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Abstract: Efficient trajectory and path planning (TPP) is essential for unmanned aircraft systems
(UASs) autonomy in challenging environments. Despite the scale ambiguity inherent in monocular
vision, characteristics like compact size make a monocular camera ideal for micro-aerial vehicle
(MAV)-based UASs. This work introduces a real-time MAV system using monocular depth estimation
(MDE) with novel scale recovery module for autonomous navigation. We present MoNA Bench, a
benchmark for Monocular depth estimation in Navigation of the Autonomous unmanned Aircraft
system (MoNA), emphasizing its obstacle avoidance and safe target tracking capabilities. We highlight
key attributes—estimation efficiency, depth map accuracy, and scale consistency—for efficient TPP
through MDE.

Keywords: UAV; autonomous navigation; monocular depth estimation; path planning; flight safety;
target tracking

1. Introduction

Efficient trajectory and path planning (TPP) plays a fundamental role in defining the
autonomy of unmanned aircraft systems (UASs) in adversarial environments. To achieve
this capability, UASs commonly integrate sensors such as GPS, LiDAR, stereo camera,
and RGB-D camera, which are proficient at directly capturing metric depth information
from the geographic coordinates or the surrounding environment. In contrast, monocular
vision lacks depth measurement capabilities, presenting challenges such as scale ambiguity.

Despite encountering the challenges, the monocular camera remains the sensor of
choice for micro-aerial vehicles (MAVs), which are often deployed in narrow indoor envi-
ronments, confronting substantial resource constraints and strict payload limitations. In this
context, the monocular camera stands out as the optimal selection due to its unique char-
acteristics, including compact size, lightweight design, low energy consumption, and the
ability to provide rich information content such as texture and semantics. Consequently,
if reliable depth information becomes attainable, the monocular camera will serve as the pre-
ferred perception device for MAV-based UAS, offering a balanced solution that addresses
resource constraints while delivering valuable visual information.

Efficient TPP is indispensable for autonomous UASs, ensuring robust localization
and navigation capabilities, particularly in tasks like real-world target search and tracking.
The achievement of efficient TPP in monocular UASs relies on the dependable depth recov-
ery from monocular images and the reconstruction of the surrounding 3D environment,
facilitated by recent advancements in computer vision. Through deep learning-based
monocular depth estimation (MDE) methods, it is able to extract dense depth maps from
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monocular image sequences. The cutting-edge MDE algorithms currently exhibit out-
standing performance, as evidenced by evaluations on widely recognized benchmarks,
showcasing exceptional prediction accuracy.

In this work, we develop a real-time monocular MAV system (as shown in Figure 1),
utilizing monocular depth estimation to support efficient trajectory and path planning.
Building upon our prior research [1], we introduce an innovative scale recovery module
to calculate the scale factor of the environment, reconstruct the 3D scenario, and assess
the performance of the integrated MDE algorithms. With the acquired scale information,
the improved framework not only excels in autonomous obstacle avoidance but also
supports safe target tracking—a task demanding a precise metric scale. Our experiments
validate the effectiveness of the proposed system, highlighting the significant attributes
that MDE algorithms should possess for efficient TPP: estimation efficiency, depth map
accuracy, and scale consistency.

The contributions of this paper are threefold:

• We design a real-time monocular MAV-based unmanned aircraft system. Our sys-
tem accomplishes efficient path planning to enable the effective implementation of
autonomous obstacle avoidance and safe target tracking.

• We introduce MoNA Bench, a benchmark for monocular depth estimation in au-
tonomous navigation for unmanned aircraft systems. We develop a series of deploy-
able performance evaluation experiments for monocular depth estimation and identify
significant attributes that MDE algorithms should possess for efficient trajectory and
path planning.

• To benefit the community, we release the complete source code of the proposed benchmark
at: https://github.com/npu-ius-lab/MoNA-Bench (accessed on 31 December 2023).

Figure 1. The basic framework of the proposed MoNA Bench.

The paper is organized as follows: In Section 2, we briefly reviewed key technologies
employed in system construction, including monocular depth estimation, trajectory plan-
ning, pose estimation, etc. Section 3 provides an in-depth explanation of our approach.
In Section 4, we present the results, evaluation, and analysis of our experiments. Lastly,
Section 5 summarizes the paper and outlines prospects for improvement.

2. Related Work
2.1. Monocular Depth Estimation

Monocular depth estimation aims to recover depth information from images captured
by monocular cameras, predominantly relying on deep learning. Various algorithms have
emerged in this field, with supervised and self-supervised learning being the primary
approaches. Supervised methods, while achieving superior accuracy and scene perception

 https://github.com/npu-ius-lab/MoNA-Bench
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by training on precise ground-truth depth maps, face limitations due to the need for costly
and susceptible calibrated depth sensors. On the other hand, self-supervised methods,
utilizing ego-motion as the supervisory signal, eliminate the requirement for ground-
truth depth maps. However, they lack an inherent understanding of the scene scale,
introducing dynamic scale disparities between predicted and actual depth maps. This
scale ambiguity can significantly impact the accuracy of depth estimation, particularly in
real-world applications.

