
Citation: Wang, X.; Shi, S.; Wu, C.

Research on Service Function Chain

Embedding and Migration Algorithm

for UAV IoT. Drones 2024, 8, 117.

https://doi.org/10.3390/

drones8040117

Academic Editors: Michel Kadoch

and Bo Rong

Received: 14 February 2024

Revised: 19 March 2024

Accepted: 21 March 2024

Published: 22 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Research on Service Function Chain Embedding and Migration
Algorithm for UAV IoT
Xi Wang , Shuo Shi * and Chenyu Wu

School of Electronic and Information Engineering, Harbin Institute of Technology, Harbin 150001, China;
wangxi_chn@foxmail.com (X.W.); wuchenyu@hit.edu.cn (C.W.)
* Correspondence: crcss@hit.edu.cn

Abstract: This paper addresses the challenge of managing service function chaining (SFC) in an
unmanned aerial vehicle (UAV) IoT, a dynamic network that integrates UAVs and IoT devices for
various scenarios. To enhance the service quality and user experience of the UAV IoT, network
functions must be flexibly configured and adjusted based on varying service demands and network
situations. This paper presents a model for calculating benefits and an agile algorithm for embedding
and migrating SFC based on particle swarm optimization (PSO). The model takes into account
multiple factors such as SFC quality, resource utilization, and migration cost. It aims to maximize the
SFC benefit and minimize the migration times. The algorithm leverages PSO’s global search and fast
convergence to identify the optimal or near-optimal SFC placement and update it when the network
state changes. Simulation experiments demonstrate that the proposed method improves network
resource efficiency and outperforms existing methods. This paper presents a new idea and method
for managing SFC in UAV IoT.

Keywords: UAV IoT; NFV; service function chaining; network resource efficiency

1. Introduction
1.1. Background and Research Motivation

With the rapid development of wireless communication technology, unmanned aerial
vehicles (UAVs), as flexible, efficient, and low-cost air platforms, have become widely
utilized in civil, military, commercial, and other fields [1]. UAVs can be equipped with a
variety of IoT devices, such as sensors, cameras, and GPS modules, forming an airborne
IoT system that provides a range of services to users on the ground, including monitoring,
communication, and sensing [2]. However, the dynamic, heterogeneous, and distributed
nature of UAV networks brings significant challenges for network management and opti-
mization. In order to enhance the service quality and user experience of UAV networks, it
is essential to flexibly configure and adjust the network functions to meet various business
requirements and network conditions [3].

Network virtualization is a technology that implements multiple virtual networks
on the same physical network to improve the utilization, flexibility, and innovation of
network resources [4]. Network virtualization enables the software and programmability
of network functions, reduces network costs and complexity, and improves the delivery
speed and quality of network services. By employing network virtualization technology,
network functions can be virtualized into VNFs (virtualized network functions), which
can be deployed at various layers of the UAV network to achieve quick configuration,
adjustment, and migration of network functions. This enhances the performance, reliability,
and security of the UAV network [5].

Based on VNFs and software-defined networking (SDN) technologies, service func-
tion chaining (SFC) connects network functions in a specific sequence to achieve flexible
orchestration and scheduling of network functions, adapting to different service scenarios

Drones 2024, 8, 117. https://doi.org/10.3390/drones8040117 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8040117
https://doi.org/10.3390/drones8040117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0009-0002-3710-8106
https://orcid.org/0000-0002-5671-266X
https://orcid.org/0000-0003-0494-5063
https://doi.org/10.3390/drones8040117
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8040117?type=check_update&version=2

Drones 2024, 8, 117 2 of 22

and network states, as shown in Figure 1. Because of its network characteristics, which
combine UAVs and IoT devices, it can support a variety of complex business scenarios,
such as emergency rescue, intelligent transportation, and smart agriculture [5]. These
service scenarios have diverse network requirements, such as high bandwidth, low latency,
and high reliability. In order to meet these requirements, network functions need to be
carefully controlled and optimized to achieve on-demand combination and customization
of network functions [6]. Therefore, the SFC has significant application value and research
significance in UAV IoT.

IIE
IIE

IIE

IIE

IIE

IIE

IIE

IIE

FTP
(VNF1)

Firewall
(VNF2)

LB
(VNF3)

Global

Controller

vBBU
(VNF4)

Comp
(VNF1)

Firewall
(VNF2)

IDS
(VNF3)

vBBU
(VNF4)

WAP
(VNF5)

Comp
(VNF1)

Firewall
(VNF2) IDS

(VNF3)

vBBU
(VNF4)

WAP
(VNF5)SFC1

SFC2

SFC3

FTPFTP

WAP
(VNF5)

Radio Link

SFC Mapping

Figure 1. Deployment of VNFs on the UAV IoT to enable network slicing and support the SFC.

1.2. Network Architecture and Challenges

The network architecture we used for the UAV IoT leverages SFC based on VNF
and SDN technologies, as shown in Figure 1. This design enables a dynamic and flexible
orchestration of network functions to cater to varying service scenarios and network states.

System Overview: A fundamental component of the architecture is a set of UAVs,
each equipped with a common computing platform capable of hosting multiple virtual
machines (VMS). These virtual machines provide a deployment environment for SFC
services requested by terrestrial Industrial IoT equipment (IIE) to support the transmission
of service data.

Network Resources: We consider the four most typical node resources provided by the
UAV, namely, the computing resources (CPU), represented by the number of CPU cores; the
memory resources (RAM), represented by the size of the cache space; the storage resources
(DISK), represented by the size of the disk space; and the energy consumption resources
(ENG), represented by the battery capacity on the UAV. Without loss of generality, we
consider the most typical transmission bandwidth (BAND), that is, the maximum rate of
data transmission between two UAVs.

Global Controller: Within the network’s deployment domain, the global controller
acts as a command and communications hub, coordinating the entire UAV network. It is
responsible for policy implementation of SFC embedding and migration across UAVs. The
controller can be deployed for ground stations or spaceborne platforms.

SFC Embedding Workflow: When the IIE sends an SFC setup request to the UAV
network, the workflow starts. After receiving the request, the UAV relays the request to
the VNF manager located in the global controller. According to the resource quantity and
quality of service (QoS) requirements in the request, the VNF manager uses the embedded
algorithm to divide node and link resources on the computing platform of each UAV and

Drones 2024, 8, 117 3 of 22

establish SFC in the UAV network. Then, SDN technology is used to configure network
routing and manage the forwarding of service data.

Real-Time Monitoring and Adaptation: The global controller continuously monitors
the performance of SFC on the network in real time. The SFC migration algorithm is
triggered when the network topology changes and the link fails or the QoS fails to meet
the SFC requirements. This process includes invalidating the existing VNFs, removing the
existing VNFs, establishing a new VNFS, and then rerouting to complete the establishment
of the new SFC.

The architecture is designed to provide a robust, adaptable, and efficient communica-
tion network for UAV IoT systems, capable of supporting complex IIE data transfers with
high reliability and flexibility. The research in this paper is based on two observations in
this network architecture:

(1) SFC has life cycle characteristics and requires maintenance during operation. Its life
cycle includes creation, embedding, operation, migration, and destruction. Due to the
dynamic characteristics of the network, such as UAV movement, network topology
changes, and resource fluctuations, system performance may deteriorate or services
may even be interrupted. Therefore, real-time monitoring and maintenance of the
SFC are essential to guarantee the availability and reliability of the SFC.

(2) Due to the particularity of UAV energy consumption, load balancing should be
considered in the embedding algorithm. If the SFC embedding algorithm does not
consider the energy consumption resources of UAVs, it may lead to the premature
depletion of UAVs’ energy or an imbalance of energy consumption among UAVs, thus
affecting the stability and sustainability of UAVs’ dynamic network.

Based on the above observations, the challenge of this research is to design an SFC
embedding algorithm deployed on a global controller. The algorithm can dynamically
select the appropriate UAV as the SFC execution node according to the energy consumption
resources and network status of the UAV, so as to achieve efficient SFC embedding and
balance the energy consumption of the UAV. At the same time, in order to ensure the service
continuity during the SFC life cycle, the algorithm can dynamically migrate SFC according
to the real-time performance of SFC and the energy distribution of the UAVs.

1.3. Contributions

The main contributions of this paper are as follows:

• Aiming to address the resource perception problem of SFC in UAV dynamic networks,
a revenue calculation model based on SFC operation process monitoring is proposed.
This model comprehensively considers the service quality, resource utilization, and
migration cost of SFC.

• An agile algorithm for embedding and migrating SFC based on particle swarm op-
timization (PSO) is proposed. It can quickly find the optimal or nearly optimal
embedding scheme to meet the requirements of SFC and facilitate the agile migration
of SFC when the network state changes.

