Species-Level Classification of Peatland Vegetation Using Ultra-High-Resolution UAV Imagery
Abstract
:1. Introduction
1.1. Peatland Environments and Their Significance
1.2. Monitoring Peatland Vegetation
1.3. Challenges for Remote Sensing in Peatland Environments
1.4. Study Overview and Objectives
2. Materials and Methods
2.1. Study Area
2.2. UAV Data Collection and Processing
2.2.1. Multispectral Data
2.2.2. RGB Data
2.3. Ground Validation Data
2.3.1. Spectral Reflectance Measurements
2.3.2. GNSS Measurements
2.4. Vegetation Classification
2.4.1. Pixel-Based Classification
2.4.2. ROI Separability and Classification Accuracy
2.4.3. Examining the Impact of Spatial and Temporal Sampling
3. Results
3.1. Processed UAV Imagery and Spectral Data
3.2. Classification Analysis and Accuracy
3.3. Impact of Spatial Resolution
3.4. Impact of Temporal Sampling
4. Discussion
4.1. Classification Analysis
4.1.1. Classification Accuracy
4.1.2. Choice of Methodology
4.1.3. Misclassification of Species
4.2. Impact of Spatial Resolution
4.3. Impact of Temporal Sampling
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dixon, R.K.; Brown, S.; Houghton, R.A.; Solomon, A.M.; Trexler, M.C.; Wisniewski, J. Carbon Pools and Flux of Global Forest Ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.C. Northern Peatland Carbon Stocks and Dynamics: A Review. Biogeosciences 2012, 9, 4071–4085. [Google Scholar] [CrossRef]
- Belyea, L.R. Separating the Effects of Litter Quality and Microenvironment on Decomposition Rates in a Patterned Peatland. Oikos 1996, 77, 529. [Google Scholar] [CrossRef]
- Clymo, R.S. The Limits to Peat Bog Growth. Philos. Trans. R. Soc. London B Biol. Sci. 1984, 303, 605–654. [Google Scholar] [CrossRef]
- Qiu, C.; Ciais, P.; Zhu, D.; Guenet, B.; Peng, S.; Petrescu, A.M.R.; Lauerwald, R.; Makowski, D.; Gallego-Sala, A.V.; Charman, D.J.; et al. Large Historical Carbon Emissions from Cultivated Northern Peatlands. Sci. Adv. 2021, 7, eabf1332. [Google Scholar] [CrossRef]
- Humpenöder, F.; Karstens, K.; Lotze-Campen, H.; Leifeld, J.; Menichetti, L.; Barthelmes, A.; Popp, A. Peatland Protection and Restoration Are Key for Climate Change Mitigation. Environ. Res. Lett. 2020, 15, 104093. [Google Scholar] [CrossRef]
- Joosten, H. The Global Peatland CO2 Picture: Peatland Status and Drainage Related Emissions in All Countries of the World; Wetlands International: Wageningen, The Netherlands, 2009. [Google Scholar]
- Leifeld, J.; Menichetti, L. The Underappreciated Potential of Peatlands in Global Climate Change Mitigation Strategies. Nat. Commun. 2018, 9, 1071. [Google Scholar] [CrossRef]
- Tanneberger, F.; Appulo, L.; Ewert, S.; Lakner, S.; Brolcháin, N.Ó.; Peters, J.; Wichtmann, W. The Power of Nature-Based Solutions: How Peatlands Can Help Us to Achieve Key EU Sustainability Objectives. Adv. Sustain. Syst. 2021, 5, 2000146. [Google Scholar] [CrossRef]
- D’Astous, A.; Poulin, M.; Aubin, I.; Rochefort, L. Using Functional Diversity as an Indicator of Restoration Success of a Cut-over Bog. Ecol. Eng. 2013, 61, 519–526. [Google Scholar] [CrossRef]
- Rochefort, L.; Isselin-Nondedeu, F.; Boudreau, S.; Poulin, M. Comparing Survey Methods for Monitoring Vegetation Change through Time in a Restored Peatland. Wetl. Ecol. Manag. 2013, 21, 71–85. [Google Scholar] [CrossRef]