Eigen et al. [2] pioneered deep learning-based MDE in 2014, training their model
through supervised learning. Alhashim et al. [3] developed an encoder-decoder archi-
tecture with skip connections to capture object boundaries faithfully. They employed a
pre-trained truncated DenseNet-169 [4] as the encoder through transfer learning, achieving
promising results on datasets like NYUv2 [5] and KITTI [6]. Ranftl et al. [7] proposed a
cross-dataset model training method to improve their model’s generalization capabilities.

The self-supervised learning method has gained considerable attention for its inde-
pendence from ground truth, with notable research efforts aiming to address its inherent
scale ambiguity. PackNet-SfM [8] introduced weak velocity supervision from IMU, en-
abling their network to acquire real-world scale understanding. Bian et al. [9] developed a
geometry consistency loss and a self-discovered mask to guarantee depth prediction con-
sistency across frames. For indoor performance improvement, an auto-rectify network [10]
was further designed, incorporating novel loss functions to automatically rectify images
during training.

2.2. Efficient Flight Trajectory Planning

Hard-constrained methods and gradient-based optimization methods represent the
primary approaches to flight trajectory planning. Hard-constrained methods often yield
trajectories in close proximity to obstacles, posing challenges for efficient flight. In con-
trast, gradient-based trajectory optimization methods treat trajectory generation as a non-
linear optimization problem, balancing considerations of smoothness, safety, and dy-
namic feasibility.

Fast-Planner [11] utilized topological path parallel optimization to address local min-
ima issues, facilitating precise online planning for local obstacle avoidance trajectories.
Building upon this foundation, Fast-Tracker [12] introduced an agile target active safety
tracking system for unmanned aerial vehicles (UAVs). The system incorporated modules
for target motion prediction and trajectory planning, allowing for the derivation of time-
space optimal and collision-free safety tracking trajectories for the UAV. Additionally, it
maintained continuous target position prediction even after losing track of the target.

2.3. Target Detection and Pose Estimation

While natural features serve a broad range of applications, artificial features such as
QR codes remain essential in the development and testing phases of robot systems. These
features offer consistent and dependable target information, facilitating the assessment of
robot systems in real-world environments.

ARToolkit [13] emerged as one of the pioneering systems for artificial feature tracking;
however, its robustness faced challenges, especially in varying illumination conditions.
AprilTag [14,15] presented a high-speed visual fiducial system that exhibited remarkable
robustness against factors like lighting variations, occlusions, and lens distortion. This
system employed 2D bar code style features (tags) and efficiently achieved full 6 degrees of
freedom (DoF) localization of tags from a single image.

2.4. Monocular Vision-Based Autonomous Obstacle Avoidance

Significant strides have been made in autonomous obstacle avoidance technology for
UAVs based on monocular vision. Currently, depth learning occupies a predominant role
in monocular vision-based obstacle avoidance systems. Some impressive research [16–18]
established their monocular UAV autonomous obstacle avoidance systems with similar
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frameworks. These systems typically consisted of three modules: monocular depth estima-
tion, autonomous collision avoidance, and UAV velocity control. To enhance performance,
these methods used RGB videos recorded from real-world scenarios for model training. In
contrast, the system proposed in our earlier study [1] did not require captured scene data.
Instead, it employed pre-trained models trained on large public datasets like NYUv2 [5] to
estimate depth maps for unknown scenes, without introducing scene-specific information
during training.

3. Approach
3.1. Overview

Our research utilized the DJI RoboMaster TT Tello Talent (RYZE Tech Co., Ltd., Shen-
zhen, China). MAV as our hardware platform, weighing only around 80 g (including
propellers and battery). It features a 5 MP monocular camera with an 82.6◦ field of view
and can record videos at up to 720 P/30 fps. Additionally, it is equipped with a time-
of-flight (ToF) infrared distance sensor for precise body height detection. The MAV can
communicate with the ground server via its built-in 2.4 GHz WiFi module and transmit
stable video streaming within a 100 m range using 5 GHz WiFi when its expansion module
is mounted. The details of our MAV are depicted in Figure 2.

Figure 2. The built-in sensor layout and the appearance of the MAV with its extension kit.

