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Abstract: In smart cities, effective traffic congestion management hinges on adept pedestrian and
vehicle detection. Unmanned Aerial Vehicles (UAVs) offer a solution with mobility, cost-effectiveness,
and a wide field of view, and yet, optimizing recognition models is crucial to surmounting chal-
lenges posed by small and occluded objects. To address these issues, we utilize the YOLOv8s model
and a Swin Transformer block and introduce the PVswin-YOLOv8s model for pedestrian and ve-
hicle detection based on UAVs. Firstly, the backbone network of YOLOv8s incorporates the Swin
Transformer model for global feature extraction for small object detection. Secondly, to address the
challenge of missed detections, we opt to integrate the CBAM into the neck of the YOLOv8. Both
the channel and the spatial attention modules are used in this addition because of how well they
extract feature information flow across the network. Finally, we employ Soft-NMS to improve the
accuracy of pedestrian and vehicle detection in occlusion situations. Soft-NMS increases performance
and manages overlapped boundary boxes well. The proposed network reduced the fraction of small
objects overlooked and enhanced model detection performance. Performance comparisons with
different YOLO versions ( for example YOLOv3 extremely small, YOLOv5, YOLOv6, and YOLOv7),
YOLOv8 variants (YOLOv8n, YOLOv8s, YOLOv8m, and YOLOv8l), and classical object detectors
(Faster-RCNN, Cascade R-CNN, RetinaNet, and CenterNet) were used to validate the superiority of
the proposed PVswin-YOLOv8s model. The efficiency of the PVswin-YOLOv8s model was confirmed
by the experimental findings, which showed a 4.8% increase in average detection accuracy (mAP)
compared to YOLOv8s on the VisDrone2019 dataset.

Keywords: YOLOv8; swin transformer; CBAM; soft-NMS; UAVs; pedestrian and vehicle detection

1. Introduction

In smart cities, computer vision has gained popularity as a means of reducing traffic
congestion and averting accidents in intelligent transportation systems (ITS) [1]. Congestion
develops as traffic volume rises, which lowers object speeds and has negative effects such
as higher consumption of gasoline, wasted time, more mental exertion, and increased air
pollution [2]. Target location detection and categorization (vehicles, pedestrians, etc.) are
crucial components of ITS that can help reduce traffic congestion. Notably, significant interest
has been shown in unmanned aerial vehicles (UAVs), especially drones, in the domains of
artificial intelligence, computer vision, and intelligent transportation [3]. The use of UAVs
is expanding in a variety of fields, including agriculture, sports, the military, and traffic
monitoring, due to the ongoing decrease in manufacturing costs and evolving flight control
technologies. Pedestrian and vehicle detection plays a crucial role in the operations conducted
by UAVs, which shows the significant importance of the current study. However, the wide
field of vision offered by UAVs’ high flying altitude presents difficulties, such as the occurrence
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of extremely small, occluded entities and complicated backgrounds in the images that are
taken. Because of this complexity, object detection becomes more challenging, and UAV-based
object detection places a premium on improving detection performance.

The fundamental goal of the vital field of computer vision is to detect various objects in
digital images [4]. Over recent years, a multitude of architectures, including convolutional
neural networks (CNNs), fully connected networks (FCNs), and vision transformers, have
been vital in driving the development of pedestrian and vehicle detection algorithms. In
particular, there are two primary categories into which detectors based on CNNs can be
generally divided as shown below.

• One-stage detectors (Fully Convolutional One-Stage (FCOS) [5], DEtection TRans-
former (DETR) [6], EfficientDet [7], Single Shot Multibox Detector (SSD) [8], and You
Only Look Once (YOLO1-8) [9];)

• Two-Stage detectors (Spatial Pyramid Pooling Networks (SPPNet) [10], centerNet [11],
the R-CNN family [12–14], and Feature Pyramid Network (FPN) [15]).

In the domain of vehicle and pedestrian detection for UAVs, there is a growing trend
to integrate both one-stage and two-stage object detection (OD) algorithms. These methods
find application in scenarios demanding precise object detection and localization, showing
promising results in this specialized field. However, pedestrians and vehicles in natural
settings present a multiscale structure, with the UAV perspective often capturing small,
low-contrast elements against the background and occluded features. Consequently, the
conventional detection algorithms listed above are not directly applicable to the chal-
lenges faced in UAV object detection. Several initiatives have been undertaken to enhance
detection performance, including attention mechanisms such as CBAM [16], and other
mechanisms [17,18] that have emerged to improve detection performance by leveraging
positional information. This improvement is achieved by using large-size convolutional
kernels to decrease the input tensor channel dimension. In the area of computer vision,
Transformer networks have recently been shown to offer qualitative performance. To
capture relationships within a sequence, the conventional architecture of a visual trans-
former depends on a self-attention mechanism [19,20]. The Swin Transformer is a novel
hierarchical vision backbone network that uses a multi-head self-attention system to encode
global, local, and contextual data with flexibility while focusing on imagining patches [21].
Across a range of tasks involving computer vision, including pixel-level semantic segmenta-
tion [22], region-level OD [23], and image-level classification [24], it has shown remarkable
performance. The Swin Transformer shows particular resilience in difficult situations such
as extreme occlusions, erratic patch positions, and non-salient backdrop areas. However, de-
spite its success, the Swin Transformer’s distinct encoding–decoding structure, which sets
it apart from ordinary CNNs, means that employing it alone for object detection requires
a significant amount of processing power. To be more precise, every Swin Transformer
encoder is made up of two sublayers, a completely connected layer and a multi-head
attention layer, with residual connections being used in between. Through a self-attention
mechanism, this design makes feature representation exploration easier [25,26]. Recent
research on publicly available datasets, such as COCO [27], has substantiated the enhanced
performance of the Swin Transformer, especially in scenarios involving substantial object
occlusion [28]. Recently, the field of UAVs has also seen the utilization of different object
detectors, Swin Transformers, and attention modules. We propose a novel method that
we refer to as PVswin-YOLOv8s to address extremely small item detection and missed
detection issues. This model leverages the effectiveness of YOLOv8s as the fundamental
network, integrating the Swin Transformer for enhanced performance, and incorporates
the CBAM module to improve pedestrian and vehicle detection when deployed on UAVs.

