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Abstract: The Internet of Things (IoT) serves as a crucial element in interconnecting diverse devices
within the realm of smart technology. However, the energy consumption of IoT technology has
become a notable challenge and an area of interest for researchers. With the aim of achieving an
IoT with low power consumption, green IoT has been introduced. The use of unmanned aerial
vehicles (UAVs) represents a highly innovative approach for creating a sustainable green IoT net-
work. UAVs offer advantages in terms of flexibility, mobility, and cost. Moreover, device-to-device
(D2D) communication is essential in emergency communications, due to its ability to support direct
communication between devices. The intelligent reflecting surface (IRS) is also a hopeful technology
which reconstructs the radio propagation environment and provides a possible solution to reduce
co-channel interference resulting from spectrum sharing for D2D communications. The investigation
in this paper hence focuses on energy-efficient UAV-IRS-assisted D2D communications for green
IoT. In particular, a problem of optimization aimed at maximizing the system’s average energy
efficiency (EE) is formulated, firstly, by simultaneously optimizing the power coefficients of all D2D
transmitters, the UAV’s trajectory, and the base station (BS)’s active beamforming, along with the
IRS’s phase shifts. Second, to address the problem, we develop a multi-agent twin delayed deep
deterministic policy gradient (MATD3)-based scheme to find a near-optimal solution, where D2D
transmitters, the BS, and the UAV cooperatively learn to improve EE and suppress the interference.
To conclude, numerical simulations are conducted to assess the availability of the proposed scheme,
and the simulation results demonstrate that the proposed scheme surpasses the baseline approaches
in both convergence speed and EE performance.

Keywords: intelligent reflecting surface; device-to-device communication; unmanned aerial vehicle;
multi-agent deep reinforcement learning

1. Introduction

The Internet of Things (IoT) as an important information network has been widely
used in many areas of everyday life such as smart home, smart transportation, smart
city, etc. [1,2]. Nevertheless, there are a vast quantity of IoT devices worldwide contributing
to a significant increase in energy usage, placing additional strain on the global electric grid
and exacerbating environmental changes. Efforts have been made to extensively explore
technical solutions that promote efficient consumption in order to achieve the objective of
green communications and enhance the utilization efficiency of transmission energy [3]. In
recent years, with the increase in IoT devices, device-to-device (D2D) technology has been
developed as an emerging technology to enhance spectrum efficiency (SE) and address
the growing lack of spectrum resource scarcity [4]. The D2D technology can be widely
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used in various scenarios, including IoT [5], emergency communications [6], and social
networks [7]. Recent research has shown that D2D technology has remarkable advantages
in improving SE and enhancing the user experience [8].

Green IoT, a novel paradigm emphasizing energy efficiency (EE) to address the en-
vironmental impact of IoT technologies for achieving sustainable and environmentally
friendly development, is regarded as a prospective research avenue in the IoT domain [9].
However, as a crucial technology in IoT, the constrained onboard battery capacity hinders
the realization of the full potential of D2D communication. Enhancing the system EE of
D2D communication through effective resource management remains an ongoing research
focus. Furthermore, in some scenarios with long distances or numerous obstacles, the
communication between D2D devices can be severely affected. For instance, the authors
of [10] focused on the unmanned aerial vehicle (UAV) location and resource allocation in
UAV-assisted D2D communication for industrial IoT, and confirmed that the proposed
decomposition-based algorithm can improve the system EE when compared with other
benchmarks. The use of intelligent reflecting surfaces (IRSs) offers a promising option to
address this issue, which can eliminate interference between D2D pairs and thus enhance
EE by reconstructing the wireless communication environment [11–13]. Specifically, the
IRS consists of multiple electromagnetic reflecting elements that are passive in nature. By
altering the amplitude and phase of the incoming signal, it achieves a beamforming gain
through reflection [14]. The deployment of IRS on urban building surfaces presents a
significant improvement opportunity for guaranteeing quality of service in base station (BS)
coverage blind spots. This improvement is achieved by establishing reflective line-of-sight
(LoS) links. Furthermore, the IRS-assisted system offers several advantages over traditional
relay systems, including low cost and low power consumption [15]. Moreover, D2D com-
munications in cellular networks is subject to mutual interference from cellular users and
other D2D devices. Using IRS to effectively regulate each reflection element’s amplitude
or phase shift coefficient, and resource allocation of the D2D communication network can
effectively mitigate the interference [16]. Unlike traditional approaches like alternating
optimization, deep reinforcement learning (DRL) does not require prior knowledge and
exhibits lower complexity and better performance. Recently, some research has already
applied it to IRS-assisted wireless communication systems. For example, in [17], the au-
thors introduce the single-agent deep deterministic policy gradient (DDPG) to optimize the
passive beamforming of IRS in MISO systems and the authors of [18] extend this method to
IRS-assisted MIMO systems. In [19], a multi-agent reinforcement learning (MARL)-based
scheme was proposed for the joint design of passive beamforming and power control.
Furthermore, to address the optimization problem of the mixed action space in IRS-assisted
D2D communication networks, the authors of [20] proposed a novel multi-agent multi-
pass deep Q-networks algorithm using centralized training and a decentralized execution
(CTDE) framework.