Ensuring stable autonomous navigation for monocular MAVs in unknown indoor
environments requires tackling the scale ambiguity in monocular depth estimation as the
primary challenge. Addressing this issue is essential to maintain the consistency between
the environmental scale and the scale of predicted target poses for constructing safe target
tracking. With reliable perception established, MAV localization and path planning can be
performed using RGB images and estimated depth maps. Lastly, the MAV can seamlessly
track the generated path through appropriate controllers.

Based on the outlined processing sequences, we have implemented an unmanned
aircraft system depicted in Figure 3. The proposed system consists of four key mod-
ules: depth estimation, autonomous navigation, pose estimation, and velocity control.
Within the autonomous navigation module, two fundamental functionalities are encapsu-
lated: obstacle avoidance and target tracking. The procedural workflow of the system is
summarized below:

1. System Connection. The MAV establishes a wireless connection with the ground
server through WiFi, transmitting a continuous stream of RGB images. Upon receiving
the activation command, the MAV initiates takeoff and maintains a stable hover at an
altitude of approximately 0.9 m.

2. Depth Estimation. The depth estimation network operates on the ground server,
integrating extensively validated networks like MonoDepth, MiDaS, and SC-DepthV2.
To recover metric information from the physical world for subsequent navigation,
a novel scene scale recovery submodule is developed. This submodule incorporates
MAV height information and executes recovery through four steps: depth map to
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point cloud conversion, point cloud ground segmentation, point cloud coordinate
transformation, and scale factor calculation. Additionally, to facilitate subsequent
computations, both RGB images and dense depth maps are resized to a resolution of
640 × 480.

3. Autonomous Navigation. To enable autonomous MAV navigation, a visual SLAM
(Simultaneous Localization and Mapping) submodule localizes the camera’s 6 degrees
of freedom (DoF) pose through processed RGB images, dense depth maps, and camera
intrinsics. Subsequently, the coordinate transformation submodule converts the
estimated camera pose to MAV body odometry. Following this, the flight trajectory is
generated with two distinct options:

• Obstacle Avoidance. In this mode, the system employs RGB images, predicted
dense depth maps, camera intrinsics, and MAV body odometry to generate a 3D
occupancy grid map. This map serves as the foundation for constructing a local
trajectory and establishing a front tracking point when a flying target is specified.

• Target Tracking. In this mode, alongside RGB images, predicted dense depth
maps, camera intrinsics, and MAV body odometry, the system requires a sub-
scription to the target position obtained from the 6-DOF pose estimation module
to generate the specialized trajectory for tracking the designated target.

4. Pose Estimation. Accurate target tracking hinges on determining the real-world
positions of designated targets. In our system, AprilTag has been selected as the
tracking target due to its reliable and distinctive visual features. The target’s pose
estimation is accomplished by analyzing RGB image sequences, allowing the system
to precisely locate and track the designated target throughout its movements.

5. Velocity Control. Upon generating the flight trajectory, the system provides adapt-
ability by offering a choice between two controllers to calculate the MAV’s velocity
command: a PID controller and a path-following controller. This flexibility ensures
efficient control and responsiveness tailored to the specific requirements of the mission
or task at hand.

Figure 3. The pipeline of the proposed system.

3.2. Monocular Depth Estimation

Accurate depth predictions form the foundation for monocular UASs to perceive the
surrounding environment. In this work, we explore and compare both supervised and self-
supervised learning algorithms, including MonoDepth [3], MiDaS [7], and SC-DepthV2 [10],
to understand their performance and limitations in MDE for UASs. After obtaining high-
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quality predicted depth maps, we incorporate MAV body height information for real-time
metric scale recovery.

3.2.1. MDE Algorithms

MonoDepth. MonoDepth is a supervised learning algorithm designed to overcome the
common issue of blurry approximations in low-resolution depth estimation. The algorithm
introduces a simple network architecture based on transfer learning, featuring fewer
network parameters and training iterations. Simultaneously, it excels in capturing object
boundaries, enabling high-precision and high-quality depth estimation. The loss function
of MonoDepth is defined by Equation (1):

L(d, d̂) = λLdepth(d, d̂) + Lgrad(d, d̂) + LSSIM(d, d̂) (1)

where d represents the groundtruth depth map, and d̂ represents the predicted depth
map. The pixel-wise loss Ldepth is calculated based on the depth values. To incorporate the
image gradient of the depth image, Lgrad is introduced. Additionally, LSSIM is a structural
similarity (SSIM) [19] term, which is commonly employed in image reconstruction tasks.