• A simulator and simulation environment based on MANO architecture has been
developed. It is capable of simulating dynamic network topology, SFC operation
processes, embedding, and migration processes.

• The experimental results demonstrate that the proposed method outperforms the com-
parison algorithm in terms of SFC income, migration quality, and resource utilization,
thus confirming the effectiveness and superiority of the proposed method.

2. Related Work

In this paper, from the perspective of network operators, we focus on the SFC embed-
ding and migration problem of UAV dynamic network topology under the scenario of a
large number of SFC service requests. This section will introduce some representative and
high-quality related studies from recent years.

Drones 2024, 8, 117 4 of 22

2.1. SFC Embedding

The software implementation of VNFs provides the flexibility for service providers
to deploy SFC in the existing networks. Therefore, a critical issue to be solved is how
to determine the deployment location of each VNF in the SFC, which is called the SFC
embedding problem.

Beck et al. [7] took the lead in bringing this problem to researchers’ attention and
proposed a universal virtual network framework that embedded multiple virtual net-
works onto the base network. On this basis, a heuristic algorithm is used to coordinate
the embedding of VNF chains with the goal of minimizing bandwidth utilization [8].
However, the framework is oriented to the large-capacity server of the computing center
and cannot be directly applied to the UAV computing platform. With the goal of min-
imizing the total deployment cost, Tomassilli et al. [9] designed an optimal algorithm
based on tree topology to optimally place VNFs when meeting all SFC requirements of the
stream. Sallam et al. [10] expressed the maximum flow problem constrained by SFC as the
fractional multi-commodity flow problem and then solved it. Jin et al. [11] expressed the
VNF chain deployment problem as mixed-integer linear programming (MILP) to minimize
total resource consumption in the context of computing service deployment on the edge ser-
vice area. However, due to their dependence on prior knowledge and high computational
complexity, these offline methods are difficult to apply to online placement scenarios.

In recent years, some researchers have turned their attention to hybrid SFC embedding
problems, such as bidirectional SFC based on real-world business needs. Zheng et al. [12]
define a new problem for minimum delay hybrid SFC embedding (ML-HSFCE) and propose
an optimal hybrid SFC embedding algorithm (Opt-HSFCE). They extended this work
in [13], proposing the first 2-approximation algorithm to jointly optimize the processes
of h-SFC construction and embedding, which is called Eulerian-circuit-based hybrid SFP
optimization (EC-HSFP). Dimolitsas et al. [14] proposed a distributed VNF embedding
method (DVNE) to embed two SFC round-trips with the goal of minimizing round-trip
latency. The problem of hybrid SFC embedding focuses on the service delay after the
completion of embedding, and the service delay in these studies is mainly described by
the hop number in the middle of the node, which does not accord with the fact that a large
amount of delay also exists in the virtual resource scheduling on each computing platform.

2.2. SFC Migration

The embedding of SFC in ground infrastructure has been widely studied, but the
research progress on the embedding of SFC in a platform with high mobility, such as a UAV
network, is relatively slow. Although Vidal et al. [15] has built a UAV network test platform
supporting SFC to verify its effectiveness, its highly dynamic and changing topology poses
challenges to the real-time migration effect of SFC services.

Carpio et al. [16] investigated the problem of optimal placement of hybrid SFC from an
Internet service provider (ISP) perspective and proposed a two-stage optimization process
to analyze the performance impact of replication and migration of VNF. They extended
the work using a traffic forecasting approach [17] to reduce migration costs. Rui et al. [18]
modeled the SFC as a Petri net model and obtained reliability evaluation results related
to execution time. Then, a VNF migration strategy with reliability as the optimization
objective and cost as a consideration was designed. While the above study noted the
importance of SFC migration on cloud computing platforms, it focused more on migrating
SFC to accommodate the dynamic changes in services traffic, which is different from the
dynamic nature of deploying SFC on UAV networks.

Qin et al. [3] described the application scenario of SFC for vehicle-assisted or UAV-
assisted edge computing, studied the SFC migration problem in dynamic networks with
long-term cost budget constraints, and used the Lyapunov optimization method to solve it.
In the same scenario, Bai et al. [19] used a quantitative modeling method based on semi-
Markov process to study the potential impact of VNF migration time and network elasticity
in SFC. In order to maximize the acceptance rate of service function chain requests (SFCRs)

Drones 2024, 8, 117 5 of 22

and reduce VNF migration and energy consumption as much as possible, Hu et al. [20]
summarized the relevant factors such as node status, link status, energy consumption,
migration node, and mapping success. Then, the VNF migration algorithm was designed
using the actor-critic model, graph convolutional network, and LSTM network.

The optimization goal of these studies is to maximize the success rate of SFC embed-
ding and improve the system benefits. However, considering that there is a life cycle of
SFC, the revenue calculation of SFC cannot be determined only by whether it completes
the embedding, and the supervision in its operation process is equally important, which is
missing in the above research.

3. System Model

In this section, we describe the system model in five aspects, including the substrate
network, the service function chain, the SFC embedding, the SFC latency, and the SFC
revenue. Then, we formulate the problem as an integer programming model. The symbols
used in this paper are summarized in Table 1.

Table 1. Notation and definitions.

Notation Definition

NS Set of substrate network nodes
ni

S Each physical node in substrate network
LS(t) Set of substrate network links at time t
li,j
S (t) Each physical link between node ni

S and node nj
S at time t

CS(nS) Maximum resource capacity of node nS
C′

S(nS, t) Remaining resource of node nS at time t
CS(lS) Maximum resource capacity of link lS
C′

S(lS, t) Remaining resource of link lS at time t
WS(nS) “Wait-Time Matrix” for servers in physical node nS

1

F Set of SFCs to be processed
N f Set of virtual network nodes (VNFs) of SFC f ∈ F
ni

f Each virtual node in SFC f ∈ F
L f Set of virtual network links of SFC f ∈ F
li,j

f Each virtual link between VNF ni
f and VNF nj

f
C f (n f) Resource need to be allocated of VNF n f
C f (l f) Resource need to be allocated of virtual link l f
ta

f ,td
f ,te

f Arrival time, life cycle, and end time of SFC f ∈ F
LA f Transmission latency requirement of SFC f ∈ F

X f (t)
Set of mapping indication between VNF in SFC f and physical
node at time t

x
ni

f ,nj
S

f (t) Whether VNF ni
f is deployed on physical node nj

S at time t

Y f (t)
Set of mapping indication between virtual link in SFC f and physi-
cal link at time t

y
li,j

f ,li′ ,j′
S

f (t) Whether virtual link li,j
f is embedded in physical link li′ ,j′

S at time t

ψ f (t), ψ0
f (t), ψ1

f (t), ψ2
f (t)

Total latency, operation latency, remap and reroute latency of SFC
f ∈ F at time t

R f System revenue of SFC f ∈ F
1 Boutin et al. [13] defines the latency matrix for servers.

3.1. Substrate Network Model

The base network is represented as an infrastructure by an undirected graph GS =

(NS, LS), with network nodes denoted as NS = {n1
S, . . . , ni

S, . . . , n|NS|
S }, and nS ∈ NS for each

physical node. Due to topological dynamics, we define LS as an adjacency matrix, unlike the
typical definition of links in graphs, and each element in the matrix is determined by a function

Drones 2024, 8, 117 6 of 22

of time t. Thus, there is a set of physical links LS(t) = {l1,1
S (t), . . . , li,j

S (t), . . . , l|NS|,|NS|
S (t)}, and

for each physical link lS ∈ LS, li,j
S represents the link between node ni

S and node nj
S, where:

li,j
S (t) =

{
1, i f physical link between ni

S and nj
S exists

0, otherwise
(1)

The physical node serves as a server to provide resources for the deployment of SFC,
utilizing the function CS(∗) to describe the maximum resource capacity, and the function
CS

′(∗, t) to describe the remaining resources at time t. In this paper, we consider four
types of physical node resources: CPU, RAM, DISK, and ENG. Therefore, for node nS ∈
NS, its resource capacity is CS(nS) = {CCPU

S (nS), CRAM
S (nS), CDISK

S (nS), CENG
S (nS)}, and

the remaining resource at time t is C′
S(nS, t) = {CCPU′

S (nS, t), CRAM′
S (nS, t), CDISK′

S (nS, t),
CENG′

S (nS, t)}. Different from other researchers’ definitions of network node resources, this
paper includes energy consumption resources. It considers UAVs as deployment platforms
for physical nodes, with their batteries providing limited power. This is distinct from CPU,
RAM, DISK, and other occupation-release resources, as energy consumption is one-time.
The resource for a physical link is the transmission bandwidth (BAND). For link lS ∈ LS,
its maximum resource capacity is CS(lS) = {CBAND