- González, E.; Rochefort, L. Drivers of Success in 53 Cutover Bogs Restored by a Moss Layer Transfer Technique. Ecol. Eng. 2014, 68, 279–290. [Google Scholar] [CrossRef]
- Chapin, F.S.; Bret-Harte, M.S.; Hobbie, S.E.; Zhong, H. Plant Functional Types as Predictors of Transient Responses of Arctic Vegetation to Global Change. J. Veg. Sci. 1996, 7, 347–358. [Google Scholar] [CrossRef]
- Kuiper, J.J.; Mooij, W.M.; Bragazza, L.; Robroek, B.J.M. Plant Functional Types Define Magnitude of Drought Response in Peatland CO2 Exchange. Ecology 2014, 95, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.E.; Bardgett, R.D.; McNamara, N.P.; Ostle, N.J. Plant Functional Group Identity Influences Short-Term Peatland Ecosystem Carbon Flux: Evidence from a Plant Removal Experiment. Funct. Ecol. 2009, 23, 454–462. [Google Scholar] [CrossRef]
- Couwenberg, J.; Thiele, A.; Tanneberger, F.; Augustin, J.; Bärisch, S.; Dubovik, D.; Liashchynskaya, N.; Michaelis, D.; Minke, M.; Skuratovich, A.; et al. Assessing Greenhouse Gas Emissions from Peatlands Using Vegetation as a Proxy. Hydrobiologia 2011, 674, 67–89. [Google Scholar] [CrossRef]
- Glaser, P.H. Detecting Biotic and Hydrogeochemical Processes in Large Peat Basins with Landsat TM Imagery. Remote Sens. Environ. 1989, 28, 109–119. [Google Scholar] [CrossRef]
- Holopainen, M.; Jauhiainen, S. Detection of Peatland Vegetation Types Using Digitized Aerial Photographs. Can. J. Remote Sens. 1999, 25, 475–485. [Google Scholar] [CrossRef]
- Poulin, M.; Careau, D.; Rochefort, L.; Desrochers, A. From Satellite Imagery to Peatland Vegetation Diversity: How Reliable Are Habitat Maps? Conserv. Ecol. 2002, 6, 16. [Google Scholar] [CrossRef]
- Anderson, K.; Bennie, J.J.; Milton, E.J.; Hughes, P.D.M.; Lindsay, R.; Meade, R. Combining LiDAR and IKONOS Data for Eco-Hydrological Classification of an Ombrotrophic Peatland. J. Environ. Qual. 2010, 39, 260–273. [Google Scholar] [CrossRef]
- Dissanska, M.; Bernier, M.; Payette, S. Object-Based Classification of Very High Resolution Panchromatic Images for Evaluating Recent Change in the Structure of Patterned Peatlands. Can. J. Remote Sens. 2009, 35, 189–215. [Google Scholar] [CrossRef]
- Ingle, R.; Habib, W.; Connolly, J.; McCorry, M.; Barry, S.; Saunders, M. Upscaling Methane Fluxes from Peatlands across a Drainage Gradient in Ireland Using PlanetScope Imagery and Machine Learning Tools. Sci. Rep. 2023, 13, 11997. [Google Scholar] [CrossRef] [PubMed]
- Connolly, J. Mapping Land Use on Irish Peatlands Using Medium Resolution Satellite Imagery. Irish Geogr. 2018, 51, 187–204. [Google Scholar] [CrossRef]
- O’Leary, D.; Brown, C.; Healy, M.G.; Regan, S.; Daly, E. Observations of Intra-Peatland Variability Using Multiple Spatially Coincident Remotely Sensed Data Sources and Machine Learning. Geoderma 2023, 430, 116348. [Google Scholar] [CrossRef]
- Knoth, C.; Klein, B.; Prinz, T.; Kleinebecker, T. Unmanned Aerial Vehicles as Innovative Remote Sensing Platforms for High-Resolution Infrared Imagery to Support Restoration Monitoring in Cut-over Bogs. Appl. Veg. Sci. 2013, 16, 509–517. [Google Scholar] [CrossRef]
- Lees, K.J.; Quaife, T.; Artz, R.R.E.; Khomik, M.; Clark, J.M. Potential for Using Remote Sensing to Estimate Carbon Fluxes across Northern Peatlands—A Review. Sci. Total Environ. 2018, 615, 857–874. [Google Scholar] [CrossRef] [PubMed]