MiDaS. Improving the generalization of supervised learning-based MDE algorithms
demands abundant and diverse training data. However, the distinct characteristics among
existing depth datasets present significant challenges for cross-dataset training. To enable
the algorithm’s adaptation to a broad spectrum of dynamic and diverse environments,
Ranftl et al. [7] proposed a model training strategy, facilitating the mixing of data from
multiple datasets during training. Equation (2) defines the loss function of MiDaS:

Ll =
1
Nl

Nl

∑
n=1

Lssi(d̂n, (d̂∗)n) + αLreg(d̂n, (d̂∗)n) (2)

where d̂ and d̂∗ represent the predicted and ground-truth depth maps, respectively;
Lssi(d̂, d̂∗) is incorporated into the loss function to ensure scale and shift invariance; To
adapt to the disparity space, Lreg(d̂, d̂∗) is introduced as a multi-scale, scale-invariant gra-
dient matching term; The training set size is defined as Nl , and α is a hyperparameter with
a value of 0.5.

SC-DepthV2. Self-supervised MDE algorithms rely on unlabeled videos for train-
ing, simplifying the data collection process compared to supervised methods. However,
without proper scale constraints, these algorithms may produce scale-inconsistent depth
estimation results, leading to ambiguity in per-frame scale and posing challenges for
providing camera trajectories over long video sequences.

SC-Depth is a self-supervised MDE algorithm and introduces a geometric consistency
loss to guarantee global scale consistency in depth predictions. Additionally, the algorithm
incorporates an induced self-discovered mask to handle unidentified moving objects and
occlusions in the scene, ensuring the validity of the underlying static scene assumption
in geometric image reconstruction. SC-Depth formulates its loss function as defined in
Equation (3):

L = αLM
P + βLS + γLG (3)

where LM
P represents the weighted photometric loss by a self-discovered mask M, and an

SSIM term similar to MonoDepth is included. LS stands for the smoothness loss, while LG
is a geometric consistency loss to ensure scale consistency. The weights for these losses are
determined by hyperparameters [α, β, γ].

Furthermore, for improved indoor performance, Bian et al. proposed an auto-rectify
network SC-DepthV2. This network automatically rectifies images affected by complex
camera motion in an end-to-end fashion, addressing the challenge posed by rotational
motion acting as noise during training.
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3.2.2. Scale Recovery

The recovery of scale information is crucial for achieving precise perception of spatial
scenes, serving as a key element in ensuring consistent scale for autonomous obstacle
avoidance and target tracking. In our UAS, this is accomplished through a series of steps.

Depth map to point cloud conversion. Converting a depth map into a point cloud
involves associating each pixel in the depth map with a corresponding 3D point in the real-
world coordinate system. For any point P with homogeneous pixel coordinates [u, v, 1]T

defined in camera coordinate, and known camera intrinsic matrix K, the relationship is
expressed as:

Z

u
v
1

 =

 fx 0 cx
0 fy cy
0 0 1

X
Y
Z

 = KP (4)

According to Equation (4), with the known camera intrinsics, the corresponding point
cloud can be derived from the predicted depth map. The conversion from a depth map to a
point cloud can be effortlessly implemented by calling ROS built-in package.

Point cloud ground segmentation. This step is primarily accomplished using the
RANSAC (Random Sample Consensus) algorithm. RANSAC is a robust estimation method
that iteratively selects a set of samples from the dataset, fits a model based on these samples,
and evaluates the fit of other data points to this model. Notably, RANSAC can operate
directly on raw point cloud data without the need for 2D plane projection, making it a
widely used technique for segmenting the ground plane in 3D space.

A fundamental prerequisite for applying the RANSAC algorithm to point cloud
ground segmentation is the abundance of ground information in the scene. In practical
applications, the substantial volume of raw point cloud data generated from depth map
conversion may hinder computational efficiency, resulting in increased computational itera-
tions. To optimize algorithm performance and system operational speed while maintaining
computational accuracy, it is advisable to implement random down-sampling of the point
cloud. The pseudocode for the RANSAC-based ground plane segmentation algorithm is
outlined in Algorithm 1.

Point cloud coordinate transformation. The ground segmentation of point clouds
occurs in the camera coordinate system, while the height information of the MAV is defined
in the body coordinate system. To recover the scale factor from the extracted ground point
cloud, a coordinate transformation should be applied to convert the point cloud from
the camera frame to the body frame. Define the camera extrinsics as the transformation
matrix T, which includes the rotation matrix R and translation vector t. To transform the
coordinates of a ground point P from the camera coordinate system to the body frame
coordinate system, assuming the true physical world coordinates of point P in the body
frame are [Xb, Yb, Zb]

T, denoted as the vector Pb, according to the basic rules of 3D rigid
body coordinate Euclidean transformation, we have:[

P
1

]
=

[
R t
0T 1

][
Pb
1

]
= T

[
Pb
1

]
(5)

Scale factor calculation. Through point cloud ground segmentation and point cloud
coordinate transformation, we obtained the relative position of the ground point cloud in
the body frame. Let the total number of points in the ground point cloud be n, and the
z-axis coordinate in the body frame for each point be Zm

b , where m represents the m-th
point in the ground point cloud. The relative height hR is defined as follows:

hR =
1
n

n

∑
m=1

Zm
b (6)
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Defining the actual height obtained by the onboard ToF infrared distance sensor as the
metric height hM, the scale factor s can be expressed as:

s =
∣∣∣∣hM

hR

∣∣∣∣ (7)

By following the aforementioned four steps, we compute the scale factor bridging
real-world depth and monocular estimated depth, thereby achieving monocular depth
estimation in metric scale. Figure 4 visually illustrates the changes in the point cloud before
and after scale recovery.