Our primary contributions to this work are listed below.

1. We introduce the PVswin-YOLOv8s model by utilizing YOLOv8s as a baseline model
with a Swin Transformer block for pedestrians and vehicle detection based on UAVs.
This integration involved replacing the last C2f layer from the backbone network of
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YOLOV8s with a Swin Transformer block. The models incorporate global feature
extraction for detecting extremely small items;

2. Then, to overcome the issues of missed detection, we incorporate the CBAM module
into the YOLOv8s neck network. This works well for extracting feature information
flow inside the network;

3. We implement Soft-NMS in YOLOv8s as a replacement for NMS to improve detection
achievement in occlusion scenarios. Occlusion is a major problem in the detection
of objects for UAVs, and NMS methods frequently lead to missed identifications.
Soft-NMS enhances accuracy for detection and manages overlapped bounding boxes
with efficacy.

The rest of the paper is structured as follows: Section 2 contains the related work.
The methods and structure of PVswin-YOLOv8s are covered in Section 3. A thorough
description of the tests and findings along with detailed discussion is given in Section 4.
Finally, the conclusions are presented in Section 5.

2. Related Work

The Visdrone dataset serves as a critical resource for UAV research, offering a rich
collection of small, obscured objects set against intricate backgrounds. This dataset, specifi-
cally designed for UAV applications, encompasses scenarios that are pivotal for the traffic
management of smart cities. Our model, termed ‘PVswin-YOLOv8s’, is inspired by the
dataset’s diversity, which includes the detection of individuals, pedestrians, and various
vehicles. The ‘PVswin’ nomenclature underscores our focus on addressing the multifaceted
challenges of traffic congestion in smart cities. This literature review section provides a
detailed examination of prior research efforts within the UAV domain, particularly empha-
sizing OD methodologies utilizing the Visdrone dataset. We critically assess the limitations
of existing algorithms, such as their struggles with occlusions, small object detection, and
missed identifications, which our proposed model aims to overcome. By situating our
research within this broader context, we underscore the novelty and significance of our
contributions to the field.

In the succinct overview of prior research efforts within the UAV domain, particularly
emphasizing using the Visdrone2019 dataset, Payal et al. [29] proposed a Dilated RCNN-
based model and Feature Fusion Module. The system was applied to the VisDrone dataset,
which achieved a 35.04% mAP. Liu et al. [30] proposed an enhanced vehicle detection
algorithm in intelligent transportation applications that addresses challenges posed by
dense distribution and scale variations in UAV images. The proposed model excels in small
object detection, surpassing the baseline YOLOX by an impressive 3%. However, its ability
to detect extremely small objects is inadequate.Deng et al. introduced LAI-YOLOv5s [31],
an optimized YOLOv5s variant for aerial image object detection, which incorporates DFM-
CPFN for feature fusion and a VoVNet module for enhanced feature extraction, achieving
a 40.0% mAP:0.5. This lightweight algorithm demonstrates improved detection accuracy
and computational efficiency compared to its predecessors. Lou et al. [32] introduced the
DC-YOLOv8 model for small object detection, incorporating a downsampling technique
to preserve context features. The model includes an enhanced feature fusion network for
the effective integration of shallow and deep information, along with a newly proposed
network structure. These innovations collectively contribute to a 2.5% increase in detection
accuracy compared to YOLOv8s, addressing challenges associated with human fatigue in
complex scenes.To improve feature extraction and localization classification, Li et al. [33]
developed STF-YOLO, an advanced UAV remote sensing image small target detection
algorithm that combines the Swin Transformer with CNNs. This improved detection
performance over previous approaches was demonstrated by metrics like 3.9% mAP and
2.0% AP50 on the VisDrone dataset. Tang et al. [34] presented HIC-YOLOv5, an enhanced
YOLOv5 model that employs a small object detection head for high-resolution feature
maps, an involution block for channel information enhancement, and CBAM for feature
importance. As a result, the proposed model achieved 36.95% mAP:0.5. Sirisha and
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Sudha [35] introduced a novel object detection framework known as PvSAMNet for UAV
imagery, which employed a Transformer backbone and a split attention module to enhance
feature extraction and object detection. The model achieves a mAP of 38.74%, addressing
the challenges of UAV-based object detection.

The literature review showcases the effectiveness of the Swin Transformer and CBAM
in enhancing object detection, yet their integration into UAV-based models has not been
fully optimized. Building on these findings, our research introduces a refined integration of
these components into the YOLOv8s framework, tailored to enhance detection accuracy for
UAV imagery. This approach aims to capitalize on their proven benefits while streamlining
the model for optimal performance in UAV-based traffic management scenarios.

3. Proposed Method
3.1. Network Framework of YOLOv8s

One of the most popular networks for object detection is YOLOv8 [36], the newest
model in the YOLO family of detection models. With its increased accuracy and faster
detecting speed, it performs better than many of the prior models. YOLOv8 offers scalability,
with network models available in different sizes to meet various usage requirements.
Leveraging these advantages, this study aims to employ the enhanced YOLOv8s for the
detection of pedestrians and vehicles. The backbone network, neck, and head network are
the three main parts of the YOLOv8 algorithm design, as Figure 1a illustrates.
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Figure 1. (a) The network structure of YOLOv8, where w stands for width and r for ratio, and
the feature map size are represented by the parameters. (b) represents the architecture of Conv
layers (c) represents the structure of C2f layers (d) represents the structure of SPPF (e) represents the
architecture of detection layers in the head section.