- Palace, M.; Herrick, C.; DelGreco, J.; Finnell, D.; Garnello, A.J.; McCalley, C.; McArthur, K.; Sullivan, F.; Varner, R.K. Determining Subarctic Peatland Vegetation Using an Unmanned Aerial System (UAS). Remote Sens. 2018, 10, 1498. [Google Scholar] [CrossRef]
- Cole, B.; McMorrow, J.; Evans, M. Empirical Modelling of Vegetation Abundance from Airborne Hyperspectral Data for Upland Peatland Restoration Monitoring. Remote Sens. 2014, 6, 716–739. [Google Scholar] [CrossRef]
- Harris, A.; Charnock, R.; Lucas, R.M. Hyperspectral Remote Sensing of Peatland Floristic Gradients. Remote Sens. Environ. 2015, 162, 99–111. [Google Scholar] [CrossRef]
- Dieleman, C.M.; Branfireun, B.A.; Mclaughlin, J.W.; Lindo, Z. Climate Change Drives a Shift in Peatland Ecosystem Plant Community: Implications for Ecosystem Function and Stability. Glob. Chang. Biol. 2015, 21, 388–395. [Google Scholar] [CrossRef]
- McPartland, M.Y.; Falkowski, M.J.; Reinhardt, J.R.; Kane, E.S.; Kolka, R.; Turetsky, M.R.; Douglas, T.A.; Anderson, J.; Edwards, J.D.; Palik, B.; et al. Characterizing Boreal Peatland Plant Composition and Species Diversity with Hyperspectral Remote Sensing. Remote Sens. 2019, 11, 1685. [Google Scholar] [CrossRef]
- Kalacska, M.; Arroyo-Mora, J.P.; de Gea, J.; Snirer, E.; Herzog, C.; Moore, T.R. Videographic Analysis of Eriophorum Vaginatum Spatial Coverage in an Ombotrophic Bog. Remote Sens. 2013, 5, 6501–6512. [Google Scholar] [CrossRef]
- Mac Arthur, A.A.; Malthus, T.J. An Object-Based Image Analysis Approach to the Classification and Mapping of Calluna Vulgaris Canopies. In Proceedings of the Remote Sensing and Photogrammetry Society Conference; Remote Sensing and Photogrammetry Society, Falmouth, UK, 15 September 2008; p. 4. [Google Scholar]
- Parry, L.E.; Chapman, P.J.; Palmer, S.M.; Wallage, Z.E.; Wynne, H.; Holden, J. The Influence of Slope and Peatland Vegetation Type on Riverine Dissolved Organic Carbon and Water Colour at Different Scales. Sci. Total Environ. 2015, 527–528, 530–539. [Google Scholar] [CrossRef]
- Sonnentag, O.; Talbot, J.; Chen, J.M.; Roulet, N.T. Using Direct and Indirect Measurements of Leaf Area Index to Characterize the Shrub Canopy in an Ombrotrophic Peatland. Agric. For. Meteorol. 2007, 144, 200–212. [Google Scholar] [CrossRef]
- Adeline, K.R.M.; Chen, M.; Briottet, X.; Pang, S.K.; Paparoditis, N. Shadow Detection in Very High Spatial Resolution Aerial Images: A Comparative Study. ISPRS J. Photogramm. Remote Sens. 2013, 80, 21–38. [Google Scholar] [CrossRef]
- Lopatin, J.; Dolos, K.; Kattenborn, T.; Fassnacht, F.E. How Canopy Shadow Affects Invasive Plant Species Classification in High Spatial Resolution Remote Sensing. Remote Sens. Ecol. Conserv. 2019, 5, 302–317. [Google Scholar] [CrossRef]
- Milas, A.S.; Arend, K.; Mayer, C.; Simonson, M.A.; Mackey, S. Different Colours of Shadows: Classification of UAV Images. Int. J. Remote Sens. 2017, 38, 3084–3100. [Google Scholar] [CrossRef]
- Cole, B.; McMorrow, J.; Evans, M. Spectral Monitoring of Moorland Plant Phenology to Identify a Temporal Window for Hyperspectral Remote Sensing of Peatland. ISPRS J. Photogramm. Remote Sens. 2014, 90, 49–58. [Google Scholar] [CrossRef]
- Neumann, C.; Behling, R.; Schindhelm, A.; Itzerott, S.; Weiss, G.; Wichmann, M.; Müller, J. The Colors of Heath Flowering—Quantifying Spatial Patterns of Phenology in Calluna Life-Cycle Phases Using High-Resolution Drone Imagery. Remote Sens. Ecol. Conserv. 2020, 6, 35–51. [Google Scholar] [CrossRef]