Algorithm 1: RANSAC-based Point Cloud Ground Plane Segmentation

Data: N - Original point cloud ;
m - Downsample size ;
d - Distance threshold ;
k - Maximum iterations ;
x⃗ - Normal vector of the ground plane;
smin - Threshold for normal vector similarity.

Result: Nground - Ground points.
1 Nsampled = Randomly sample m points from the original point cloud N ;
2 mostNum = 0;
3 betterModel = null ;
4 // Ground plane parameters in the camera frame
5 bestModel = {0, 1, 0, 0} ;
6 // Ground plane segmentation
7 while iterations < k do
8 maybeInliers = 3 randomly selected points from Nsampled;
9 maybeModel = plane parameters fitted to maybeInliers;

10 confirmedInliers = empty set;
11 for every point in Nsample do
12 if point fits maybeModel with an error < d then
13 add point to confirmedInliers;
14 end
15 end
16 if the number of elements in confirmedInliers > mostNum then
17 betterModel = plane parameters fitted to all the points in confirmedInliers;
18 mostNum = the number of elements in confirmedInliers;
19 end
20 increment iterations;
21 end
22 // Validity check for segmentation
23 x⃗plane = the normal vector of bestModel;
24 similarity = cosine_similarity(⃗xplane, x⃗);
25 if similarity > smin then
26 bestModel = betterModel;
27 end
28 return Nground based on bestModel;

3.3. Autonomous Navigation

Building upon monocular depth estimation and scale recovery, the proposed UAS
estimates the body odometry through long video sequences to support efficient flight
trajectory and path planning. Utilizing the obtained dense depth maps, we employ RGB-
D visual localization to determine the 6-DoF camera pose. Once receiving the target
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point, whether manually designated or autonomously tracking a specific target, our UAS
efficiently generates a smooth and collision-free flight trajectory. It then directs the MAV to
follow the generated trajectory, accomplishing the predefined task.

Figure 4. Point clouds predicted before and after scale recovery.

3.3.1. Visual SLAM

A monocular camera-based visual SLAM system necessitates structural initialization
through camera movement. In contrast, RGB-D camera-based visual SLAM systems can
be initialized solely with the first frame image. In our proposed UAS, the introduction of
monocular depth estimation with real-world scale effectively overcomes the limitations of
traditional monocular visual SLAM systems.

The initial position of the camera sensor determines where the world coordinate
system is established. On an MAV, there is often a mounting angle between the monocular
camera and the horizontal direction of the MAV body. This implies that, after system
initialization, an unknown mounting angle relationship exists between the x-axis of the
world coordinate system and the horizontal direction. As the UAV moves horizontally in
the real environment, the mounting angle introduces a z-axis component in the estimated
pose of the MAV in the world coordinate system.

Our UAS utilizes ORB-SLAM2 [20] for the MAV’s 6-DoF localization. Expanding on
this, we achieve sensor mounting angle calibration by horizontally moving the MAV and
computing the trigonometric correlation between the MAV’s z-axis movement component
and the x-axis direction in the world coordinate system. This process establishes the angular
relationship between the monocular sensor and the MAV body. The calibration is depicted
in Figure 5, illustrating the MAV’s pose estimation in the world coordinate system before
and after calibration.
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Figure 5. Sensor mounting angle calibration.

3.3.2. Pose Estimation

The accuracy of pose estimation significantly influences the success of autonomous
target tracking for MAV. In our developed UAS, we integrate the well-established and
thoroughly tested visual tag system AprilTag to predict the target pose. It is noteworthy that
the AprilTag module operates independently, offering the system target pose estimates on a
real-world scale. This suggests that when the scale of the predicted target pose aligns with
the MAV pose estimation in practical experiments, it serves as evidence of the effectiveness
of the system’s depth estimation and scale recovery.

3.3.3. Path Planning

With accurately determined and unified poses at the metric scale for both the MAV
and the target, the UAS can proficiently accomplish autonomous navigation in a real
environment. Within our system, the integration of Fast-Planner [11] and Fast-Tracker [12]
enables the generation of local trajectories for the MAV, effectively meeting various task
requirements, including obstacle avoidance and target tracking. These trajectory planners
in the system adhere to a conventional workflow, enabling real-time generation of collision-
free flight trajectories that are both spatially and temporally optimized.