Additionally, considering the UAV’s high mobility, it can act as a relay and be deployed
at high altitudes to provide LoS links between ground terminals. The advantages of both IRS
and UAV in improving communications and networks have been demonstrated [21]; many
works have started to investigate the potentials of IRS mounted on a UAV, termed aerial
UAV-IRS [22–26]. Because of the high mobility of the UAV, UAV-assisted communication
systems often exhibited time-varying and dynamic characteristics, thereby makes the
trajectory optimization and resource allocation for such systems intricate. The rapid
advancement in machine learning has brought reinforcement learning to the forefront as a
promising solution for tackling these challenges. Consequently, several studies have been
dedicated to exploring DRL in UAV-IRS-assisted communication systems. The authors
of [23] employed DDPG and double deep Q-learning network (DDQN) algorithms to tackle
the challenge of trajectories and phase shift optimization in an IRS-assisted UAV network,
and the numerical results demonstrated that DDPG-based continuous control achieves a
better performance. The researchers in [24] introduced an innovative SWIPT method that
involved optimizing resource allocation and a twin delayed DDPG (TD3)-based algorithm
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was used to obtain the solution to the problem. The authors of [25] considered the outdated
channel state information (CSI) and developed a novel twin-agent DDPG algorithm to
optimize radio resource allocation. However, the schemes based on single-agent DRL
left out of consideration the interaction between multiple communicating nodes, which
leads to poor performance in cooperative tasks such as D2D communication and vehicle
communication. In addition, single-agent DRL requires a centralized data center to collect
the status information of all agents and carries out centralized training, which results in
a significant communication overhead. In contrast, a localized observation-based MARL
algorithm has been proposed for communication systems [26,27]. It was demonstrated
in [28] that the MARL algorithm can achieve better performance and robustness in UAV-
IRS-assisted systems compared to single-agent reinforcement learning.

Furthermore, there are few works that focus on the system EE maximization for UAV-
IRS-assisted D2D networks in the downlink scenario. For example, Ref. [29] considered a
multiple UAV-IRS-enhanced anti-jamming D2D communication network and maximized
the achievable sum rate by optimizing the IRS mode selection and phase shift, where
each UAV is equipped with an IRS as an aerial relay to forward signals from multiple
D2D users. In [30], the authors considered a scenario in which a UAV was equipped
with an active IRS-assisted terahertz band D2D communication; the maximum system
sum rate was achieved through reasonable power control and beamforming. In [31], the
author proposed a distributed deep learning algorithm for realizing power control and
channel selection. However, the previous studies did not take into account the impact
caused by the movement of the UAV. Additionally, in [32], the researchers investigated a
D2D communication system in the uplink scenario that utilized UAV-IRS assistance; they
further employed a DDQN-based algorithm that optimized both the UAV’s flight trajectory
and the IRS’s phase shift. But, in practical applications, D2D communication is usually
considered as a distributed cooperative scenario. Using traditional centralized algorithms
requires real-time access to global information, inevitably resulting in a significant amount
of communication overhead [33]. In general, there has not been sufficient investigation into
the integration of UAV-IRSs into D2D communications for the downlink scenario.

Motivated by the potential advantages and features of UAV-IRS, this paper explores
energy-efficient UAV-IRS-assisted D2D systems, where the IRS is mounted on a rotary-wing
UAV to serve as an aerial relay. In this paper, we aim to maximize the system’s average
EE by jointly optimizing the considered system’s resource management along with the
movement of the UAV-IRS. In order to obtain a near-optimal solution, we come up with a
multi-agent DRL (MADRL)-based approach. The primary contributions of this paper are
the following:

• We investigate the downlink of D2D communications assisted by UAV-IRS, in which
the BS, the UAV-IRS, and all D2D pairs collaborate to achieve improved EE perfor-
mance. Specifically, the UAV carries the IRS to establish LoS links between various
communication nodes. To maximizing the system EE over time in a changing envi-
ronment, we formulate an optimization problem that involves optimizing the UAV’s
trajectory, the BS’s active beamforming, the IRS’s passive beamforming, and the D2D
transmitters’ power control.