S (lS)}. As with node resources, SFC in
the network will continue to occupy part of the transmission bandwidth between UAVs, so
we need to pay attention to the remaining situation of link resources in real time, so as to
facilitate the embedding of the new SFC and realize the full utilization of link resources.
The remaining resource at time t is C′

S(lS, t) = {CBAND′
S (lS, t)}. The deployment of VNF

on physical nodes requires latency for creation and task queues.
We refer to the “Wait-Time Matrix” proposed by Boutin et al. [21] to describe the time

that must be waited to request resources from the computing platform on the UAV. We
consider that the DISK resources of a node are determined by the total size of the embedded
functional software, which is pre-installed on the platform, while the different SFC only
activates the software on demand, and the activation time is very short. What really affects
the VNF operation time is the number of CPU cores applied for the SFC and the cache of
service data. Therefore, the time waiting matrix is determined by the index of CPU resources
and RAM resources, a consideration consistent with Boutin et al. [21] ’s cluster design for
the Microsoft cloud computing platform. The difference is that the table is designed as the
index of the remaining resources of the node. For the sake of generality, we set the index
granularity to 1 resource unit. The more remaining resources, the shorter the waiting time,
and the tighter the remaining resources, the longer the scheduling time of the resources
required to complete the task. We define a latency matrix for servers in each physical node
as WS(nS). The matrix is indexed by the current CPU resources and the remaining amount
of RAM resources of the node, that is, WS(nS) = table(CCPU′

S (nS), CRAM′
S (nS)). The value

indexed in the table represents the latency required for VNF preparation on the server
when requesting resources.

3.2. Service Function Chain Model

We define the set of SFCs to be processed as F . For an SFC f ∈ F , we utilize the di-
rected graph G f = (N f , L f) to represent the virtual network structure of the service function

chain. In this structure, the VNF virtual node is denoted as N f = {n1
f , . . . , ni

f , . . . , n
|N f |
f },

and for each virtual node, there exists n f ∈ N f . To align with the physical links in the
base network, virtual links are defined using the adjacency matrix L f . In other words,

L f = {l1,1
f , . . . , li,j

f , . . . , l f
|N f |,|N f |}, where each virtual link l f ∈ L f , li,j

f denotes the link

between virtual node ni
f and virtual node nj

f . Of which:

li,j
f =

{
1, i f virtual link between ni

f and nj
f exists

0, otherwise
(2)

Drones 2024, 8, 117 7 of 22

The advantage of using an adjacency matrix to define a network function chain is that
it provides convenience for extending subsequent service functions. Schneider et al. [22]
has proposed that the virtual network embedding with complex functions may not always
exhibit a perfect chain structure. In some cases, bidirectional networks containing loops
may be necessary to support complex applications, such as optimizing network video
transmission and inserting advertisements, thereby achieving the network slicing effect.

SFC construction involves requesting resources from the base network to sequentially
build VNF virtual nodes and connect them through virtual links. We use the function C f (∗)
to describe the amount of resources that SFC f ∈ F applies to the base network. The re-
sources utilized are the four types available in the substrate network. For a virtual node n f ∈
N f , the allocated resources are denoted as C f (n f) = {CCPU

f (n f), CRAM
f (n f), CDISK

f (n f),

and CENG
f (n f)}. The purpose of the virtual link is to request transmission bandwidth from

the base link. Therefore, for the virtual link l f ∈ L f , the requested resource occupation
applied for is C f (l f) = {CBAND

f (l f)}. Li et al. [23] point out that the SFC for achieving
complete wireless access functionality for the industrial Internet of things should include a
wireless access node WAPf and industrial Internet of things equipment I IE f , as shown in
Figure 1. In this paper, we assume that all UAV nodes have wireless access functions to
enable random access of Internet of things equipment. The functions and configurations
of these two nodes do not vary across different SFCs, which is not the focus of this paper.
Therefore, they will not be discussed further.

When a user requests resources from the network, the network controller must specify
the duration for which the resources will be occupied. This allows the network controller
to determine when to release the occupied resources and reallocate them to other users,
thereby improving the efficiency of network resource utilization. In order to implement
this function, the arrival time of SFC is defined as ta

f , and the service duration, which is the

life cycle of SFC, is defined as td
f . Therefore, the end time of service can be calculated as

te
f = ta

f − td
f . This paper focuses on the transmission latency LA f in the quality of service

(QoS) requirements that users submit to the network. It should be noted that in SFC resource
allocation, the energy consumption resource CENG

f (n f) of virtual node n f is interrelated
with other resources, and its magnitude should not be specified from the user’s perspective.
Su et al. [24] highlight that in the actual operation of VNFs, CPU energy consumption
accounts for a larger share compared to RAM and DISK. We used Su et al.’s assumption [24]
(i.e., the mapping relationship between energy consumption resources, CPU, and running
time in the resources applied by virtual node n f is CENG

f (n f) = CCPU
f (n f) · (te

f − t)). When
SFC arrives at t = ta

f , the controller anticipates the future energy consumption of the virtual
node based on this, and then selects the appropriate deployment location.

3.3. SFC Embedding Model

For SFC f ∈ F , at time t, the mapping indication of a virtual node to a physical node is

defined as X f (t) = [x
n1

f ,n1
S

f (t), . . . , x
ni

f ,nj
S

f (t), . . . , x
|N f |,|NS |
f (t)], where x

ni
f ,nj

S
f (t) = 1 represents

the mapping of virtual node ni
f to physical node nj

S. The mapping indication that defines

the virtual link to the physical link is represented as Y f (t) = [y
l1,1

f ,l1,1
S

f (t), . . . , y
li,j

f ,li′ ,j′
S

f (t), . . . ,

y
l
|Nf |,|Nf |
f ,l

|NS |,|NS |
S

f (t)], where y
li,j

f ,li′ ,j′
S

f (t) = 1 represents the mapping of virtual link li,j
f to

physical link li′ ,j′
S .

Drones 2024, 8, 117 8 of 22

Since the resources provided by physical nodes are limited, the total resources occupied
by VNFs running on them must not exceed the upper limit of available resources. Therefore,
the mapping of virtual nodes needs to satisfy the following constraint relations:

∑
n f ∈N f

x
n f ,nS
f · C f (n f) ≤ C′

S(nS), ∀nS ∈ NS (3)

Similarly, because the transmission bandwidth of the physical links between UAVs
is limited, the requested bandwidth of the virtual link of SFC f mapped to a physical link
cannot be greater than the remaining bandwidth. Therefore, the mapping of virtual links
must meet the following constraint:

∑
l f ∈L f

y
l f ,lS
f · C f (l f) ≤ C′

S(lS), ∀lS ∈ LS (4)

We do not consider the scenario where a VNF virtual node in SFC f can be deployed
and operated concurrently on multiple physical facilities, that is, the virtual node cannot be
mapped to multiple physical nodes. Therefore, there is the following constraint:

∑
nS∈NS

x
n f ,nS
f ≤ 1, ∀n f ∈ N f (5)

Considering the dynamic nature of network topology, the prerequisite for successful
virtual link mapping is the existence of physical links in the base network. Therefore, there
is the following constraint:

y
l f ,lS
f ≤ lS, ∀l f ∈ L f , lS ∈ LS (6)

At the same time, we refer to wang et al. [25], using a flow model approach to ensure
that the virtual links mapped from SFC f to the base network traverse the VNF virtual
nodes in a specified order. We represent the set of incoming and outgoing links of physical
node nS ∈ NS as I(nS) and O(nS), respectively. Additionally, n f (ld

f) and n f (ls
f) represent

the destination and source VNF of virtual link l f ∈ L f , respectively. According to the flow
model, all the outgoing traffic from nodes should be equal to the incoming traffic, and this
constraint exists only for the virtual nodes and links to which SFC is mapped. Therefore,
the constraint can be expressed as:

∑
l′S∈I(nS)

y
l f
l′S
− ∑

l′S∈O(nS)

y
l f
l′S
= x

n f (ld
f)

nS − x
n f (ls

f)
nS , ∀l f ∈ L f , l′S ∈ LS, nS ∈ NS (7)

3.4. SFC Latency Model
3.4.1. Operation Latency

We analyzed the transmission delay of an SFC and discovered that the propagation
delay and transmission delay are significantly influenced by the size of the data packet.
This size is closely related to the SFC’s service type and is also affected by the client and
server’s sending and receiving mechanisms, which are designed by the user and not taken
into account by the operator. As an infrastructure leasing service, the primary concern
should be the scheduling latency of running VNFs on each physical node. We provided
the model for server latency in physical nodes with the “Wait-Time Matrix” at the end of
Section 3.1. Considering that multiple VNFs in the SFC are running in parallel to process
the service data flow at time t, the delay bottleneck may occur in one of the VNFs. This can
be expressed as:

ψ0
f (t) = max

n f ∈N f
∑

nS∈NS

x
n f ,nS
f (t) · WS(nS) (8)

Drones 2024, 8, 117 9 of 22

Mapping can only be completed if the SFC’s runtime latency meets its QoS require-
ments. Therefore, there are the following constraints:

ψ0
f (t) ≤ LA f (9)

3.4.2. Remap Latency

When a virtual node mapping needs to be migrated from one physical node to another,
the delay primarily arises from requesting resources from the server and retransmitting
cached data. We use the indicator vector mn f (t) to determine the migration relation of

the mapping of virtual node n f at time t. The calculation method is mn f (t) = [x
n f ,NS
f (t −

1)]⊕ [x
n f ,NS
f (t)], where x

n f ,NS
f (t) represents the vector composed of the mapping relation

of virtual node n f and all physical nodes NS at time t, and the symbol ⊕ represents
the exclusive OR operation between two vectors. The resulting migration delay can be
calculated as follows:

ψ1
f (t) = ∑

n f ∈N f

||mn f (t)||0
2

·
CRAM

f (n f)

CBAND
f (l

n′
f ,n f

f)

(10)

where ||mn f (t)||0 represents the 0-norm of mn f (t), which is the count of non-zero elements
in the vector, and determines the number of physical nodes involved in the migration
process. CRAM

f (n f) represents the amount of buffered data that needs to be retransmitted to

recover the state of virtual node n f , and CBAND
f (l

n′
f ,n f

f) represents the bandwidth requested

by virtual link l
n′

f ,n f

f with virtual node n f as the destination.

3.4.3. Reroute Latency

We believe that embedding SFC into the virtual network relies on the OpenFlow table
delivery mechanism of SDN to establish virtual links. Therefore, it is necessary to sequentially
modify the routing tables of physical nodes to facilitate the forwarding of service traffic in
SFC. The process of distributing the flow table contributes to the rerouting delay. We utilize
the indicator vector ml f

(t) to determine the migration relation of the mapping of the virtual

link l f at time t. The calculation method is ml f
(t) = [y

l f ,LS
f (t − 1)]⊕ [y

l f ,LS
f (t)], where y

l f ,LS
f (t)

represents the vector composed of the mapping relation of the virtual link l f and all physical
links LS at time t, and the symbol ⊕ represents the exclusive OR operation between the two
vectors. The resulting migration delay can be calculated as follows:

ψ2
f (t) = ∑

l f ∈L f

||ml f
(t)||0 · t0 (11)

The expression ||ml f
(t)||0 represents the 0-norm of ml f

(t), which is the count of non-
zero elements in the vector. It is used to calculate the number of physical links involved in
the migration process. t0 represents the latency of modifying the routing table needed to
modify a mapped physical link.

In summary, the total delay required for SFC service transmission is:

ψ f (t) = ψ0
f (t) + ψ1

f (t) + ψ2
f (t) (12)

3.5. SFC Revenue Model

In contrast to other research studies, this paper utilizes the revenue per unit time
method. This method is based on observing the dynamic service mode of SFC. SFC
adjusts the mapping scheme in real time based on the network topology during operation,
leading to temporary network fluctuations and a potential inability to maintain the service

Drones 2024, 8, 117 10 of 22

according to the original QoS requirements. Therefore, it is not appropriate to base revenue
solely on the success of the embedding. In this paper, we employ a lenient decision method
to calculate the revenue during the migration process. This means that there may be QoS
nonconformity during the migration process, but it is essential to ensure that the QoS
requirements can be satisfied after migration. By setting the QoS violation device gain to 0,
we can suppress the behavior of frequently performing migration that affects SFC traffic
transmission. The unit revenue earned at a given time can be calculated as follows:

∆R f (t) =

µ ⊗ ∑
n f ∈N f

C f (n f) + η⊗ ∑
l f ∈L f

C f (l f)

 · σ(t) (13)

where µ represents the resource price per node, and η represents the resource price per link.
σ(t) is an indicator variable used to indicate whether the SFC violates QoS requirements at
time t, that is:

σ(t) =
{

1, ψ f (t) ≤ LA f
0, otherwise

(14)

Let us discuss this expression in the context of different situations:
Case 1: When migration does not occur at time t, the migration indicator variables

mn f (t) and ml f
(t) are both zero vectors, and the total delay ψ f (t) is solely the waiting delay

ψ0
f (t) of the migrated SFC in the regular operation of the base network. Since the SFC has

been embedded, the delay must satisfy the constraint condition that is less than the QoS
requirement LA f (i.e., σ(t) = 1), so the revenue is calculated normally.

Case 2: When migration occurs at time t, the migration indicator variables mn f (t) and
ml f

(t) are not zero vectors. The total delay ψ f (t) at this time includes the remapping delay,
the waiting delay of the SFC operation, and the rerouting delay in the migration process. It
is necessary to determine whether the delay is less than the QoS delay requirement LA f .
The result is σ(t) = 1 if the requirement is met, and the payoff is calculated normally; it is
σ(t) = 0 if the requirement is not met, in which case the payoff is 0.

As a result, the unified expression for income calculation before and after SFC migra-
tion is achieved. When SFC completes its service life cycle, revenue settlement occurs:

R f =

te

f∫
ta

f

∆R f (t)dt, i f f is ending

0, otherwise

(15)

It should be noted that this definition also differs from the definition of SFC revenue
in other studies. We calculate the revenue of SFC throughout its entire life cycle, rather
than just completing the embedding process. If the SFC fails to map after migration due
to an operation taking place during migration (i.e., if the SFC ends abnormally), it will
be recorded as 0 along with the revenue before migration. This is designed from the
perspective that incomplete traffic transmissions will be meaningless. We also hope that the
designed algorithm will be integrated into SFC and that the integrity of its traffic will be
guaranteed, rather than executing multiple broken traffic transmissions to generate revenue.

During the continuous operation of the network, we prioritize the long-term average
revenue of operators:

Rev = lim
τ→∞

1
τ ∑

f∈F
R f (16)

Drones 2024, 8, 117 11 of 22

3.6. Problem Formulation

The aim of this paper is to maximize the long-term average return for operators.
Problem 1 can be expressed as follows:

P1 : obj. max
X f ,Y f

Rev = max
X f ,Y f

lim
t→∞

1
t ∑

f∈F
R f

s.t. (1)− (15)

x
n f ,nS
f (t) ∈ {0, 1}, y

l f ,lS
f (t) ∈ {0, 1}

(17)

It should be noted that this is a non-traditional integer programming problem with a
time-dependent objective function that needs to be solved quickly, requiring the algorithm
to perform well online. At the same time, the decision variables in this problem are discrete
0 and 1 variables related to time, and the constraint conditions are complex and change
over time, making this problem strongly discrete and dynamic.

3.7. Hardness Analysis

The challenge of solving problem 1 mainly arises from its extensive solution space.
This can be analyzed as follows: the solution space size of node mapping is |N f | × |NS| ×
(tc − ta)× |F|, and the solution space of link mapping is |L f | × |LS| × (tc − ta)× |F|. From
the perspective of the online algorithm, only one SFC embedding at a time is considered,
simplifying the problem to the knapsack problem with a solution space of |N f | × |NS|+
|L f | × |LS|. However, the complexity of the problem is further increased by introducing
the interaction between time and multiple knapsacks. Rost et al. [26] has proposed that the
problem of virtual network embeddings is abstracted as a graph mapping problem and
specified using the 3SAT model. The NP-completeness of SFC mapping in a static topology
has been proven. Considering the complex constraints, such as dynamic topology and
delay, the problem remains NP-hard and non-approximable.

4. Algorithmic Descriptions
4.1. Particle Swarm Optimization for SFC Embedding

Inspired by the regularity of bird flocks’ foraging behavior, James Kennedy and
Russell Eberhart developed a simplified algorithm model [27], which eventually evolved
into particle swarm optimization (PSO) after years of refinement. In order to fully utilize
the particle swarm optimization algorithm’s ability to search for function extrema in a
continuous domain, we consider the probability of mapping a virtual node to each base
network node in SFC as the position variable of a particle. Therefore, the dimension of each
particle is D = |N f | × |NS|, and the position of the i-th particle is:

xi = [xi,1, xi,2, . . . , xi,D] = [pi,1(x
n1

f ,n1
S

f = 1), pi,2(x
n1

f ,n2
S

f = 1), . . . , pi,D(x
|N f |,|NS |
f = 1)] (18)

The range of particle positions is given by xi,d ∈ [0, 1], and the velocity of the i-th
particle is:

vi = [vi,1, vi,2, . . . , vi,D] (19)

We define the mapping relationship between the particle’s position and the node when
SFC is embedded as:

∀i ∈ N f , x
ni

f ,nj
S

f =

 1, p(x
ni

f ,nj
S

f = 1) is max, ∀j ∈ NS

0, otherwise
(20)

That is, for the virtual node ni
f , we will extract the probability vector x

ni
f ,∗

f representing
the mapping from particles to physical nodes, and select the position with the highest
probability to execute the embedding action.

