Figure 4 illustrates the measurement gating and the bounding box gating. In Fig-
ure 5a, 𝑚௧ is located inside the validation region and is associated with track t, whereas 
in Figure 5b, it is outside the validation region, but its IoU is high enough for the meas-
urement to be associated with track t. As a consequence, the statistically nearest measure-
ment is associated with a track if it passes the speed-measurement gating or the bounding 
box gating. If the measurements are not associated with any target, they are used for the 
track initialization at the current or previous frame. 

  

(a) (b) 

Figure 5. Measurement-target association, (a) measurement gating, (b) bounding box gating. 

3.5. State Estimate and Covariance Update 
The state estimate and the covariance are updated after the measurement association 

as 𝒙ෝ௧(𝑘|𝑘) = 𝒙ෝ௧(𝑘|𝑘 − 1) + 𝑊௧(𝑘)𝝂௧ෝ ೖ(𝑘), (15)𝑃௧(𝑘|𝑘) = 𝑃௧(𝑘|𝑘 − 1) − 𝑊௧(𝑘)𝑆௧(𝑘)𝑊௧(𝑘)். (16)

If there is no measurement associated, they are the same, with predictions of the state 
and covariance as 𝒙ෝ௧(𝑘|𝑘) = 𝒙ෝ௧(𝑘|𝑘 − 1), (17)𝑃௧(𝑘|𝑘) = 𝑃௧(𝑘|𝑘 − 1). (18)

Figure 5. Measurement-target association, (a) measurement gating, (b) bounding box gating.

3.5. State Estimate and Covariance Update

The state estimate and the covariance are updated after the measurement association as

x̂t(k|k) = x̂t(k|k − 1) + Wt(k)νtm̂tk (k), (15)

Pt(k|k) = Pt(k|k − 1)− Wt(k)St(k)Wt(k)T . (16)

If there is no measurement associated, they are the same, with predictions of the state
and covariance as

x̂t(k|k) = x̂t(k|k − 1), (17)

Pt(k|k) = Pt(k|k − 1). (18)
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3.6. Track-to-Track Association

A track fusion method for a multi-sensor environment has been developed to associate
redundant tracks [28]. The directional track association was proposed in [29]. The track
association procedure was improved to search the fittest track in [30]. The fittest track for
track s is

t̂ = argmin
t=1,...,N(k),s ̸=t

[x̂s(k|k)− x̂t(k|k)]T [Tst(k)]−1[x̂s(k|k)− x̂t(k|k)], (19)

Tst(k) = Ps(k|k) + Pt(k|k)− Pst(k|k)− Pts(k|k), (20)

Pst(k|k) = [I − bs(k)Ws(k)H]
[

FPst(k − 1|k − 1)FT + Q
]
[I − bt(k)Wt(k)H], (21)

where I is the identity matrix, and bs(k) and bt(k) become one when track s or t is associated
with a measurement, otherwise, they are zero [32]. The fused covariance in Equation (21) is
a linear recursion with the initial condition Pst(0|0), which is the square zero matrix. The
fittest track is also satisfied with the following track and directional gating as

[x̂s(k|k)− x̂t̂(k|k)]
T[Tst̂(k)]

−1[x̂s(k|k)− x̂t̂(k|k)] ≤ γg &

max
(

cos−1 |<d̂st̂(k|k), v̂s(k|k)>|
∥d̂st̂(k|k)∥∥v̂s(k|k)∥

, cos−1 |<d̂st̂(k|k), v̂t̂(k|k)>|
∥d̂st̂(k|k)∥∥v̂t̂(k|k)∥

)
≤ θg

(22)

d̂st̂(k|k) =
[

x̂t̂(k|k)− x̂s(k|k)
ŷt̂(k|k)− ŷs(k|k)

]
,v̂s(k|k) =

[
v̂sx(k|k)
v̂sy(k|k)

]
, (23)

where γg is a gating size of the track validation region, < · > denotes the inner product
operation, and θg is a threshold for the directional gating. The track gating is the chi-
square hypothesis testing. Tracks s and t̂ have the error dependencies on each other if they
originated from the same target [32]. The directional gating tests the maximum deviation
between the displacement vector and the velocity vector.