First, the input image is resized to maintain a uniform dimension of 640 × 640 for all
input images. The backbone network creates three-layer feature maps (80 × 80, 40 × 40, and
20 × 20) by extracting feature maps from the input images using repeated convolutions.
The neck network then incorporates feature fusion layers to efficiently combine the image
features and reduce information loss. The merging process incorporated the distinctive
pyramid structure of the Feature Pyramid Network (FPN) and Path Aggregation Network
(PANet). This integration facilitates the transfer of strong semantic features to top-down-
level feature maps, using the FPN structure to enhance information flow. Finally, the joint
use of the PAN and FPN structures improves the neck network feature fusion capacity. A
detection head is used to obtain the final detection outcomes. More specifically, the core
elements of YOLOv8s consist of the CBS module shown in Figure 1b (Convolution, Sigmoid-
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weighted Linear Unit (SiLU) activation, and Batch Normalization (BN)), the Spatial Pyramid
Pooling Fusion (SPPF) module depicted in Figure 1d, and the C2F module represented in
Figure 1c (which incorporates features from ELAN [37] and is inspired by C3 to provide
lightweight functionality). The CBS structural combination makes it possible to select
models with excellent accuracy and efficiency. The module tackles gradient dispersion
using feature reuse, which guarantees that the original data are preserved to a large extent.
Moreover, the SPPF module increases classification accuracy by extracting and fusing high-
level features and gathering a range of high-level semantic characteristics through several
maximum pooling methods. By adopting the desired decoupling head technique, YOLOv8
sets itself apart from previous YOLO architectures [38]. Figure 1e illustrates the detection
head, which consists of regression and classification branches using binary cross-entropy
(BCE) loss for classification and distributed focal loss (DFL) for regression (localization) [39].
The DFL features separate sections for localization and categorization and is designed for
one-stage object detectors to enhance detection performance. By modeling box locations
as broad distributions, it focuses the network’s attention on values that are close to the
ground-truth label [40]. In addition, a task-aligned assigner is used by the YOLOv8 head
to assign ground-truth objects to expected bounding boxes [41,42] by combining both
classification and localization information.

3.2. Pedestrian and Vehicle Detection Network (PVswin-YOLOv8s)

We have introduced PVswin-YOLOv8s, a detection model that integrates YOLOv8s,
Swin Transformer, and CBAM to enhance the robustness of pedestrian and vehicle detec-
tion. We selected the small version of YOLOv8 for its improvements over other variants
based on its balance of computational efficiency and detection accuracy, which are crit-
ical for UAV applications. YOLOv8s, being a smaller model, offers a lower number of
parameters and less memory usage, which is essential for the constrained computational
resources of UAVs. Our model strategically replaces the last C2f layer in the YOLOv8s
backbone with a Swin Transformer block, as illustrated in Figure 2a. This integration
operates on low-resolution feature maps (20 × 20), which reduces computational load
and memory requirements. It addresses the YOLOv8s limitation in capturing global and
contextual information, a common challenge for CNNs with limited receptive fields [43],
by leveraging the Swin Transformer’s ability to capture long-distance dependencies and
diverse local information [21]. The Swin Transformer block employs a default patch size of
4 × 4 pixels for initial patch embeddings, which is then dynamically expanded through
the shifted window mechanism, effectively increasing the receptive field size without
adding computational complexity. This integration ensures the model retains the speed
and precision of YOLOv8s while enhancing its capability to detect objects in complex UAV
imagery, making it an effective solution for traffic management in smart cities. Then, CBAM
is introduced into the neck network of YOLOv8 to improve feature information by utilizing
its dual-channel nature, as described in Figure 2b. Additionally, we implement soft-NMS
for better detection of overlapping objects as a replacement for NMS, which is used in the
YOLOv8 model to refine candidate boxes for pedestrians and vehicle detection, with the
threshold balance affecting accuracy in the scenario of UAVs. By addressing occlusion
issues, soft-NMS integration offers an adaptable method that maximizes detection. This
comprehensive approach aims to maximize the detection of the quantity and location
information for pedestrians and vehicles. The network is shown in Figure 2.

3.3. Swin Transformer Block

To address the problem of the varying sizes of pedestrians and vehicles in UAV
imagery, this work incorporates the sliding window multi-head self-attention mechanism
of the Swin Transformer, which improves the ability of the model to capture and process
global features effectively. Swin Transformer [21], which is based on the Transformer [44]
design, has shown remarkable performance in computer vision applications like detection,
segmentation, and classification. An overview of the Swin Transformer architecture is
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shown in Figure 3. Using a patch division module, the input image is split up into discrete,
non-overlapping pieces. Every patch is regarded as a “token”, with features created by
joining the raw values of its pixels. With the 4 × 4 patch size used in this investigation,
each patch has a feature dimension of 4 × 4 × 3 = 48. Then, as shown in Figure 3a, a linear
embedding layer projects the raw value feature to an arbitrary dimension, represented by
the design element C. Figure 3b depicts this approach. To construct the Swin Transformer, a
modified Multi-head Self Attention (MSA) module based on “shifted windows” (SW-MSA)
and “windows” (W-MSA) was installed in place of the normal MSA module in a standard
Transformer block. The other layers were left unchanged. This module is replaced by a
two-layer Multi-Layer Perceptron (MLP) with nonlinearity between Rectified Linear Units
(ReLU). Before and after each MSA module and MLP layer, LayerNorm, the normalization
layer, and a residual connection were applied.
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3.4. CBAM