Drones 2024, 8, 117 12 of 22

The optimal position sought by the i-th particle in the PSO algorithm (i.e., the individ-
ual optimal solution) is:

pi,pbest = [pi,1, pi,2, . . . , pi,D] (21)

The population searches for the optimal position, which is the global optimal solution:

pgbest = [p1,gbest, p2,gbest, . . . , pD,gbest] (22)

The fitness value of the optimal position searched by the i-th particle (i.e., the opti-
mization function fp) is defined as:

fp =

[

µ ⊗ ∑
n f ∈N f

C f (n f) + η⊗ ∑
l f ∈L f

C f (l f)

]
· (ψ f (t)− LA f), if f is successfully embedded

∞, otherwise

(23)

That is to say, if embedding the i-th particle according to its position violates the
constraint and results in embedding failure, the fitness value is set to the maximum value.
If the embedding is successful, the fitness value is calculated based on the revenue generated
by the embedding scheme. Note that we do not directly use Equation (13) as the fitness
function because we believe that there is a distinction between the success of the embedding
and the transient nature of the QoS violation. There may be a situation where embedding
is successful, but the delay in the process of embedding SFC and migration exceeds the
QoS requirement. Equation (13) directly calculates this part of the benefit as 0, but further
exploration should be encouraged in the PSO algorithm. We calculate the difference
between the delay caused by the current mapping and the QoS delay requirement. Then,
we combine this with the benefit to incentivize particles to move towards positions in
the solution space where the SFC delay is minimized. The lowest fitness value among all
particles is taken as the global optimal fitness value fg.

The velocity update formula for the i-th particle is:

vi(k + 1) = ωvi(k) + c1r1(k)(pi,pbest(k)− xi(k)) + c2r2(k)(pgbest(k)− xi(k)) (24)

The position update formula is:

xi(k + 1) = xi(k) + vi(k + 1) (25)

Where N represents the number of particles, K represents the number of iterations,
and omega is inertia weight. Additionally, c1 and c2 are learning factors, while r1(k) and
r2(k) are random numbers within a specific interval used to enhance the randomness of
the search.

The complete flow of the algorithm is shown in Algorithm 1. We give the steps of the
proposed algorithm in detail, and we believe that it provides an effective method to solve
the problem of online SFC embedding and migration. The computational complexity of
a particle swarm optimization algorithm can usually be expressed as O(NDK), where D
is the particle dimension, which in our problem is calculated as N f NS. Meanwhile, the
Djikstra algorithm was used to perform routing and link mapping between two VNFs,
whose complexity is O(N2

S). Therefore, the complexity of the algorithm proposed in this
paper is O(NN f NSK + N f N2

S).

Drones 2024, 8, 117 13 of 22

Algorithm 1 Particle Swarm Optimization Algorithm for SFC Embedding

Input: Current substrate network GS = (NS, LS); Current SFC request f ; Dimension of
particle position dim; Max iterations maxIter; Number of particles pop.

Output: SFC embedding scheme node mapping X f and link mapping Y f , f lag indicating
whether embedding succeeds.

1: for all each particle i do
2: for all each dimension d do
3: Randomly initialize the particle position xi,d in the range [0,1];
4: Randomly initialize the particle velocity vi,d in the range [0,1];
5: end for
6: end for
7: Initialize current iteration number iter = 1;
8: while iter < maxIter do
9: for all each particle i do

10: Calculate fitness value fp with Equation (23);
11: if the fitness fp is less than the particle historical optimum pk

i,pbest then

12: Set the current fitness fp to pk
i,pbest;

13: end if
14: end for
15: Select the smallest historical optimal fitness value among all particles as the global

optimal fitness value pk
gbest;

16: for all each particle i do
17: Calculate velocity according to the Equation (24);
18: Update particle position according to the Equation (25);
19: end for
20: iter = iter + 1;
21: end while
22: if the fitness fp is the limiting value In f then
23: X f = None,Y f = None, f lag = False;
24: else
25: Convert the global optimum fitness particle position xi to a node embedding scheme

X f with Equation (20);
26: Solve the shortest path between embedded nodes with Dijkstra algorithm, and the

link embedding scheme Y f is obtained;
27: f lag = True
28: end if
29: return X f ,Y f , f lag;

4.2. Analysis of Convergence of Algorithm

We conduct a dynamic analysis of the particle’s trajectory during the algorithm itera-
tion, and the velocity update is expressed as:

v(k + 1) = ωv(k) + c1r1(k)(ppbest(k)− x(k)) + c2r2(k)(pgbest(k)− x(k)) (26)

Position updates are indicated by:

x(k + 1) = x(k) + v(k + 1) (27)

Let φ1(k) = c1r1(k), φ2(k) = c2r2(k), and φ(k) = φ1(k) + φ2(k).
Thus, the updates for velocity and position can be rewritten as:

v(k + 1) = ωv(k)− φ(k)x(k) + φ1(k)ppbest(k) + φ2(k)pgbest(k) (28)

x(k + 1) = ωv(k) + (1 − φ(k))x(k) + φ1(k)ppbest(k) + φ2(k)pgbest(k) (29)

Drones 2024, 8, 117 14 of 22

The matrix form can be expressed as:[
v(k + 1)
x(k + 1)

]
=

[
ω −φ(k)
ω I −φ(k)

][
v(k)
x(k)

]
+

[
φ1(k) φ2(k)
φ1(k) φ2(k)

][
ppbest(k)
pgbest(k)

]
(30)

According to the hypothesis in [28], the position corresponding to the current optimal
fitness value of the particle is the global optimal position, and it has become a fixed value
ppbest(k) = pgbest(k) = p in the long-term iteration. In this case, the dynamics model of
PSO is rewritten as:[

v(k + 1)
x(k + 1)

]
=

[
ω −φ(k)
ω I −φ(k)

][
v(k)
x(k)

]
+

[
φ(k)p
φ(k)p

]
(31)

where v(k + 1) = [v1(k + 1), v2(k + 1), . . . vD(k + 1)]T, v(k) = [v1(k), v2(k), . . . vD(k)]T is the
velocity vector of the particle during iteration. x(k+1) = [x1(k + 1), x2(k + 1), . . . xD(k + 1)]T,
and x(k) = [x1(k), x2(k), . . . xD(k)]T are the position vectors of particles in the iterative process.
The parameters in the original formula are expressed in matrix form as follows:

ω =

 ω · · · 0
...

. . .
...

0 · · · ω

D×D

,φ(k) =

 φ(k) · · · 0
...

. . .
...

0 · · · φ(k)

D×D

, p =

 p1
...

pD

 (32)

We can think of this particle as a dynamic system whose coefficient matrix is:

A(k) =
[

ω −φ(k)
ω I −φ(k)

]
(33)

The stability criterion of the system (i.e., ensuring that the eigenvalues of the coefficient
matrix A(k) are less than 1) is used for analysis. Find the eigenvalues of the block matrix
A(k), that is, solve the equation det(sI − A(k)) = 0.

det(sI − A(k)) = det
[

sI − ω φ(k)
−ω sI − I +φ(k)

]
= det[sI − ω]× det[sI − I +φ(k)− (−ω)(sI − ω)−1φ(k)]

= (s − ω)D(s + φ(k)− 1 +
ωφ(k)
s − ω

)D

= [s2 + s(φ(k)− ω − 1) + ω]D

= 0

(34)

For φ(k)− ω − 1 = −u(k), the equation can be rewritten as:

s2 − u(k)s + ω = 0 (35)

The characteristic roots are s1 =
u(k)+

√
u2(k)−4ω
2 and s2 =

u(k)−
√

u2(k)−4ω
2 , respectively,

under the condition |s| < 1.
The conditions for stable convergence are:{

1 + ω > |u(k)|
|ω| < 1

(36)

where u(k) = −φ(k) + ω + 1. The equation can be solved as follows:{
0 < φ(k) = φ1(k) + φ2(k) = c1r1(k) + c2r2(k) < 2(ω + 1)

|ω| < 1
(37)

Drones 2024, 8, 117 15 of 22

Our particle swarm optimization algorithm uses the parameters that satisfy this condi-
tion to ensure the stability of convergence. Although the parameter selection conditions
that make the algorithm in this paper converge can be analyzed from the above content, an
important decision of whether the particle swarm converges still depends on the fitness
function with Equation (23). The fitness function determines the movement direction of
the particle and affects the process of particle searching for the optimal solution, while
the design of learning factors and weights ensures the asymptotic stability of the particle
adjustment process. The complexity of the fitness function lies in its discreteness. Although
we make the particle variables continuous by mapping probabilities, the function values
are still discrete, and the direct reason for this is the discrete network structure. We have not
yet solved how to prove the discreteness of the algorithm directly from the fitness function,
but only hope that the embedding strategy of SFC under the learning factors and weights
of PSO is not so sloppy.