After the fittest track is selected, the current state of track s is replaced with a fused
estimate and covariance if |Ps(k|k)| ≤ |Pt̂(k|k)| as

x̂s(k|k) = x̂s(k|k) + [Ps(k|k)− Pst̂(k|k)][Ps(k|k) + Pt̂(k|k)− Pst̂(k|k)− Pt̂s(k|k)]
−1[x̂t̂(k|k)− x̂s(k|k)], (24)

Ps(k|k) = Ps(k|k)− [Ps(k|k)− Pst̂(k|k)][Ps(k|k) + Pt̂(k|k)− Pst̂(k|k)− Pt̂s(k|k)]
−1[Ps(k|k)− Pt̂s(k|k)]. (25)

A more accurate track has less error covariance; thus, fusion only occurs if the deter-
minant of the covariance matrix of track s is less than the determinant of the selected track
t̂. After track s becomes a fused track, track t̂ becomes a potentially terminated track. The
potentially terminated track is still eligible to be associated with other tracks that have not
yet been fused. The potentially terminated track is terminated when no track remains for
the track association.

3.7. Track Termination and Validation Testing

Tracks are terminated by two criteria. One is if a track is selected as a potentially
terminated track but not fused during the track association, then the track is terminated.
The other is when the number of frames not updated by the measurement exceeds a
threshold, the track is terminated.

After track termination, its validity is tested through the track life length. Track life
length is defined as the number of frames between the last frame and the initial frame
associated with the measurement. If the track life length is less than the minimum track life
length, the track is considered invalid and is removed.
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3.8. Performance Evaluation

The tracking performance is evaluated in terms of the number of tracks, total track life
(TTL), mean track life (MTL), and track purity (TP) [33]. The TTL, MTL, and TP are defined,
respectively, as

TTL =
Sum of lengths of tracks which have the same target ID

Target life length − 1
, (26)

MTL = TTL
Number of tracks associated in TTL , (27)

TP =
Number of measurments with the same target ID in a track

Number of measurements in the track
, (28)

where target life length is defined as the number of frames between the last frame and the
first frame when a measurement of the target appears, and the target ID of a track is defined
as the target with the most measurements associated with the track. It is noted that the
track length included in the TTL is only the number of frames for which the measurement
associated is the same as the target ID of the track and it also includes predictions between
updates. If the track is broken or overlaps with one target, the MTL will be less than the
TTL. The TP becomes one if there is only one target associated with a track.

Figure 6 illustrates the TTL, MTL, and TP, where three tracks are generated for two
targets. The blue and red circles represent the measurements of Targets t and s, respectively.
Mission detections are found at Frames 6 and 8 for Targets t and s, respectively. The
squares, triangles, and crosses represent the initialized or updated states of Tracks 1, 2, and
3, respectively. The same color of the target and the track indicates that they are related by
the measurement-track association. The empty triangles in Track 2 indicate the predictions
between the updated states. The Target ID of Tracks 1 and 2 is t, and Target ID of Track 3
is s. There is a breakage between Tracks 1 and 2 for Target t, and an intersection between
Tracks 2 and 3 for Targets t and s. The TTL of Targets t and s are 7/9 and 4/7, respectively.
The MTL of Targets t and s are 3.5/9 and 4/7, respectively, since the number of tracks for
Targets t and s is 2 and 1, respectively. The TP of Tracks 1, 2, and 3 are 1, 3/5, and 2/3,
respectively.
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Figure 6. An illustration of three tracks generated for two targets.

4. Results

The experimental results are presented with video description, parameter settings,
YOLO object detection, and multiple-target tracking.