Based on the decomposition of the attention mechanism in a three-dimensional fea-
ture map into channel attention and spatial attention, the feed-forward convolutional
neural network attention module known as the Convolutional Block Attention Module
(CBAM [16]) is illustrated in Figure 2b. The spatial attention module should be included
after the channel attention module to achieve the best results. This lightweight module is
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easily implemented into any CNN architecture for thorough training. Channel attention
entails applying methods like maximum pooling and average pooling within each channel
to compress the spatial dimension of the feature map F into a one-dimensional vector. The
resulting aggregated information is processed through a shared network to compile spatial
data, The channel attention mechanism, expressed in Equation (1), incorporates the f (σ),
W0 ∈ RC × C/r, and W1 ∈ RC × C/r. The shared MLP weights for both inputs denoted
as W0’ are succeeded by the activation function of the ReLU, applied to W1. The input of
the spatial attention module is the feature map that results from multiplying the output of
the channel attention module by F. Max pooling and average pooling between the channel
dimensions were used to produce channel compression, and the compressed results were
then concatenated. The final weight is calculated using the Sigmoid coefficients and a
7 × 7 fusion operation, as per Formula (2), where σ represents the sigmoid function and
f 7×7 is the convolution operation with a 7 × 7 filter size.

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ
(

W1

(
W0(Fc

avg) + W1(W0(Fc
max)

)) (1)

Ms(F) = σ( f 7×7(Fs
avg, Fs

max)) (2)

3.5. Soft-NMS

We opt to integrate the Soft-NMS algorithm with the Gaussian reset method as a
replacement for the traditional NMS algorithm within the YOLOv8 framework. This choice
offers several advantages, notably its simplicity and versatility. The Soft-NMS algorithm
requires minimal modification to the traditional NMS approach, eliminating the need for
additional parameters and ensuring ease of implementation. Despite its enhanced func-
tionality, Soft-NMS maintains the same algorithmic complexity as traditional NMS, thereby
avoiding an increase in computational burden. Furthermore, its seamless integration into
existing object detection pipelines facilitates its adoption across various applications with-
out the need for additional training. Soft-NMS enhances the robustness and accuracy of
object detection systems by preventing object missed detection resulting from overlapping
proposals [45]. The usage of NMS will result in objects in the overlapping region being miss
identified because of the overlapping features of UAV imagery. By adding a confidence
decay factor, Soft-NMS preserves the confidence information of overlapping objects and
resolves overlapping concerns in occlusion. Soft-NMS improves the localization accuracy of
high-confidence bounding boxes by adjusting suppressing based on confidence as well as
overlap, in contrast to classic NMS (Non-Maximum Suppression), which primarily depends
on IoU for suppression and may mistakenly remove essential objects. Specifically designed
to handle occlusion scenarios, Soft-NMS has the following mathematical expression (3):

si =

{
si, iou(M, bi) < Nt

si(1 − iou(M, bi)), iou(M, bi) ≥ Nt
(3)

The expression iou (.) measures the intersection over union ratio within the i-th
candidate box M, Nt indicates an established limit, and si indicates the result of the i-th
candidate box. M and bi represent the coordinates of the candidate box alongside the
greatest rating and the coordinates of the i-th candidate box, respectively.

4. Experimental Results
4.1. Overview of the Experiment

In this section, we first go over the dataset and parameters that were utilized for
this research, and then we introduce the evaluation metrics that are connected to our
experimental findings.
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4.1.1. Dataset and Hyper Parameters

VisDrone2019 [46] is a noteworthy group of UAV aerial photos. The AISKYEYE data-
mining team and Tianjin University collaborated to create this dataset, which features a
range of urban settings from multiple Chinese cities. Using different UAVs, the dataset
provides rich and extensive resources by capturing imagery from a variety of situations,
viewpoints, and tasks. Among the noteworthy features are the large variety of detection
object categories (from highly diverse to monotonous), varying quantities of detection
objects, sparse and dense distributions of detection objects, and observations made in both
day and night lighting conditions. Without compromising originality, this large and diverse
dataset offered insightful information for the study and development of UAV-related
applications. Ten different class types were covered by VisDrone2019, including pedestrians
and vehicles. This study uses a dataset partitioning method akin to the VisDrone 2019
challenge, dividing the data into three separate subsets: 6471 instances in the training
subset, 548 instances in the validation subset, and 1610 instances in the test subset. The
insights obtained from manual labeling of the dataset are presented in Figure 4. The item
distribution is highlighted in the first subfigure, which shows that pedestrians and vehicles
are predominant. The second subplot showcases the dimensions of object bounding boxes
in the dataset, maintaining consistent positioning of object box centers. The prevalence of
numerous small-sized objects is apparent from the observed sizes of the object bounding
boxes. The third subplot illustrates the distribution of center point coordinates within
object bounding boxes, with the majority concentrated in the central and lower-right
regions of the image data area. The fourth subplot, a scatter plot representing the width
and height of object bounding boxes, highlights the dominance of small objects in the
dataset. VisDrone2019 offers a dataset that is densely distributed and full of extremely
small objects. Unlike standard computer vision datasets, it is a demanding dataset for
UAV-related computer vision tasks because of its unique qualities, which include numerous
scales, scenery, and viewpoints.