5. Performance Evaluation
5.1. Simulation Model

In order to validate the effectiveness and performance of the proposed resource-aware
SFC embedding and migration algorithm for UAV dynamic networks, we developed a
simulation framework for SFC embedding based on MANO architecture using Python 3.9
(https://gitee.com/WangXi_Chn/mini_sfc, accessed on 3 February 2024), with reference
to [29], as shown in Figure 2.

Initialization

Substrate Network

Config Scenario Schedule NFV-MANO

NFV Orchestrator

(NFVO)

Vnffg

manager

Vnffg

manager

Vnffg

manager

Vnffg

manager
… …

NFV

Scave
SolutionSolution … … … … SolutionSolution SolutionSolution

Solver

(Embedding or Migration)

Solver

(Embedding or Migration)

SFC SFC SFC SFC

MAP MAP MAP MAP

FinishFinish

SolutionsSolutions

EventsEvents

StartStart

Figure 2. SFC embedding and migration simulation framework based on MANO.

Designed and proposed by the European Telecommunications Standards Institute
(ETSI), the MANO architecture provides a well-defined framework for NFV that is particu-
larly adept at handling the intricate dependencies and operational dynamics of network ser-
vices. The MANO architecture’s ability to interface with various virtual network functional
infrastructure (VNFI) domains makes it better suited for the heterogeneous environment
of UAV IoT, where interoperability and integration with different network elements and

https://gitee.com/WangXi_Chn/mini_sfc

Drones 2024, 8, 117 16 of 22

services is critical. We designed the simulation model of SFC embedding and migration
algorithm with reference to MANO architecture, so that it has certain standardization,
reproducibility, and replicability.

The simulation framework mainly comprises the following components:

• The initialization model is used to configure and schedule events in simulation scenar-
ios, initialize all NFV-MANO modules, and make preparations for the simulation.

• The virtual network function orchestrator (VNFO) model is used to orchestrate and
manage the SFC. This includes tasks such as creating, embedding, migrating, and
destroying the SFC, as well as calculating the revenue model of the SFC and optimizing
the objective function through a solver.

• The virtual network function forwarding graph (VNFFG) model describes the topology,
functional requirements, and quality of service of the SFC, as well as the life cycle
status of the SFC, including creation, embedding, running, migration, and destruction.

• The NFV Scave model is used to monitor and maintain SFC, which involves collecting
and analyzing SFC operating status, performance indicators, energy consumption,
and resources. It also includes making judgments and executing SFC migration
trigger conditions.

The simulation framework utilizes a discrete event-driven approach, meaning it
advances the simulation clock and processes events based on their occurrence time and
type. Events are primarily categorized into endogenous events and exogenous events.
Endogenous events are those caused by state changes resulting from internal activities
of the system, such as the creation, embedding, migration, and destruction of SFC, while
exogenous events are those caused by external factors affecting the system, such as the
movement, communication, and energy consumption of UAVs. The timing and nature of
events are determined by the relevant probability distribution or rules, and the processing
of events is carried out using the corresponding model or algorithm. The execution flow of
the simulation framework is depicted in Figure 3.

Read scene

configuration

parameters

setting.yaml

Generate

scene

Generate schedule

Generate NFV

orchestration and manager

(NFV MANO)

Generate NFV

Orchestration

Generate

Infrastructure Manager

(NFV Vim)

Generate Results

Analyzer

(NFV Scave)

Scenario Scheduler

executes events queue

Have all events

been dealt with?

Begin

End

NFV Orchestrator

determines event type

Generate

VNFFG Manager

Generate

NFV Manager

Get VNFFG Manager

affected by event

VNFFG Manager

performs migration

algorithm

Get VNFFG Manager

corresponding to event

NFV Manager and

NFV Vim release

VNF resources

NFV Scave performs

revenue settlement

Is SFC

successfully

migrated?

Yes

No

 SFC request

arrives

 topology

changes
 SFC

End

Yes

No

Figure 3. Simulation model workflow.

Drones 2024, 8, 117 17 of 22

5.2. Simulation Setting

In this section, we will showcase the performance of the PSO algorithm for SFC
deployment in the emulator. Since there is currently no online algorithm for income
calculation based on long-term operation, this paper chooses to compare it with random
and greedy strategies. Random strategy refers to NFVO randomly selecting physical
nodes in the current base network for VNF embedding after receiving SFC deployment
requests from the environment and SFC migration due to topology changes. The greedy
strategy involves selecting physical nodes with ample remaining resources to embed as
much as possible, and then using the Dijkstra algorithm to sequentially route each node for
embedding virtual links.

In the simulation, we consider a UAV network with 30 nodes as the base network,
and the network topology is randomly generated using the Waxman model. According
to the literature [25], we set the capacity of CPU, RAM, and DISK resources of each site
in the network to 20 units and set the battery capacity to 200 units. The bandwidth
resource on the physical link is 200 units. For each SFC, its source and destination sites
are randomly selected from the network topology, and the number of VNFs ranges from
8 to 10. Each VNF instance requires a uniformly distributed random number of CPU, RAM,
and DISK resources (1–10). The requested virtual link bandwidth resource is a uniformly
distributed random number between 10 and 100. The life cycle of each SFC follows a
uniform distribution of (5,10) time units, and the delay requirement in QoS consists of
uniformly distributed random numbers in the range of [0.2, 0.3]. We generate multiple SFC
requests in the scheduler of the simulated event, and the SFC requests arrive at the system
in a Poisson process sequence. At the same time, in order to simulate topological dynamics
while maintaining network connectivity, the physical links are randomly dismantled and
rebuilt at intervals. When the SFC’s life cycle ends, NFVO removes it from the base network
to indicate that its task has been completed. Set the time cost for updating a forwarding rule
on the switch when the VNF is remapped between two nodes to 0.01 unit. The minimum
wait time in the delay list for applying for resources on a node is 0.01 unit. Each experiment
was repeated 10 times, and the results were averaged to minimize the impact of chance.

5.3. Network Resource Consumption

To evaluate the network resource awareness of the PSO, we compared it to the base-
line algorithm using the simulation settings mentioned above. Figure 4 illustrates the
fluctuations in the remaining CPU, RAM, DISK, and ENG resources during operation
in the same network scenario. We can observe from the utilization of CPU, RAM, and
DISK leased resources represented by Figure 4a–c that the PSO algorithm can effectively
utilize the available resources in the network. During the initial phase of scenario opera-
tion, the SFC completion rate is high, leading to a rapid increase in resource utilization,
exceeding 50%. In contrast, the baseline algorithm remains below this level for an extended
period. In the later stages of the scenario operation, resource utilization under the PSO
algorithm gradually decreases. This is mainly influenced by the remaining power resources
on the UAV node, as depicted in the ENG consumption resource utilization represented by
Figure 4d. After analyzing all the events, the utilization of network power resources under
the PSO algorithm reaches 79%, while the greedy algorithm and random algorithm in the
baseline algorithm correspond to 58% and 10%, respectively. It is evident that deploying
SFC through the PSO algorithm can improve network resource awareness and achieve
optimal resource utilization.

Drones 2024, 8, 117 18 of 22

0 100 200
Event queue

0.0

0.1

0.2

0.3

0.4

0.5

CP
U

re
so

ur
ce

 u
til

iza
tio

n
ra

te

PSO-CPU
RANDOM-CPU
GREEDY-CPU

0 100 200
Event queue

0.0

0.1

0.2

0.3

0.4

0.5

Ra
m

 re
so

ur
ce

 u
til

iza
tio

n
ra

te

PSO-RAM
RANDOM-RAM
GREEDY-RAM

0 100 200
Event queue

0.0

0.1

0.2

0.3

0.4

0.5

Di
sk

 re
so

ur
ce

 u
til

iza
tio

n
ra

te

PSO-DISK
RANDOM-DISK
GREEDY-DISK

0 100 200
Event queue

0.0

0.2

0.4

0.6

0.8

En
er

gy
 re

so
ur

ce
 u

til
iza

tio
n

ra
te PSO-ENG

RANDOM-ENG
GREEDY-ENG

(a) (b)

(c) (d)

Figure 4. Dynamic diagram illustrating changes in network resource utilization: (a) CPU resource;
(b) RAM resource; (c) DISK resource; (d) energy resource.