4.1. Video Description

An infrared thermal imaging camera captured three videos (Videos 1–3). The camera,
FILR Vue Pro R640 (f = 19 mm, FOV = 32◦ × 26◦, spectrum band: 7.5–13.5 µm, pixel pitch:
17 µm), is mounted on a DJI Inspire 2 drone. The resolution of the image is 640 × 512 pixels,
and the frame rate is set to 30 fps. The videos were shot in the mountains on a winter
night with no ambient light. In these environments, the visible image is completely dark.
The thermal video capturing was assumed to be under harsh circumstances; the drone
flies in any direction and altitude slowly or swiftly, and the perspective of the drone is
arbitrary. Image characteristics vary from image to image depending on weather conditions
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and surrounding objects. In Video 1, three hikers walk around the mountain for 60 s. In
Videos 2 and 3, three hikers are simulated as missing in the mountains for 120 s. Figure 7a
shows the 1st, 501th, 901th, 1301th, and 1701th frame of Video 1, and Figure 7b,c show the
1st, 901th, 1801th, 2701th, 3601th frame of Videos 2 and 3, respectively. In each frame, a
target ID, numbered 1 to 3 or 4, was displayed close to the object. It is assumed that there
are four people in Video 1 and one of them appears with his legs at the top of the frame.

Figure 7. Sample frames with Target ID’s of (a) Video 1, (b) Video 2, (c) Video 3.

4.2. People Detection by YOLOv5

YOLOv5 detects people in every frame of Videos 1–3. The detection results are
summarized in Table 1. For YOLOv5l, the number of detections in Video 1 is more than
the number of true instances, mostly due to false alarms generated on the car at the top of
the frame. For YOLOV5x, the number of detections in Video 2 is more than the number of
instances. This is because more than one bounding box was generated for one object. The
recall of YOLOv5x is calculated lower than YOLOvl for Video 1 because YOLOv5x does
not always detect the small part of the legs that appear at the top of the frame.

Table 1. YOLOv5 detection results.

Video 1 Video 2 Video 3

Descriptions
Num. of frames (duration) 1801 (1 min) 3601 (2 min)
Num. of objects (people) 4 3

Num. of instances 6000 10,652 10,800

YOLOv5s
Num. of detections 5760 10,492 9143

Num. of detections over 0.5 conf. level 5176 10,283 8425
Recall over 0.5 conf. level 0.863 0.965 0.780

YOLOv5l
Num. of detections 6634 10,610 9693

Num. of detections over 0.5 conf. level 5811 10,474 9248
Recall over 0.5 conf. level 0.969 0.983 0.856

YOLOv5x
Num. of detections 5734 10,699 9947

Num. of detections over 0.5 conf. level 5406 10,567 9676
Recall over 0.5 conf. level 0.901 0.992 0.862
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The detection of YOLOv5x with a minimum confidence level of 0.5 was used for the
target tracking as it provides the most accurate detections without generating false alarms.
For YOLOv5x, the recall of Videos 1 to 3 at a minimum confidence level of 0.5 is 0.901, 0.992,
and 0.862, respectively, and the precision is 1 for all videos. In Video 3, harsh conditions,
such as close and occluding objects and rapid movement of the drone, degrade the detection
performance. Figure 8 shows YOLOv5x detection with a minimum confidence level of 0.5 for
the sample frames. The centroids of the object in all frames are shown in Figures 9 and 10 in
the first frame and on a white background, respectively. Supplementary Videos S2–S4 show
the YOLOv5x object detection results of Videos 1, 2, and 3, respectively.