4. Experiments
4.1. Experimental Configurations

In our experiment, we chose the DJI RoboMater TT Tello Talent as our MAV. Our
computational processes are facilitated by a ground server featuring an Intel i7-10875H
CPU (Intel Corporation, Santa Clara, CA, US). and an NVIDIA GeForce RTX 2070 Super
GPU (NVIDIA Corporation, Santa Clara, CA, US). with 8 GB of memory. The entire system
is implemented in Ubuntu and ROS (Robot Operating System), specifically Ubuntu 18.04
and ROS Melodic.

We crafted three different experimental scenarios, as illustrated in Figure 6, to construct
our MoNA Bench. These experimental setups require well-lit conditions to ensure optimal
performance of MDE algorithms. In the frontal region of the MAV, four obstacles are
placed at vertical distances of 2 m, 3 m, 4.5 m, and 6 m from the MAV. For the evaluation
of MDE algorithm performance, the MAV is suspended at the ’Evaluation’ point, with a
body height of 1 m above the ground. As for the navigation experiments, including the
obstacle avoidance and target tracking experiments, the MAV takes off and departs from
a position located 0.8 m to the left of the performance evaluation test location. Before the
MAV commences the experiment, it hovers at an approximate height of 0.8 m.

In our experiments, only pre-trained models were employed. Specifically, both Mon-
oDepth and SC-DepthV2 models undergo training on the NYUv2 dataset. In contrast,
MiDaS utilizes a total of six datasets for the joint training of its model. Unlike our previ-
ous work [1], this experimental section refrains from applying any preprocessing to the
predicted depth maps generated by the algorithms.
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(a) Estimation performance experiment (b) Obstacle avoidance experiment (c) Target tracking experiment

Figure 6. The fundamental experiments comprising MoNA Bench.

4.2. Depth Estimation Experiments

Utilizing the monocular UAS developed in this paper, we conducted performance
tests for three monocular depth estimation algorithms: MonoDepth, MiDaS, and SC-
DepthV2. The experiments involved collecting distance estimates for various obstacles
from 500 consecutive monocular images generated by each algorithm. The algorithm
performance evaluation was achieved by comparing these estimates with the ground-truth
distances of the obstacles along the MAV’s axial direction. In the designed experimental
scenarios, the actual test results for each algorithm are depicted in Figure 7. A summary of
the performance for each algorithm is provided below:

MonoDepth. MonoDepth displays a relatively strong performance in predicting
distances. The algorithm exhibits relatively inferior distance prediction for the 2 m obstacle
compared to SC-DepthV2, while it provides distance predictions for obstacles at longer
distances (4.5 m and 6 m) that are closer to the true distances.

MiDaS. The distance prediction performance of MiDaS is highly unstable. The al-
gorithm fails to successfully identify the 2 m obstacle, while the predicted distances for
obstacles at slightly longer distances (3 m, 4.5 m, and 6 m) exhibit extremely abrupt inter-
frame changes and deviate significantly from the actual values.

SC-DepthV2. SC-DepthV2 demonstrates the best prediction performance. The al-
gorithm provides highly accurate predictions for nearby obstacles (2 m and 3 m obsta-
cles), while its prediction for obstacles at longer distances (4.5 m and 6 m) is relatively
less accurate.
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Figure 7. Comparison of depth estimation outcomes across algorithms.

Figure 8 presents the results of experiments involving point cloud generation, ground
segmentation, and distance estimation for the algorithms. As observed from the graph,
both MonoDepth and SC-DepthV2 accurately capture the spatial positions of diverse ob-
stacles. In contrast, the point cloud generated by MiDaS exhibits a “V”-shaped structure.
The irrational spatial structure of MiDaS point clouds poses a challenge, making the origi-
nal predicted depth map from this algorithm difficult to directly apply in the context of
autonomous obstacle avoidance and target tracking for MAVs. In addition, the dramatic
frame-to-frame scale variation presents another challenge in achieving stable scale recov-
ery through raw predicted depth maps from MiDaS. This shortcoming results in MiDaS
exhibiting different navigation performance compared to our previous work [1].

Figure 8. Experiment results: point cloud generation, ground segmentation, and distance estimation.