5.4. Impact of Topological Change

To assess the algorithm’s performance in a UAV network with dynamic topological
changes, we introduced various topological change events at different times in the base
network during the operation process. We then compared and observed the completion rate
of SFC, total revenue, and long-term average revenue during the experiment. The result is
depicted in Figure 5. Given that the number of network topology changes during operation
falls within the range of 10 to 50, the experiment is repeated 5 times. In Figure 5a, it can be
seen that the PSO-based embedding algorithm has a significantly higher SFC completion
rate than the baseline algorithm by approximately 50%. It is also less affected by the severity
of topological changes, whereas the greedy algorithm and random algorithm are only 37%
and 10%. Figure 5b,c demonstrate that the PSO algorithm also outperforms the two baseline
algorithms in terms of the total and long-term average benefits of the running process.
However, as the complexity of the topology changes increases, the income situation of PSO
gradually deteriorates to the level of the greedy algorithm. This demonstrates that although
SFC can maintain a high completion rate and provide an embedding scheme that meets the
constraint conditions under the action of the PSO algorithm, the frequent rerouting and
remapping delays in the migration process prevent it from obtaining benefits normally.

Drones 2024, 8, 117 19 of 22

10 20 30 40 50
Times of topo changes

0.1

0.2

0.3

0.4

0.5

Se
rv

ice
 c

om
pl

et
io

n
ra

tio

PSO
RANDOM
GREEDY

10 20 30 40 50
Times of topo changes

0

20,000

40,000

60,000

80,000

100,000

120,000

To
ta

l r
ev

en
ue

PSO
RANDOM
GREEDY

10 20 30 40 50
Times of topo changes

0

1,000

2,000

3,000

4,000

5,000

6,000

Lo
ng

 te
rm

 a
ve

r r
ev

en
ue

PSO
RANDOM
GREEDY

(a) (b) (c)

Figure 5. Comparison of SFC algorithm embedding performance under different frequencies of
topological changes: (a) comparison of SFC completion rates; (b) comparison of total system revenue;
(c) comparison of long-term average revenue.

5.5. Impact of Workload

To investigate the influence of service load on the SFC embedding algorithm, we
varied the SFC arrival rates for our experiments, and the results are depicted in the figure.
Figure 6a illustrates the completion of the SFC as the service load gradually increases. It is
evident that the PSO algorithm can maintain a stable level, while the greedy algorithm and
random algorithm gradually deteriorate. This gap gradually expands with an increase in
load. This phenomenon can also be observed in the total returns and long-term average
returns depicted in Figure 6b,c. This result demonstrates that the PSO algorithm is capable
of thoroughly exploring the solution space of the problem and offering a viable placement
or migration plan, even when there are more SFC services in the network and fewer
remaining resources. This also exemplifies its resource-aware ability. It should be noted
that under optimal conditions, the arrival rate of SFC ultimately impacts the fluctuation
of resource occupancy in the network. Hence, apart from the embedding algorithm, the
bottleneck also lies in the distribution of network resources, which can result in significant
random errors in experimental outcomes.

0.4 0.6 0.8 1.0 1.2
Lambda (arrival rate of SFC)

0.2

0.3

0.4

0.5

Se
rv

ice
 c

om
pl

et
io

n
ra

tio

PSO
RANDOM
GREEDY

0.4 0.6 0.8 1.0 1.2
Lambda (arrival rate of SFC)

40,000

60,000

80,000

100,000

120,000

140,000

160,000

To
ta

l r
ev

en
ue

PSO
RANDOM
GREEDY

0.4 0.6 0.8 1.0 1.2
Lambda (arrival rate of SFC)

2,000

3,000

4,000

5,000

6,000

7,000

Lo
ng

 te
rm

 a
ve

r r
ev

en
ue

PSO
RANDOM
GREEDY

(a) (b) (c)

Figure 6. Comparison of SFC algorithm embedding performance under different arrival rates of SFCs:
(a) comparison of SFC completion rates; (b) comparison of total system revenue; (c) comparison of
long-term average revenue.

5.6. Impact on Volume of Services

In the experiment, we are investigating the network’s capacity by using different
amounts of SFC. Specifically, we gradually increase the amount of network resources
requested to explore the network’s ultimate capacity. Leased resources, such as CPU, RAM,
and DISK, have recyclable characteristics that result in minimal impact on the increase in
the number of SFCs when the arrival rate and life cycle remain unchanged. As a result,
revenue increases steadily over time. However, for consumable resources such as ENG,
once the energy is depleted, the network will no longer be able to provide resources for
any SFCs. As shown in Figure 7a, as the number of SFCs increases, the PSO algorithm
gradually reaches the bottleneck of network resources, and the completion rate approaches
that of the greedy algorithm. It can also be calculated that the maximum number of SFCs
that can provide resources in the network is approximately 30. It can also be observed from
the total and long-term returns in Figure 7b,c that the yield curve reaches its limit when
energy resources are near exhaustion.

Drones 2024, 8, 117 20 of 22

20 40 60 80 100
Volume of SFC requests

0.1

0.2

0.3

0.4

0.5

Se
rv

ice
 c

om
pl

et
io

n
ra

tio

PSO
RANDOM
GREEDY

20 40 60 80 100
Volume of SFC requests

0

25,000

50,000

75,000

100,000

125,000

150,000

175,000

To
ta

l r
ev

en
ue

PSO
RANDOM
GREEDY

20 40 60 80 100
Volume of SFC requests

2,000

4,000

6,000

8,000

Lo
ng

 te
rm

 a
ve

r r
ev

en
ue

PSO
RANDOM
GREEDY

(a) (b) (c)

Figure 7. Comparison of SFC algorithm embedding performance under different volumes of SFCs:
(a) comparison of SFC completion rates; (b) comparison of total system revenue; (c) comparison of
long-term average revenue.

6. Discussion and Future Work

This paper has presented an in-depth examination of the embedding and migration of
service function chaining (SFC) within a dynamic network topology, specifically a UAV
network. The study focused on the comprehensive process of calculating the benefits
of SFC, from its deployment to maintenance throughout its lifecycle, with the long-term
average benefit as the optimization goal. The problem was formulated as an integer pro-
gramming problem and addressed with a proposed SFC embedding algorithm based on the
particle swarm optimization (PSO) algorithm. This algorithm provides an SFC embedding
and migration scheme with reduced time costs. Experimental results demonstrated the
algorithm’s ability to achieve network resource perception by leveraging the exploratory
capabilities of particles, thereby efficiently utilizing network resources across varying loads,
from low to high.

However, we acknowledges the limitation of the local optimal solution bottleneck of
the PSO algorithm as a heuristic algorithm. Moreover, the performance of optimized de-
ployment under given simulation settings is not presented in this paper and then compared
with the used algorithm to reflect the degree of optimality of the algorithm. This is mainly
because using the existing network modeling methods in dynamic scenarios, it is extremely
complicated to solve the optimal deployment scheme, and this complexity is mainly related
to the sequential decisions brought by considering the time factor. As far as we know,
the solution of the optimal SFC embedding mode in a dynamic network environment has
not been studied in the existing research. In fact, our verification experiment on network
resource consumption can also demonstrate the optimality of this algorithm to a certain
extent, because at the end of the simulation, the battery resource utilization rate of the UAV
swarm has reached about 80%, and it is already very difficult to further deploy SFC to
the network under the constraint of energy consumption. We do not yet have an offline
algorithm that can tell us what the ideal limit of resource utilization is. In our recent
research, modeling dynamic networks using a time extend graph (TEG) combined with
maximum flow theory is a possible way to achieve this goal, which is one of our future
research plans.

Future research is recommended to propose an online algorithm with similar agility but
improved exploration performance, further optimizing the utilization of network resources
in conjunction with the statistical law of SFC service arrival and SFC context. This approach
will enable progress towards the global optimal solution. Intelligent algorithms, such as those
represented by deep reinforcement learning, may be one of the potential solutions to this
challenge. This study’s findings and proposed algorithm have significant implications for the
field of dynamic network topology, particularly in the context of UAV networks.

Author Contributions: Conceptualization, X.W.; methodology, X.W. and S.S.; validation, S.S.;
writing—original, X.W.; writing—review and editing, S.S. and C.W. All authors have read and
agreed to the published version of the manuscript.

Drones 2024, 8, 117 21 of 22

Funding: This work has received support from the National Natural Science Foundation of China
under Grant 62171158 and was also supported by the Fundamental Research Funds for the Central
Universities under Grant 2242022k60006.

Data Availability Statement: The data are inconvenient to directly disclose. The data presented in
this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chaumette, S.; Kim, J.H.; Namuduri, K.; Sterbenz, J.P.G. UAV Networks and Communications; Cambridge University Press:

Cambridge, UK, 2017.
2. Zeng, Y.; Xu, X.; Jin, S.; Zhang, R. Simultaneous Navigation and Radio Mapping for Cellular-Connected UAV With Deep

Reinforcement Learning. IEEE Trans. Wirel. Commun. 2021, 20, 4205–4220. [CrossRef]
3. Qin, Y.; Guo, D.; Luo, L.; Zhang, J.; Xu, M. Service function chain migration with the long-term budget in dynamic networks.