The VisDrone 2019 dataset offers a distinctive challenge for computer vision problems
connected to UAVs due to its dense distribution of small objects and diverse range of
scales, landscapes, and viewpoints. This dataset is a challenging testbed for creating
reliable detection algorithms because it deviates greatly from normal computer vision
datasets. To overcome these obstacles and guarantee that our model operates at peak
efficiency for UAV applications, we set the image size to 640 × 640 pixels. This resolution
enables efficient deployment on edge devices by striking a compromise between computing
efficiency and maintaining essential visual characteristics. Together with an Intel (R)
CoreTM i5-6300U processor and 24 GB of RAM, our experimental configuration included
Torchvision 0.10.1 for developing the model and the PyTorch 2.0.1 framework as shown
in Table 1. The baseline version of YOLOV8 employed was Ultralytics 8.0.25. Pretraining
weights were not used in any of the comparative investigations of training procedures to
guarantee the comparable nature and integrity of the model impacts. To address the specific
requirements of UAV-based applications, where target recognition and reasoning must be
performed efficiently, the model must be optimized for minimal parameters, a low memory
footprint, and swift inference. Consequently, YOLOv8s was selected as the baseline model
for enhancement. This variant is characterized by its constrained network depth and
width, yet it retains the core features of the YOLOv8 series, making it well-suited for the
resource-limited environment of UAVs. To comprehensively evaluate the performances,
we compared the proposed PVswin-YOLOv8s with previous versions of YOLO ( YOLOv3-
tiny, YOLOv5, YOLOv6, and YOLOv7), different sizes of YOLOv8 (YOLOv8n, YOLOv8s,
YOLOv8m, and YOLOv8l), and some classical models (RetinaNet, CenterNet, cascade
R-CNN, and faster R-CNN). Table 2 lists the primary hyperparameters that were employed
in this study.
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Table 1. The experimental environment for our model.

Parameters Configuration

CPU I5-6300U

GPU NVIDIA A10, 22,592 MiB

GPU memory 24 GB

Python 3.10.13

Ultralytics YOLOv8.0.25

DL architecture Pytorch2.0.1 + cu117, CUDA

Table 2. The key parameters we used during model training.

Parameters Setup

Epochs 200

Learning rate 0.01

Image size 640 × 640

Batch size 8

optimizer SGD

Weight decay 5 × 10−4

Momentum 0.932

Mosaic 1.0

Patience 50

Close mosaic last 10 epochs

Figure 4. Information regarding the manually labeled objects in the VisDrone2019 dataset.
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4.1.2. Evaluation Matrix

We used model size, detection speed per image, precision (P), recall (R), F1-score,
mAP0.5, and mAP0.5:0.95, in addition to other measures, to assess the detection abilities
of our proposed PVswin-YOLOv8s model. The formulation for some of these evaluation
metrics involves specific parameters: True Positive (TP) denotes instances where the pre-
diction correctly identifies the positive class; False positives (FP) indicate instances where
the prediction incorrectly identifies the Positive class; and False Negative (FN) represents
instances in which the prediction incorrectly identifies the negative class. Meanwhile, the
ratio of their intersection to their union, or the intersection over union (IoU), indicates the
percentage of contact between the bounding box and the true box.

4.1.3. Precision and Recall

As Equation (4) illustrates, precision [47] is calculated as the ratio of positively pre-
dicted samples by the model to the total number of observed samples.

Precision = TP/TP + FP (4)

The percentage of positively predicted samples that the model properly recognized
about the total number of positive samples present is known as recall [47]. Equation (5) is
utilized in the computation of recall.

Recall = TP/TP + FN (5)

The precision–recall curve, or P–R Curve, is a useful representation for visualizing
model performance. The study by Boyd et al. [48] displays a plot of recall on the x-axis and
precision on the y-axis.

4.1.4. F1-Score

The algorithm performance can potentially be accurately evaluated by using the F1-
score [47], which considers both Precision and Recall. Equation (6) shows how the F1-score
is calculated.

F1 = 2 ∗ Precision ∗ Recall/Precision + Recall (6)

In image recognition tasks, the F1-score is a statistic that is frequently used to evaluate
an algorithm’s object detection ability. As a result, we chose to employ the F1-score as the
primary indicator for assessing our model efficacy.

4.1.5. Mean Average Precision (mAP)

The area under the precision–recall curve is the same as the average precision (AP),
which may be calculated using the formula below.

AP =
∫

P(R)dR (7)

The Mean Average Precision (mAP), a general indicator of the model’s detection perfor-
mance, is computed using the weighted average of the AP values for each sample category.

mAP =
1
N

N

∑
t=1

APi (8)

In Equation (8), APi represents the AP value corresponding to category index i and
N indicates the total number of categories in the training dataset (n = 10 in our case). The
mean average accuracy is represented by mAP0.5 when the detection model’s IoU is set to
0.5. Conversely, the mean average accuracy is represented by mAP0.5:0.95 when the IoU
values vary from 0.5 to 0.95.
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4.2. Results and Analysis

We conducted four sets of comparative studies to demonstrate the superiority and
efficacy of our proposed PVswin-YOLOv8s model. The first set involved a thorough
comparison with the baseline model YOLOv8s. In the second set, we compared our model
with four versions of YOLOv8. The third set involved a comparison with various YOLO
series versions. In the final set, we extended our comparisons to include other classical
models renowned for their exceptional performance.

4.2.1. Comparison with YOLOv8s

We conducted comparative experiments between our proposed PVswin-YOLOv8s
and the baseline YOLOv8s model in the validation set of the VisDrone2019 dataset to
highlight the enhanced detection performance of our model. Table 3 presents mAP values
for individual classes and mAP0.5 values across all classes, showcasing the improved
performance of our model compared to YOLOv8s. The proposed model exhibited a 4.8%
enhancement in mAP, as indicated in Table 3.

The variation trends in important evaluation measures for our proposed PVswin-
YOLOv8s model and YOLOv8s during the training phase are shown in Figure 5. We
noticed that the model halted at the 162nd epoch during the training procedure. To
conserve computer power, we decided that all model training should have 200 epochs. The
findings show that our proposed model performs better than YOLOv8s in terms of the
precision, recall, and mAP0.5 detection measures. Furthermore, our approach outperforms
YOLOv8s in terms of detecting capabilities and training speed.

(a) (b)

(c)
Figure 5. Training curves (a) showing precision between PVswin-YOLOv8s and YOLOv8s on the
Visdrone2019-train dataset; (b) showing recall between PVswin-YOLOv8s and YOLOv8s; (c) showing
a comparison between Pvswin-YOLOv8s and YOLOv8s in mAP.