- Räsänen, A.; Juutinen, S.; Tuittila, E.S.; Aurela, M.; Virtanen, T. Comparing Ultra-High Spatial Resolution Remote-Sensing Methods in Mapping Peatland Vegetation. J. Veg. Sci. 2019, 30, 1016–1026. [Google Scholar] [CrossRef]
- Coyle, M.; Cape, J.N.; Flechard, C.; Fowler, D.; Helfter, C.; Jones, M.; Kentisbeer, J.; Leeson, S.R.; Leith, I.D.; Mullinger, N.; et al. Meteorological Measurements at Auchencorth Moss from 1995 to 2016. Geosci. Data J. 2019, 6, 16–29. [Google Scholar] [CrossRef]
- Helfter, C.; Campbell, C.; Dinsmore, K.J.; Drewer, J.; Coyle, M.; Anderson, M.; Skiba, U.; Nemitz, E.; Billett, M.F.; Sutton, M.A. Drivers of Long-Term Variability in CO2 Net Ecosystem Exchange in a Temperate Peatland. Biogeosciences 2015, 12, 1799–1811. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Knipling, E.B. Physical and Physiological Basis for the Reflectance of Visible and Near-Infrared Radiation from Vegetation. Remote Sens. Environ. 1970, 1, 155–159. [Google Scholar] [CrossRef]
- Beyer, F.; Jurasinski, G.; Couwenberg, J.; Grenzdörffer, G. Multisensor Data to Derive Peatland Vegetation Communities Using a Fixed-Wing Unmanned Aerial Vehicle. Int. J. Remote Sens. 2019, 40, 9103–9125. [Google Scholar] [CrossRef]
- Curran, P.J.; Dungan, J.L.; Macler, B.A.; Plummer, S.E. The Effect of a Red Leaf Pigment on the Relationship between Red Edge and Chlorophyll Concentration. Remote Sens. Environ. 1991, 35, 69–76. [Google Scholar] [CrossRef]
- Filella, I.; Peñuelas, J. The Red Edge Position and Shape as Indicators of Plant Chlorophyll Content, Biomass and Hydric Status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Dockray, M.; Barber, J. The Red Edge of Plant Leaf Reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Tucker, C.J. Remote Sensing of Leaf Water Content in the near Infrared. Remote Sens. Environ. 1980, 10, 23–32. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The Spectral Image Processing System (SIPS)—Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Jensen, J.R., Ed.; Pearson Education, Inc.: Glenview, IL, USA, 2016. [Google Scholar]
- Swain, P.H.; Davis, S.M. Remote Sensing: The Quantitative Approach; Swain, P.H., Davis, S.M., Eds.; McGraw-Hill International Book Co.: London, UK; New York, NY, USA, 1978; Volume 3, ISBN 007062576X. [Google Scholar]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Lehmann, J.R.K.; Münchberger, W.; Knoth, C.; Blodau, C.; Nieberding, F.; Prinz, T.; Pancotto, V.A.; Kleinebecker, T. High-Resolution Classification of South Patagonian Peat Bog Microforms Reveals Potential Gaps in Up-Scaled CH4 Fluxes by Use of Unmanned Aerial System (UAS) and CIR Imagery. Remote Sens. 2016, 8, 173. [Google Scholar] [CrossRef]
- Blaschke, T. Object Based Image Analysis for Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a New Paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Kalacska, M.; Gašparović, M.; Yao, J.; Najibi, N. Advances in Geocomputation and Geospatial Artificial Intelligence (GeoAI) for Mapping. Int. J. Appl. Earth Obs. Geoinf. 2023, 120, 103300. [Google Scholar] [CrossRef]
- Janowicz, K.; Gao, S.; McKenzie, G.; Hu, Y.; Bhaduri, B. GeoAI: Spatially Explicit Artificial Intelligence Techniques for Geographic Knowledge Discovery and Beyond. Int. J. Geogr. Inf. Sci. 2020, 34, 625–636. [Google Scholar] [CrossRef]