Figure 8. Detections of the sample frames, (a) Video 1, (b) Video 2, (c) Video 3.
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4.3. Multiple-Target Tracking
4.3.1. Parameter Set-Up

The target-tracking parameters are shown in Table 2. Video 1 was processed ev-
ery two frames, thus the sampling time is 1/15 s for Video 1, whereas it is 1/30 s for
Videos 2 and 3. The one-pixel coordinate is scaled to 0.03 m, 0.04 m, and 0.05 m for
Videos 1, 2, and 3, respectively. The maximum initial speed of the target is set to 3 m/s.
The process noise standard deviation of the Kalman filter is set to 0.5 m/s2 for Videos 1 and
2.5 m/s2 for Videos 2 and 3. The process noise standard deviation is determined consider-
ing the acceleration of the target and the rapid movement of the drone. The measurement
noise standard deviation is set to 0.5 m for all videos. The maximum target speed for the
track maintenance is set to 10 m/s for Videos 1 and 3 and 20 m/s for Video 2. The threshold
for measurement gating is set to four and the minimum IoU for the bounding box gating is
set to 0.6 for Videos 1 and 2 and 0.4 for Video 3. The gate threshold and angular threshold
for the track association are set at 10 and 45◦ for Videos 1 and 3, respectively, and 20 and
60◦ for Video 2, respectively. They are set up when better results are produced. For the
track termination, the maximum number of searches is set at 20 frames, and tracks shorter
than 2 s are removed as invalid.

Table 2. Target tracking parameters.

Parameters (Unit) Video 1 Video 2 Video 3

Sampling Time (second) 1/15 1/30
Max. initial target speed, Vmax (m/s) 3

Process noise std. σx = σy (m/s2) 0.5 2.5
Measurement noise std. rx = ry (m) 0.5

Measurent association
Max. target speed, Smax (m/s) 10 20 10

Gate threshold, γm 4
Bbox threshold, bm 0.6 0.4

Track association
Gate threshold, γt 10 20 10

Angular threshold, θt (degree) 45◦ 60◦ 45◦

Track termination Maximum searching
number (frame) 20

Min. track life length for track validity (second) 2

4.3.2. Target Tracking Results

The target tracking results for Videos 1 to 3, including the number of valid tracks,
average TTL, average MTL, and average TP, are shown in Tables 3–5, respectively. Case 1,
the first column of the table, is the result of applying both the bounding box gating and the
track association. Case 2, the second column, is the result of applying the track association
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without the bounding box gating, and Case 3, the third column, is the result of applying
neither the track association nor the bounding box gating. It is noted that Target 4 at the
top of Video 1 was excluded from evaluating the tracking performance because it is a small
part of a person’s foot that does not move. For Video 1, the tracking results of Case 3 are
perfect. For Videos 2 and 3, the results of Case 1 are better than others. For Case 1, the
average TTL of Videos 1 to 3 are obtained as 0.987, 0.993, and 0.894, respectively. The
corresponding average MTLs are 0.987, 0.442, and 0.151, respectively. The average TPs
are obtained as 1, 0.999, and 0.995, respectively, for the three videos. The average MTL is
reduced for Videos 2 and 3 due to the track breakage caused by the high maneuvering of
the drone or object occlusion.

Table 3. Tracking results of Video 1.

Case 1 Case 2 Case 3

Num. of Tracks 3 3 3
Avg. TTL 0.987 0.982 1
Avg. MTL 0.987 0.982 1
Avg. TP 1 0.991 1

Table 4. Tracking results of Video 2.

Case 1 Case 2 Case 3

Num. of Tracks 7 7 18
Avg. TTL 0.993 0.945 0.943
Avg. MTL 0.442 0.417 0.193
Avg. TP 0.999 0.954 0.963

Table 5. Tracking results of Video 3.

Case 1 Case 2 Case 3

Num. of Tracks 20 22 29
Avg. TTL 0.894 0.878 0.890
Avg. MTL 0.151 0.130 0.097
Avg. TP 0.995 0.995 0.986

Figures 11 and 12 show the tracks for all frames in random colors. The tracks are shown
in the first frame in Figure 11 and on a white background in Figure 12. Supplementary
Videos S5–S7 show the tracking results for Case 1 for Videos 1, 2, and 3, respectively.
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Figure 12. Tracks only, (a) Video 1: 4 valid tracks, (b) Video 2: 7 valid tracks, (c) Video 3: 20 valid tracks.