Figure 6 displays the experimental results of YOLOv8s and the proposed PVswin-
YOLOv8s model on the VisDrone2019-val dataset. Because it covers a bigger region,
the PVswin-YOLOv8s curve for the entire class has a higher F1 value, according to the
F1–Confidence graph and the precision–recall Curve (P–R Curve). This discovery suggests
that the enhancements were advantageous to the model.
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Table 3. Comparative analysis of detection accuracy between the PVswin-YOLOv8s model and YOLOv8s
in Visdrone2019-val. The bolded numbers are the most accurate indicators for each category.

Models Pedestrian People Bicycle Car Van Truck Tricycle Awning-Tricycle Bus Motor mAP0.5 (%)

YOLOv8s 40.6 32.2 12.4 78.8 43.6 34.4 26.8 15.2 57.3 43.5 38.5

PVswin-YOLOv8s 45.9 35.7 16.4 81.5 49.1 42.4 32.8 17.7 62.9 48.2 43.3

(a) Evaluation factor of yolov8s 

(b) Evaluation factors of Pvswin-YOLOv8s

Figure 6. Evaluation factors of Yolov8s and the proposed PVswin-YOLOv8s.
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4.2.2. Comparison with Other Versions of YOLOv8

To demonstrate the efficacy of the proposed strategy, we conducted a comparative
study between the proposed PVswin-YOLOv8s model and the other YOLOv8 variations
(YOLOv8n, YOLOv8s, YOLOv8m, and YOLOv8l) using the VisDrone2019 validation and
test datasets. Table 4 displays the experimental outcomes on the validation set. Precision
and mAP0.5, the two evaluation indices, show the highest values for the upgraded model.
Meanwhile, its mAP0.5:0.95 is only 0.1% lower than YOLOv8l, and its F1-score is compa-
rable to YOLOv8l, suggesting that the detection performance is better than larger-scale
models. Meanwhile, Table 5 displays the experimental outcomes on the test set. The preci-
sion, F1-score, and mAP0.5 are better for PVswin-YOLOv8s model than for all versions n, s,
m, l of YOLOv8. The results of the experiment show that our proposed model significantly
improves the accuracy of small object detection.

Table 4. The experimental findings use four distinct sizes of YOLOv8 and our proposed model on
VisDrone2019-val. The bolded numbers are the most precise indicators.

Models Precision (%) Recall (%) F1-Score mAP0.5 (%) mAP-0.5:0.9 (%) Detection Time (ms) Model Size (MB)

YOLOv8n 43.2 32.5 0.37 32.6 18.9 4.4 6.2

YOLOv8s 49.9 38 0.43 38.5 23 6.0 22.5

YOLOv8m 52.5 41 0.46 41.7 25.2 11.4 49.2

YOLOv8l 54.2 42.4 0.47 43 26.5 14.8 87.6

Proposed:
PVswin-YOLOv8s 54.5 41.8 0.47 43.3 26.4 6.2 21.6

Table 5. The experimental findings use four distinct sizes of YOLOv8 and our proposed model on
VisDrone2019-test. The bolded numbers are the most precise indicators.

Models Precision (%) Recall (%) F1-Score mAP0.5 (%) mAP-0.5:0.9 (%) Model Size (MB)
YOLOv8n 38.2 28.7 0.32 26.1 14.6 6.2
YOLOv8s 44.5 32.3 0.37 30.5 17.4 22.5

YOLOv8m 46.3 35.3 0.40 33.4 19.4 49.2

YOLOv8l 48.1 37 0.41 35 20.6 87.6

Proposed:
PVswin-YOLOv8s 49.7 36.4 0.42 35.2 20.4 21.6

4.2.3. Comparison with Other Versions of YOLO

The YOLO family of algorithms is examined in this work, including YOLOv3-tiny [49],
a more compact version of the method. With the use of mosaic data augmentation,
YOLOv5 [50] improves the speed and accuracy of model training. YOLOv6 [51] intro-
duces an efficient decouple head, while YOLOv7 [52] utilizes the ELAN efficient network
architecture. Table 6 provides a full summary of the outcomes of these comparison models.

Based on the analysis presented in Table 6, it can be concluded that previous YOLO
series algorithms, even the sophisticated YOLOv3-Tiny, have poorer detection accuracy
than the proposed PVswin-YOLOv8s. The latter is a lightweight model but this comes
at the cost of greatly reduced detection accuracy. Compared to previous YOLO versions,
YOLOv5, which has smaller model sizes, performs better in detection. YOLOv7 performs
worse regarding model size and detection performance but better in terms of detection
speed compared to PVswin-YOLOv8s. PVswin-YOLOv8s shows the best overall detection
performance and the highest average detection accuracy in comparable studies. Even with
a longer inference time, the enhanced model can still detect targets with success.
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Table 6. The comparative experimental outcomes of our proposed model examined against different
versions of YOLO algorithm on VisDrone2019-val. The bolded results indicate the best values.

Models Precision (%) Recall (%) mAP0.5 (%) mAP0.5:0.95 (%) Detection Time (ms) Model Size (MB)

YOLOv3 (tiny) 37.2 24.1 23.2 12.9 2.7 24

YOLOv5 42.3 31.9 31.5 18 3.8 5.3

YOLOv6 39.8 29.4 29.1 17 3.3 8.7

YOLOv7 50.2 41.1 37.9 19.9 1.9 72

YOLOv8s 49.9 38 38.5 23 6.0 22.5

PVswin-YOLOv8s 54.5 41.8 43.3 26.4 6.2 21.6

4.2.4. Comparison with the Classical Model

Next, we carried out a comparison study to assess the accuracy of PVswin-YOLOv8
against other widely used models, namely, Faster RCNN [14], Cascade R-CNN [53], Reti-
naNet [54], and CenterNet [11]. Table 7 presents the experimental outcomes. The proposed
model outperforms other notable models. Interestingly, two-stage algorithms like Faster
R-CNN show poorer detection speeds than their one-stage counterparts. Their feature
maps also have lower resolution, which affects the precision of small-object detection.
Concentrating on sample determination, RetinaNet could overlook things in cluttered
scenes or situations where extremely small objects overlap. Although CenterNet eliminates
processing linked to anchors, it has difficulties with small-object occlusion and dense scenes.
The multilevel detection employed by Cascade R-CNN improves overall performance but
adds complexity and training difficulty. RetinaNet may have trouble identifying small ob-
jects even when it employs multiscale feature fusion. The model proposed in this research
provides better outcomes in this situation without having the drawbacks of RetinaNet.