- Openshaw, S.; Openshaw, C. Artificial Intelligence in Geography, 1st ed.; John Wiley & Sons, Inc: New York, NY, USA, 1997; ISBN 978-0-471-96991-4. [Google Scholar]
- DeLancey, E.R.; Kariyeva, J.; Bried, J.T.; Hird, J.N. Large-Scale Probabilistic Identification of Boreal Peatlands Using Google Earth Engine, Open-Access Satellite Data, and Machine Learning. PLoS ONE 2019, 14, e0218165. [Google Scholar] [CrossRef]
- Ballesteros, J.R.; Sanchez-Torres, G.; Branch-Bedoya, J.W. A GIS Pipeline to Produce GeoAI Datasets from Drone Overhead Imagery. ISPRS Int. J. Geo-Inf. 2022, 11, 508. [Google Scholar] [CrossRef]
- Räsänen, A.; Aurela, M.; Juutinen, S.; Kumpula, T.; Lohila, A.; Penttilä, T.; Virtanen, T. Detecting Northern Peatland Vegetation Patterns at Ultra-High Spatial Resolution. Remote Sens. Ecol. Conserv. 2020, 6, 457–471. [Google Scholar] [CrossRef]
- Erudel, T.; Fabre, S.; Houet, T.; Mazier, F.; Briottet, X. Criteria Comparison for Classifying Peatland Vegetation Types Using In Situ Hyperspectral Measurements. Remote Sens. 2017, 9, 62. [Google Scholar] [CrossRef]
- Ustin, S.L.; Gamon, J.A. Remote Sensing of Plant Functional Types. New Phytol. 2010, 186, 795–816. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Moss, D.M. Spectral Reflectance Measurements in the Genus Sphagnum. Remote Sens. Environ. 1993, 45, 273–279. [Google Scholar] [CrossRef]
- Bubier, J.L.; Rock, B.N.; Crill, P.M. Spectral Reflectance Measurements of Boreal Wetland and Forest Mosses. J. Geophys. Res. Atmos. 1997, 102, 29483–29494. [Google Scholar] [CrossRef]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar] [CrossRef]
- Sieberth, T.; Wackrow, R.; Chandler, J.H. Influence of Blur on Feature Matching and a Geometric Approach for Photogrammetric Deblurring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-3, 321–326. [Google Scholar] [CrossRef]
- Whitehead, K.; Hugenholtz, C.H. Remote Sensing of the Environment with Small Unmanned Aircraft Systems (UASs), Part 1: A Review of Progress and Challenges. J. Unmanned Veh. Syst. 2014, 2, 69–85. [Google Scholar] [CrossRef]
- Gao, Y.; Mas, J.F. A Comparison of the Performance of Pixel-Based and Object-Based Classifications over Images with Various Spatial Resolutions. Online J. Earth Sci. 2008, 2, 27–35. [Google Scholar]
- Kim, S.R.; Lee, W.K.; Kwak, D.A.; Biging, G.S.; Gong, P.; Lee, J.H.; Cho, H.K. Forest Cover Classification by Optimal Segmentation of High Resolution Satellite Imagery. Sensors 2011, 11, 1943–1958. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, S.; Cao, X.; Yang, C.; Zhang, Z.; Wang, X. A Shadow-Eliminated Vegetation Index (SEVI) for Removal of Self and Cast Shadow Effects on Vegetation in Rugged Terrains. Int. J. Digit. Earth 2018, 12, 1013–1029. [Google Scholar] [CrossRef]
- Taylor, K.; Rowland, A.P.; Jones, H.E. Molinia caerulea (L.) Moench. J. Ecol. 2001, 89, 126–144. [Google Scholar] [CrossRef]
- Harris, A.; Bryant, R.G.; Baird, A.J. Mapping the Effects of Water Stress on Sphagnum: Preliminary Observations Using Airborne Remote Sensing. Remote Sens. Environ. 2006, 100, 363–378. [Google Scholar] [CrossRef]
- van Gaalen, K.E.; Flanagan, L.B.; Peddle, D.R. Photosynthesis, Chlorophyll Fluorescence and Spectral Reflectance in Sphagnum Moss at Varying Water Contents. Oecologia 2007, 153, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Dudley, K.L.; Dennison, P.E.; Roth, K.L.; Roberts, D.A.; Coates, A.R. A Multi-Temporal Spectral Library Approach for Mapping Vegetation Species across Spatial and Temporal Phenological Gradients. Remote Sens. Environ. 2015, 167, 121–134. [Google Scholar] [CrossRef]