Comput. Netw. 2023, 223, 109563. [CrossRef]
4. Attaoui, W.; Sabir, E.; Elbiaze, H.; Guizani, M. VNF and CNF Placement in 5G: Recent Advances and Future Trends. IEEE Trans.

Netw. Serv. Manag. 2023, 20, 4698–4733. [CrossRef]
5. Wijethilaka, S.; Liyanage, M. Survey on Network Slicing for Internet of Things Realization in 5G Networks. IEEE Commun. Surv.

Tutorials 2021, 23, 957–994. [CrossRef]
6. Wu, W.; Zhou, C.; Li, M.; Wu, H.; Zhou, H.; Zhang, N.; Shen, X.S.; Zhuang, W. AI-Native Network Slicing for 6G Networks. IEEE

WIreless Commun. 2022, 29, 96–103. [CrossRef]
7. Beck, M.T.; Fischer, A.; de Meer, H.; Botero, J.F.; Hesselbach, X. A distributed, parallel, and generic virtual network embedding

framework. In Proceedings of the 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–12 June
2013; pp. 3471–3475.

8. Beck, M.T.; Botero, J.F. Coordinated Allocation of Service Function Chains. In Proceedings of the 2015 IEEE Global Communications
Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015. [CrossRef]

9. Tomassilli, A.; Giroire, F.; Huin, N.; Pérennes, S. Provably Efficient Algorithms for Placement of Service Function Chains with
Ordering Constraints. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications, Honolulu,
HI, USA, 16–19 April 2018; pp. 774–782. [CrossRef]

10. Sallam, G.; Gupta, G.R.; Li, B.; Ji, B. Shortest path and maximum flow problems under service function chaining constraints. In Proceedings
of the IEEE Infocom 2018—IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; pp. 2132–2140.

11. Jin, P.; Fei, X.; Zhang, Q.; Liu, F.; Li, B. Latency-aware VNF chain deployment with efficient resource reuse at network edge. In Proceedings
of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 267–276.

12. Zheng, D.; Peng, C.; Liao, X.; Cao, X. Toward optimal hybrid service function chain embedding in multiaccess edge computing.
IEEE Internet Things J. 2019, 7, 6035–6045. [CrossRef]

13. Zheng, D.; Peng, C.; Liao, X.; Tian, L.; Luo, G.; Cao, X. Towards latency optimization in hybrid service function chain composition
and embedding. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON,
Canada, 6–9 July 2020; pp. 1539–1548.

14. Dimolitsas, I.; Dechouniotis, D.; Papavassiliou, S. Time-efficient distributed virtual network embedding for round-trip delay
minimization. J. Netw. Comput. Appl. 2023, 217, 103691. [CrossRef]

15. Vidal, I.; Nogales, B.; Valera, F.; Gonzalez, L.F.; Sanchez-Aguero, V.; Jacob, E.; Cervelló-Pastor, C. A multi-site NFV testbed for
experimentation with SUAV-based 5G vertical services. IEEE Access 2020, 8, 111522–111535. [CrossRef]

16. Carpio, F.; Bziuk, W.; Jukan, A. On optimal placement of hybrid service function chains (SFCs) of virtual machines and containers
in a generic edge-cloud continuum. arXiv 2020, arXiv:2007.04151.

17. Carpio, F.; Bziuk, W.; Jukan, A. Scaling migrations and replications of virtual network functions based on network traffic
forecasting. Comput. Netw. 2022, 203, 108582. [CrossRef]

18. Rui, L.; Chen, X.; Gao, Z.; Li, W.; Qiu, X.; Meng, L. Petri Net-Based Reliability Assessment and Migration Optimization Strategy
of SFC. IEEE Trans. Netw. Serv. Manag. 2021, 18, 167–181. [CrossRef]

19. Bai, J.; Chang, X.; Rodríguez, R.J.; Trivedi, K.S.; Li, S. Towards uav-based mec service chain resilience evaluation: A quantitative
modeling approach. IEEE Trans. Veh. Technol. 2023, 72, 5181–5194. [CrossRef]

20. Hu, Y.; Min, G.; Li, J.; Li, Z.; Cai, Z.; Zhang, J. VNF Migration in Digital Twin Network for NFV Environment. Electronics 2023, 12, 4324.
[CrossRef]

21. Boutin, E.; Ekanayake, J.; Lin, W.; Shi, B.; Zhou, J.; Qian, Z.; Wu, M.; Zhou, L. Apollo: Scalable and coordinated scheduling for
cloud-scale computing. In Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation,
Broomfield, CO, USA, 6–8 October 2014; pp. 285–300.

22. Schneider, S.; Sharma, A.; Karl, H.; Wehrheim, H. Specifying and Analyzing Virtual Network Services Using Queuing Petri Nets.
In Proceedings of the 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Arlington, VA, USA,
8–12 April 2019; pp. 116–124.

http://doi.org/10.1109/TWC.2021.3056573
http://dx.doi.org/10.1016/j.comnet.2023.109563
http://dx.doi.org/10.1109/TNSM.2023.3264005
http://dx.doi.org/10.1109/COMST.2021.3067807
http://dx.doi.org/10.1109/MWC.001.2100338
http://dx.doi.org/10.1109/GLOCOM.2015.7417401
http://dx.doi.org/10.1109/INFOCOM.2018.8486275
http://dx.doi.org/10.1109/JIOT.2019.2957961
http://dx.doi.org/10.1016/j.jnca.2023.103691
http://dx.doi.org/10.1109/ACCESS.2020.3001985
http://dx.doi.org/10.1016/j.comnet.2021.108582
http://dx.doi.org/10.1109/TNSM.2020.3045705
http://dx.doi.org/10.1109/TVT.2022.3225564
http://dx.doi.org/10.3390/electronics12204324

Drones 2024, 8, 117 22 of 22

23. Li, J.; Wang, R.; Wang, K. Service Function Chaining in Industrial Internet of Things With Edge Intelligence: A Natural Actor-Critic
Approach. IEEE Trans. Ind. Inform. 2023, 19, 491–502. [CrossRef]

24. Su, S.; Zhang, Z.; Liu, A.X.; Cheng, X.; Wang, Y.; Zhao, X. Energy-Aware Virtual Network Embedding. IEEE/ACM Trans. Netw.
2014, 22, 1607–1620. [CrossRef]

25. Wang, T.; Fan, Q.; Li, X.; Zhang, X.; Xiong, Q.; Fu, S.; Gao, M. DRL-SFCP: Adaptive Service Function Chains Placement with Deep
Reinforcement Learning. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC,
Canada, 14–23 June 2021; pp. 1–6. [CrossRef]

26. Rost, M.; Schmid, S. On the Hardness and Inapproximability of Virtual Network Embeddings. IEEE/ACM Trans. Netw. 2020,
28, 791–803. [CrossRef]

27. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks,
Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]

28. Clerc, M.; Kennedy, J. The particle swarm—Explosion, stability, and convergence in a multidimensional complex space. IEEE
Trans. Evol. Comput. 2002, 6, 58–73. [CrossRef]

29. Castillo-Lema, J.; Venâncio Neto, A.; de Oliveira, F.; Takeo Kofuji, S. Mininet-NFV: Evolving Mininet with OASIS TOSCA NVF
profiles Towards Reproducible NFV Prototyping. In Proceedings of the 2019 IEEE Conference on Network Softwarization
(NetSoft), Paris, France, 24–28 June 2019; pp. 506–512. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TII.2022.3177415
http://dx.doi.org/10.1109/TNET.2013.2286156
http://dx.doi.org/10.1109/ICC42927.2021.9500964
http://dx.doi.org/10.1109/TNET.2020.2975646
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1109/NETSOFT.2019.8806686

	Introduction
	Background and Research Motivation
	Network Architecture and Challenges
	Contributions

	Related Work
	SFC Embedding
	SFC Migration

	System Model
	Substrate Network Model
	Service Function Chain Model
	SFC Embedding Model
	SFC Latency Model
	Operation Latency
	Remap Latency
	Reroute Latency

	SFC Revenue Model
	Problem Formulation
	Hardness Analysis

	Algorithmic Descriptions
	Particle Swarm Optimization for SFC Embedding
	Analysis of Convergence of Algorithm

	Performance Evaluation
	Simulation Model
	Simulation Setting
	Network Resource Consumption
	Impact of Topological Change
	Impact of Workload
	Impact on Volume of Services

	Discussion and Future Work
	References