Seven Supplementary Multimedia Files (MP4 format) are available online. Supple-
mentary Materials Video S1 is a video of YOLO training images. Training instances are
indicated by blue rectangles. Supplementary Materials Videos S2–S4 are the YOLOv5x
detection results with a minimum confidence level of 0.5 for Videos 1 to 3, respectively. The
videos display bounding boxes, including the class name and confidence level. Supple-
mentary Materials Videos S5–S7 are the tracking results from Videos 1 to 3 applying both
the bounding box gating and the track association, respectively. The bounding box and
its centroid of YOLOv5x are shown as red squares. Position estimates are shown as blue
circles. Valid tracks were numbered in the order they were created.

5. Discussion

The thermal videos were captured under extremely challenging conditions, simulating
people needing search and rescue missions in non-visible environments. The experimental
scenarios included overgrown terrain, in which the warm objects were either partially
visible or invisible. The objects are often occluded by other people and natural objects, such
as trees, bushes, and foliage. The drone is manually operated, allowing rapid movements.

Since the more accurate the location information, the better the tracking quality, the
detections of YOLOv5x with a minimum confidence level of 0.5 were utilized. The detection
accuracy is expected to increase with larger training data since less than 200 images were
trained in this paper.

TTL and MTL are defined on the target and TP is defined on the track. High average
TTLs and average TPs are achieved for all videos. However, the average MTLs were
lowered for Videos 2 and 3 as more than one valid track was generated from the target. The
number of valid tracks is increased due to the track breakage caused by missing detection.
The missing detection is mainly caused by the high maneuvering of the drone or the object
occlusion. One track intersection occurs in both Videos 2 and 3, resulting in the slightly
lower average TP. The track breakage and intersection both lower the average TTL. The
bounding box gating has improved tracking performance for all metrics.

Low-resolution and gray-scaled infrared thermal frames can be transmitted to a
ground station with less bandwidth. Adopting a lighter and later version of the YOLO
model, such as YOLOv8 [34], is also considered to increase implementation feasibility, as
well as detection performance.

6. Conclusions

In the paper, multiple-target tracking using thermal imaging was studied for the
purpose of search and rescue missions with a drone. The object-detection multiple-target
tracking scheme has been shown to be very powerful for tracking people in thermal
videos acquired by drones. The harsh conditions of simulated search and rescue missions,
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including (1) no ambient lighting environment, (2) complex backgrounds, (3) closely located
and heavily occluded targets, and (4) arbitrary moving platforms, can be overcome with
the proposed solution.

To evaluate tracking performance, three metrics TTL, MTL, and TP were obtained.
TTL and TP provide solid performance, but MTL decreases when tracks are broken. The
proposed solution is direct and simple, yet quite effective. It is also suitable for security
and surveillance in civil and military fields and wildlife monitoring. It can also be applied
to pedestrian tracking in crowds and object tracking in sports analysis. Track segment
association to increase the track continuity remains for future studies. Adopting higher
iterations of the YOLO model for detection performance and feasible implementation also
remains for future work.

Supplementary Materials: The following are available online at https://zenodo.org/records/1046
7489 accessed on 26 January 2024, Video S1: YOLOv5x training data, Video S2: Video 1 YOLOv5x
detection, Video S3: Video 2 YOLOv5x detection, Video S4: Video 3 YOLOv5x detection. Videos S2–S4
are the detection results with 0.5 minimum confidence level. Video S5: Video 1 target tracking,
Video S6: Video 2 target tracking, Video S7: Video 3 target tracking. Videos S5–S7 are the tracking
results with the bounding box gating and the track association.
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