Table 7. Comparison of PVswin-YOLOv8s with some classical models. The bolded results show the
optimal values.

Models mAP0.5 (%) mAP0.5:0.95 (%)

Faster RCNN 37.2 21.9

Cascade R-CNN 39.1 24.3

RetinaNet 19.1 10.6

CenterNet 33.7 18.8

PVswin-YOLOv8s 43.3 26.4

In summary, the proposed PVswin-YOLOv8s model shows better detection perfor-
mance than other models in all four comparison studies. The small-object detection struc-
ture of our model offers unique benefits over the other models examined in these experi-
ments, which helps explain its overall better detection performance.

4.3. Ablation Test

To assess the impact of various enhancements on our PVswin-YOLOv8s model, we
conducted ablation experiments using the VisDrone2019 dataset as shown in Table 8. The
integration of the Swin Transformer into the YOLOv8s model for our model led to a
notable improvement in the model’s ability to capture global features, which are crucial
for identifying small objects within complex traffic scenes. This enhancement resulted in
a 2.1% increase in mAP0.5 and a 1.7% increase in mAP0.5:0.95, indicating that the model
became more effective at detecting objects with varying scales and orientations, a common
challenge in UAV imagery. The addition of the CBAM module further refined the feature
extraction process by introducing channel and spatial attention mechanisms. This allowed
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the model to focus on the most relevant features for misidentified objects, leading to a 1.3%
increase in mAP0.5 and a 0.9% increase in mAP0.5:0.95. Incorporating Soft-NMS into the
model addressed the issue of overlapping detection, a frequent occurrence in UAV imagery
due to the proximity of objects in the detection field. Soft-NMS improved the mAP0.5 by
an additional 1.1% and mAP0.5:0.95 by 0.8%, demonstrating its effectiveness in handling
occlusions and ensuring that the model does not miss critical objects due to the presence
of other pedestrians and vehicles. Overall, these enhancements collectively contributed
to a more robust and accurate detection system for traffic management, enabling them to
operate more effectively in dynamic and challenging environments.

Table 8. Ablation test results on visDrone2019-val dataset, where ↑ shows increment in results.

Models mAP0.5 (%) mAP0.5:0.95 (%)
Baseline YOLOv8s 38.5 23

YOLOv8s + Swin Transformer 40.6 (↑ 2.1% ) 24.7 (↑ 1.7%)

YOLOv8s + Swin + CBAM 42.2 (↑ 1.3 %) 25.6 (↑ 0.9 %)

PVswin-YOLOv8s 43.3 (↑ 1.1%) 26.4 (↑ 0.8 %)

4.4. Visual Analysis

Interpretability problems with deep learning models impede the development and ap-
plication of these models. We conducted evaluations and examined the model performance
using three optics, confusion matrix, model inference results, and detection outcomes, to
determine the visual efficacy of the proposed model for detection. This approach provides
a straightforward means of understanding the model’s detection capabilities. In Figure 7,
we have generated confusion matrices for PVswin-YOLOv8s and YOLOv8s to illustrate
the precision of our object classification method. The true and predicted categories are
represented, respectively, by the rows and columns of the matrices. Values along the diago-
nal represent the percentage of correctly anticipated categories, whereas values elsewhere
represent the percentage of wrongly predicted classes.

(a) (b)

Figure 7. (a) YOLOv8s confusion matrix (b) PVswin-YOLOv8s confusion matrix.

As can be seen in Figure 7, PVswin-YOLOv8s has a darker diagonal element in
its confusion matrix than YOLOv8s, indicating its higher object categorization ability.
Conversely, misidentifying extremely small autos and walkers as background is more
probable, suggesting that a significant fraction of both groups are overlooked during
detection. The modified model still has a rather low prediction accuracy, even though it
reduces the percentage of missed detection for certain categories.

As shown in Figure 8, we conducted a comprehensive visual comparison of PVswin-
YOLOv8s with YOLOv5 and the baseline YOLOv8s. Figure 8a provides a visual represen-
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tation of ground-truth annotations, serving as a benchmark for evaluation. Figure 8b–d
display the prediction results of YOLOv5, YOLOv8s, and PVswin-YOLOv8s, respectively.
Notably, Figure 8e present the charts that illustrating the detection performance. The x-axis
enumerates the categories within the VisDrone 2019 dataset, while the y-axis showcases
the count of ground-truth labels and prediction results of models. This detailed breakdown
highlights PVswin-YOLOv8s’ superior ability to identify objects, particularly pedestrians
and vehicles, compared to YOLOv5 and YOLOv8s. The model excels at detecting small
and occluded objects, where YOLOv8s faces challenges. The strategic adjustments made
to address issues with misidentified, occluded overlapped, and small targets have signifi-
cantly contributed to the enhanced performance of PVswin-YOLOv8s. In conclusion, our
model demonstrates superior overall performance compared to the baseline YOLOv8s,
showcasing its advanced detection capabilities in challenging scenarios.

Figure 8. Comparative visualization of detection results on the Visdrone2019-test Dataset: (a) ground-
truth annotations, (b) predictions by YOLOv5, (c) predictions by YOLOv8s, (d) predictions by the
Enhanced PVswin-YOLOv8s Model, and (e) comprehensive detection performance chart. Here Count
shows number of objects.