Due to the essential demand for real-time and efficient data processing by UAS, algo-
rithm evaluation in our proposed MoNA Bench involves considerations of computational
cost, efficiency, and accuracy. For depth estimation experiments, key metrics include
the GPU occupancy, the coefficient of variation (CV) for the continuous scale factor se-
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quence s, and the average relative error (ARE) between predicted obstacle distances ŷ and
ground-truth distances y. The CV is calculated as:

CV =

(
σs

µs

)
× 100 (8)

where σs represents the standard deviation of the scale factor sequence s, and µs is its mean.
Additionally, the ARE is defined as:

ARE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (9)

Based on the aforementioned evaluation metrics, Table 1 provides a performance
comparison for the selected algorithms. In summary, MonoDepth and SC-DepthV2 can
accurately obtain the spatial positions of various obstacles from monocular images, while
the performance of MiDaS is less satisfactory. Furthermore, due to SC-DepthV2’s relatively
more accurate perception of nearby obstacles and lower computational cost compared to
MonoDepth, it can be considered the optimal choice among the three algorithms.

Table 1. Algorithm performance comparison for depth estimation experiments

Algorithms GPU
Occupancy (%)

CV Estimation
* (%) 2 m ARE (%) 3 m ARE (%) 4.5 m ARE (%) 6 m ARE (%)

MonoDepth 81–89 1.5 16.6 1.5 12.8 11.7

MiDaS 31–35 9.7 55.7 124.6 117.8 81.9

SC-DepthV2 32–34 1.0 2.5 3.5 17.7 31.8

* CV Estimation: Coefficient of variation for scale factor in depth estimation experiments.

4.3. Autonomous Navigation Experiments

The autonomous navigation experiments are divided into two components: obstacle
avoidance and safe target tracking. This division is designed to thoroughly investigate the
essential characteristics necessary for efficient TPP in MDE algorithms. At the same time, it
serves as a validation of the effectiveness of the proposed UAS.

4.3.1. Obstacle Avoidance

For the evaluation of each algorithm, we collected 700 frames of continuous scale
factor sequences and their respective publication frequencies. Additionally, the success
rate of obstacle avoidance is assessed in 9 flights, with successful avoidance defined as
navigating around 3 obstacles. The results, illustrated in Figure 9, reveal that failures in
obstacle avoidance are primarily attributed to three errors:

1. Localization Error. Due to the high computing resource demand, certain MDE algo-
rithms encountered challenges in processing received image data continuously and
sequentially in real-time when the ground server reached its performance limits. This
discrepancy led to the loss of feature points and, subsequently, localization failure.

2. Detection Error. Discrepancies between the predicted depth map of spatial obstacles
and the actual distribution of obstacles in space contributed to collisions between the
MAV and obstacles. Detection errors were also observed when the depth map failed
to clearly distinguish the boundaries of obstacles, such as the top part of an obstacle
and the gap between obstacles.

3. Others. This category includes unexpected wobbling or instability of the MAV during
the experiments.
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Figure 9. Comparison of obstacle avoidance outcomes across algorithms.

According to our experiments, the autonomous obstacle avoidance performance of
each algorithm can be summarized as follows:

MonoDepth. Despite facing localization errors due to its high demands on ground
server performance and resulting in a low frame rate for depth map predictions, Mon-
oDepth achieved a commendable success rate, thanks to its ability to generate high-quality
predicted depth maps, contributing to its effectiveness in obstacle avoidance. This capability
allowed for the generation of a flight trajectory through the gaps between obstacles.

MiDaS. The unstable scale of depth maps in MiDaS, causing substantial frame-to-
frame variations and resulting in a V-shaped 3D grid map, led to a considerable number of
detection errors. Due to the inaccuracies in the grid map, MiDaS encountered difficulties
in guiding the MAV through passages between obstacles. It could only occasionally
generate a trajectory around obstacles from the outside to navigate the MAV. Without proper
preprocessing, its support for efficient TPP was limited.

SC-DepthV2. This algorithm demonstrated the highest success rate in obstacle avoid-
ance among the three. During its operation, SC-DepthV2 initially generated the first obsta-
cle on the 3D grid map and gradually revealed the obscured obstacles during flight. The
algorithm effectively distinguished these obstacles, generating a flight trajectory through
their gaps.

The experimental videos are available through our open-source repository, showcasing
the generation of obstacle avoidance trajectories in MAV flights. Additionally, throughout
the experiments, we observed that MonoDepth and SC-DepthV2 maintained relatively
stable real-time calculations of the scale factor during operation. The mean scale factors
were close to manually adjusted fixed scale factors from our previous work [1].

4.3.2. Safe Target Tracking

The safe target tracking experiment serves as a validation for the effectiveness of
the proposed monocular UAS. The system’s effectiveness is established if the MAV can
safely track the target’s pose, provided in metric scale by AprilTag, while autonomously
avoiding obstacles. During the experimental testing, we observed that MiDaS produced
spatial structures for point clouds that were irrational, preventing the generation of depth
maps from meeting the requirements for efficient TPP. This observation aligns with the
conclusions discussed in Section 4.2.