Sensor | Data Type | Survey Height (m) | Image Overlap (% Front, Side) | GSD (cm) | RMSE [x, y, z] (cm) |
---|---|---|---|---|---|
Mavic Pro 2 | RGB | 65 | 70, 80 | 1.46 | 1.12 |
0.97 | |||||
4.07 | |||||
Parrot Sequoia | Multispectral | 25 | 80, 80 | 2.80 | 1.35 |
1.47 | |||||
6.50 |
ROI Class | Total No. Polygons | Total No. Pixels |
---|---|---|
Eriophorum vaginatum | 39 | 11,361 |
Juncus effusus | 18 | 27,887 |
Deschampsia flexuosa | 23 | 7118 |
Molinia caerulea | 25 | 25,284 |
Erica tetralix | 20 | 3442 |
Calluna vulgaris | 19 | 8358 |
Vaccinium spp. | 16 | 3524 |
Potentilla erecta | 19 | 882 |
Sphagnum spp. | 11 | 2157 |
Polytrichum commune | 32 | 7264 |
Pleurozium schreberi | 34 | 8666 |
SUM | 256 | 105,943 |
Ground Validation Data | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P. schreberi | D. flexuosa | M. caerulea | P. commune | Sphagnum spp. | J. effusus | C. vulgaris | E. tetralix | Vaccinium spp. | P. erecta | E. vaginatum | User Acc. | ||
Classification output | P. schreberi | 1544 | 54 | 26 | 31 | 0 | 258 | 7 | 23 | 0 | 1 | 267 | 70% |
D. flexuosa | 153 | 1181 | 240 | 107 | 0 | 1 | 38 | 154 | 1 | 54 | 728 | 45% | |
M. caerulea | 0 | 0 | 1023 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 606 | 61% | |
P. commune | 12 | 196 | 71 | 684 | 3 | 190 | 53 | 17 | 0 | 43 | 13 | 53% | |
Sphagnum spp. | 54 | 1 | 0 | 0 | 462 | 0 | 0 | 0 | 0 | 0 | 8 | 88% | |
J. effusus | 196 | 64 | 0 | 421 | 0 | 6412 | 0 | 0 | 7 | 23 | 63 | 89% | |
C. vulgaris | 0 | 0 | 19 | 35 | 0 | 0 | 1202 | 17 | 21 | 0 | 0 | 93% | |
E. tetralix | 10 | 15 | 16 | 0 | 0 | 0 | 195 | 687 | 0 | 0 | 38 | 72% | |
Vaccinium spp. | 0 | 0 | 23 | 13 | 0 | 0 | 0 | 0 | 897 | 26 | 235 | 75% | |
P. erecta | 114 | 361 | 70 | 160 | 9 | 174 | 34 | 23 | 0 | 85 | 358 | 6% | |
E. vaginatum | 130 | 31 | 206 | 38 | 48 | 33 | 9 | 2 | 14 | 29 | 1091 | 67% | |
Producer Acc. | 70% | 62% | 60% | 46% | 89% | 91% | 78% | 74% | 91% | 33% | 32% | 69% |
Spatial Resolution | Classification Accuracy | |
---|---|---|
Overall Accuracy | Kappa Coefficient | |
2.8 cm GSD | 68.5% | 0.63 |
5.6 cm GSD | 65.4% | 0.60 |
11.2 cm GSD | 64.9% | 0.59 |
22.4 cm GSD | 42.8% | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simpson, G.; Nichol, C.J.; Wade, T.; Helfter, C.; Hamilton, A.; Gibson-Poole, S. Species-Level Classification of Peatland Vegetation Using Ultra-High-Resolution UAV Imagery. Drones 2024, 8, 97. https://doi.org/10.3390/drones8030097
Simpson G, Nichol CJ, Wade T, Helfter C, Hamilton A, Gibson-Poole S. Species-Level Classification of Peatland Vegetation Using Ultra-High-Resolution UAV Imagery. Drones. 2024; 8(3):97. https://doi.org/10.3390/drones8030097
Chicago/Turabian StyleSimpson, Gillian, Caroline J. Nichol, Tom Wade, Carole Helfter, Alistair Hamilton, and Simon Gibson-Poole. 2024. "Species-Level Classification of Peatland Vegetation Using Ultra-High-Resolution UAV Imagery" Drones 8, no. 3: 97. https://doi.org/10.3390/drones8030097
APA StyleSimpson, G., Nichol, C. J., Wade, T., Helfter, C., Hamilton, A., & Gibson-Poole, S. (2024). Species-Level Classification of Peatland Vegetation Using Ultra-High-Resolution UAV Imagery. Drones, 8(3), 97. https://doi.org/10.3390/drones8030097