Drones 2024, 8, 84 17 of 20

4.5. Discussion

The experimental results highlight PVswin-YOLOv8s’s superior detection perfor-
mance compared to YOLOv8s. Our proposed enhancements involve optimizing the back-
bone and neck parts of the network. PVswin-YOLOv8s integrates YOLOv8s, Swin Trans-
former, CBAM, and soft-NMS for robust UAV-based pedestrian and vehicle detection. The
strategic placement by replacing the last C2f layer in the backbone network of YOLOv8s
with a Swin Transformer block in the low-resolution feature maps of YOLOv8s addresses
its limitations and then captures long-distance dependencies and diverse local information.
This ensures a balance between global and local features. Secondly, CBAM in the neck
network enhances feature information, leveraging its dual-channel nature, as depicted in
Figure 3. Finally, soft-NMS was introduced as a replacement for NMS. Soft-NMS can be
used to solve the issue of several objects overlapping in Visdrone2019 images, preventing
targets from being missed. The fusion of YOLOv8s, Swin Transformer, CBAM, and soft-
NMS preserves individual strengths, culminating in improved detection capabilities. In
this study, we have evaluated our PVswin-YOLOv8s model in the following ways:

1. We compared our model with the baseline model YOLOv8s. Table 3 shows the mAP
values for each class, as well as the mAP0.5 values for all classes. As can be seen,
with the proposed PVswin-YOLOv8s model, detection accuracy improved by 4.8%
compared to the baseline model on the Visdrone2019 dataset;

2. We compared our model against four versions of YOLOV8, specifically, YOLOv8n,
YOLOv8s, YOLOv8m, and YOLOv8l. The results are presented in Table 4 using
the VisDrone2019-val dataset and in Table 5 using the test set. PVswin-YOLOv8s
outperforms YOLOv8n, YOLOv8s, and YOLOv8m, exhibiting the highest values for
precision and mAP0.5. Additionally, its F1-score is comparable to YOLOv8l, with
mAP0.5:0.95 only 0.1% lower than YOLOv8l based on the results in Table 4. AS can
be seen in Table 5, PVswin-YOLOv8s’s precision, F1 score, and mAP0.5 are superior
to YOLOv8l, indicating superior detection performance despite a smaller model size.
The experimental findings underscore the effective enhancement of detection accuracy
for extremely small objects in our proposed structure;

3. We compared our model with previous versions of YOLO, specifically, YOLOv3-tiny,
YOLOv5, YOLOv6, and YOLOv7. Here, our model also outperformed these previous
version of YOLO, as shown in Table 6;

4. We carried out experiments to evaluate the performance of our proposed model
against classical start-of-the-art (SOTA) models, namely, Faster-RCNN, Cascade R-
CNN, RetinaNet, and CenterNet. The results are presented in Table 7. Based on
these findings, our model outperforms these SOTA models in terms of detection
performance;

5. We performed an ablation test that demonstrated that the integration of the Swin
Transformer led to a 2.1% increase in mAP0.5 and a 1.7% increase in mAP0.5:0.95,
highlighting the model’s improved detection of small objects in complex scenes as
shown in Table 8. The CBAM module contributed an additional 1.3% to mAP0.5 and
0.9% to mAP0.5:0.95, while Soft-NMS further improved these metrics by 1.1% and
0.8%, respectively, ensuring robust detection in occluded environments.

Following the quantitative assessments, we carried out a comprehensive visualization
analysis, scrutinizing key evaluation factors such as precision, recall, and F1-score. Addition-
ally, a thorough examination of the confusion matrix and detection results was carried out for
both the baseline YOLOv8s and our enhanced PVswin-YOLOv8s model. At the same time,
despite the commendable performance of our model surpassing all discussed counterparts,
it is essential to acknowledge that there is room for improvement. Notably, the detection
accuracy for extremely small objects, such as bicycles and tricycles, remains a challenge. This
observation prompts our commitment to the next phase of major research, where the primary
focus will be on further optimizing the model’s accuracy for detecting diminutive objects. This
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optimization endeavor is intricately balanced with the consideration of resource consumption,
ensuring a holistic approach to model enhancement.

5. Conclusions

In smart cities, challenges related to pedestrian and vehicle detection, including ex-
tremely small items, occluded objects, and complicated backgrounds, remain for UAVs used
in traffic congestion detection. Most of the existing algorithms suffer from low detection
accuracy. To optimize the detection performance of the model, this research proposed an op-
timized pedestrian and vehicle detection model by integrating YOLOv8s, Swin Transformer,
CBAM model, and soft-NMS, called PVswin-YOLOv8s. Firstly, the backbone network of
YOLOv8s incorporates the Swin Transformer model by replacing the last C2f layer for
global feature extraction for extremely small object detection. Secondly, to address the
challenge of missed detections, we opt to integrate the CBAM into the neck of the YOLOv8s
network. This inclusion involves leveraging both the channel attention module and spatial
attention module, which prove effective in extracting feature information flow within the
network. Finally, to avoid missing targets, Soft-NMS is used to resolve the problem of
several objects overlapping in detection images. When applied to the VisDrone2019-val
dataset, the proposed network decreased the miss identification of occluded overlapped
and extremely small items, and showed an improved detection accuracy of 4.8% over the
baseline YOLOv8s model. The proposed PVswin-YOLOv8s model also outperformed some
previous versions of YOLO, four sizes of YOLOv8, and some classical models in terms
of detection accuracy. However, there is room for improvement in terms of identifying
extremely small vehicles and pedestrians. When it comes to detecting extremely small
objects such as bicycles, the improved model is still not as accurate as it could be. Improving
model detection accuracy with consideration for resource consumption will be the main
focus of future studies.
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