Concerning MonoDepth, its higher computational demands, especially in terms of
GPU occupancy, led to data packet losses during operation. These issues hindered its
ability to meet the real-time requirements for efficient TPP. In contrast, we successfully
conducted monocular MAV safety tracking experiments using SC-DepthV2. Figure 10
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depicts the predicted depth map, feature points, and planned trajectory in the safe target
tracking experiment.

Figure 10. Safe target tracking experiment.

In spite of this, it’s worth noting that the system still places high computational
demands, particularly on the ground station’s CPU, approaching 100% utilization and
causing a significant computational load.

Throughout the experiments, we observed that the real-time computation of the scale
factor by SC-DepthV2 maintained stability and consistently matched the scale factors
obtained in obstacle avoidance scenarios. Building on this observation, we fixed the scale
factor to the mean of the continuous scale factor sequence and conducted the safe target
tracking experiment with this fixed factor. The results were consistent with those obtained
when dynamically updating the scale factor, allowing the MAV to simultaneously track
targets safely and autonomously avoid obstacles. Importantly, this approach led to a
reduction in the ground station’s computational load, with CPU utilization dropping to
80%, resulting in a more stable system operation. This experiment provides strong evidence
that fixing the scale factor is a viable strategy in monocular MAV autonomous navigation,
particularly when the algorithm maintains scale consistency, thereby effectively achieving
efficient TPP.

4.3.3. Navigation Performance

Combining the metrics obtained from obstacle avoidance experiments, including the
average depth map prediction publication frequency, the data utilization rate, the CV for
the continuous scale factor sequence, and the obstacle avoidance success rate, along with
the algorithm’s support for safe target tracking, we evaluate the autonomous navigation
performance of each algorithm. The data utilization rate is defined as the ratio of the
average monocular RGB image reception frequency to the average depth map prediction
publication frequency. In our experiments, the average monocular RGB image reception
frequency is 30 Hz. The GPU occupancy in navigation experiments is similar to that in
depth estimation experiments, as only the MDE modules asks for GPU processing.

Table 2 provides a comparison of navigation performance for the selected algorithms,
where the “Safe Tracking” column indicates whether the algorithm supports the MAV’s
safe tracking of the target, represented as a boolean value.
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Table 2. Algorithm performance comparison for autonomous navigation experiments

Algorithms APF *
(Hz)

DUR
** (%) CV Navigation *** (%) Success Rate (%) Safe Tracking

MonoDepth 8.2 26.67 6.3 55.6 False

MiDaS 30.0 100 39.4 11.1 False

SC-DepthV2 30.0 100 5.0 77.8 True

* APF: Average publication frequency. ** DUR: Data utilization rate. *** CV Navigation: Coefficient of variation
for scale factor in obstacle avoidance experiments.

4.4. MoNA Bench

Through depth estimation experiments and autonomous navigation experiments,
we extensively explored the performance evaluation metrics for MDE algorithms across
various task scenarios. Ultimately, we identified that achieving efficient TPP requires
MDE algorithms to excel in three key aspects: MDE efficiency, MDE accuracy, and scale
consistency. As a result, we summarized these findings in Table 3 and introduced MoNA
Bench—a benchmark designed to evaluate the performance of MDE in autonomous navi-
gation for UASs. Based on our assessment, SC-DepthV2 emerged as the top-performing
algorithm among the three.

Table 3. Algorithm performance comparison for depth estimation experiments

MoNA Bench

MDE Efficiency MDE Accuracy Scale Consistency Navigation Capability

GPU
Occupancy APF DUR Distance AREs * CV

Estimation
CV

Navigation Success Rate Safe Tracking

* Distance AREs: Average relative errors for 2 m, 3 m, 4.5 m, and 6 m.

5. Discussions and Conclusions

In this work, we presented a real-time micro-aerial vehicle-based unmanned aircraft
system designed for efficient trajectory and path planning through monocular depth
estimation. Building upon our prior research [1], our system integrated an innovative
scale recovery module to address the scale ambiguity challenge, leading to accurate depth
predictions and enabling the reconstruction of real-world scale. This improvement not only
enhanced autonomous obstacle avoidance but also supported safe target tracking under a
precise metric scale.

Meanwhile, the established MoNA Bench provided a benchmark for evaluating monoc-
ular depth estimation in micro-aerial vehicle autonomous navigation. It underscored the
essential attributes that estimation algorithms should possess for efficient trajectory and
path planning: estimation efficiency, depth map accuracy, and scale consistency.

Looking forward, the challenges of single ground station performance limitations
prompt future exploration into lightweight monocular MAV navigation algorithms for
swarm collaboration. Additionally, transitioning from artificial to natural features for
complex scenarios is a noteworthy direction for further investigation.
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