• To solve the proposed EE maximization problem, we use a Markov Game to model
the cooperative task considering each D2D pair, BS, and UAV-IRS. Consequently,
the resource allocation and trajectory optimization problem is addressed using multi-
agent twin delayed DDPG (MATD3) [34]. To enhance its learning efficiency, prioritized
experience replay (PER) is employed. In addition, the algorithm’s complexity is
thoroughly examined.

• The availability of the proposed algorithm is validated through simulations, with
numerical results demonstrating that the proposed scheme outperforms benchmark
schemes in terms of convergence speed and EE performance.

The remaining part of this paper is organized as follows. The system model is pre-
sented in Section 2. The EE maximization optimization problem is formulated in Section 3.
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In addition, Section 4 introduces the MATD3-based algorithm. Section 5 provides the
numerical results of the simulation, while Section 6 concludes the paper.

2. System Model

Figure 1 depicts our considered UAV-IRS-assisted D2D communication underlying
cellular network in the downlink scenario, including an UAV-IRS, a BS, L cellular users
(CUs), and K D2D pairs. Specifically, a rotary-wing UAV carries a passive IRS as an aerial
relay to forward communication between D2D devices. In addition, we denote the sets
of all CUs and D2D pairs as L = {1, . . . , l, . . . , L} and K = {1, . . . , k, . . . , K}, respectively.
Each D2D communication pair includes a transmitter with only one antenna and a receiver
with only one antenna, and it is assumed that all D2D communication pairs and CUs share
the same spectrum resources. Let Dt

k and Dr
k represent the k-th D2D transmitter and the

k-th receiver, respectively. The UAV-IRS has a uniform rectangular array (URA) comprising
M = My ×Mz reflection elements, while the BS is equipped with a uniform linear array
(ULA) consisting of Nt antennas.

Figure 1. UAV-IRS-assisted D2D communication network.

Let uk,t = [xk,t, yk,t, 0]T and uk,r = [xk,r, yk,r, 0]T represent the coordinates of Dt
k and Dr

k,
respectively. The BS is located at the coordinates uB = [xB, yB, 0]T . Furthermore, we make
the assumption that the rotary-wing UAV maintains a constant altitude characterized by
Hu. The total time period T is partitioned into N equal time slots, represented by δn for each
slot. Therefore, let q[n] = [xu[n], yu[n], Hu]T represent the UAV location information at the
n-th time slot. The movement of the UAV must comply with the following restrictions:

∥q[n + 1]− q[n]∥ ≤ vmaxδn, n = 0, · · · , N, (1a)

xmin ≤ xu[n] ≤ xmax, ymin ≤ yu[n] ≤ ymax, n = 0, · · · , N, (1b)

q[0] = [0, 0, Hu]
T , (1c)

where (1a) stands for the mobility constraints of the UAV including start point and end
point, vmax represents the drone’s maximum flying velocity, (1b) sets the constraint for the
flying range of the UAV, and (1c) specifies the initial location.

In this paper, it is assumed that the presence of obstacles results in the absence of
direct links between any two nodes. The channel coefficients from transmitter Dt

k to the
UAV-IRS, from the UAV-IRS to receiver Dr

k, from the BS to the UAV-IRS, and from the
UAV-IRS to the CU l are denoted by hk,TA[n] ∈ CM×1, hk,AR[n] ∈ CM×1, HBA[n] ∈ CM×Nt ,
and hl,AU [n] ∈ CM×1, respectively. It is presumed that the channels between any ground
devices and the UAV-IRS are regarded as LoS links.
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Considering that the UAV-IRS-D2D link and the UAV-IRS-CU link may be blocked
by obstacles, the path loss between the UAV-IRS and other communication nodes can be
modeled as a probabilistic LoS path model [35]. It can be described as

PLoS(θ) =
1

1 + a1 exp(−b1[θ − a1])
, (2)

where a1 and b1 are fixed values that vary based on the specific conditions or circumstances,
and θ = arctan( h

d ) is the elevation angle, where h and d are the altitude intercept and
the projector range between the UAV-IRS and the BS/users. Then, the path loss can be
described as

PL = (ηLoSPLoS(θ) + PNLoS(θ)ηNLoS)× β0d−α0 , (3)

where β0 =
(

4π f
c

)−2
is the constant coefficient related to the antenna gain and frequency.

Θ = diag
[
β1ejθ1 · · · βMejθM

]H represents the passive beamforming of the IRS, in
which βm, θm, ∀m ∈ {1, 2, . . . M} are the amplitude and phase shift coefficients of the
m-th reflection element, respectively. In this paper, the primary focus of the optimization
adjustment lies in the phase shift. Therefore, the amplitude coefficient is fixed to a value
of one, i.e., βm = 1. The reflected interference channel from other transmitters can be
represented as hj,k,TA ∈ CM×1, j ̸= k. Subsequently, the received signal at receiver Dr

k is

yD,k[n] = hH
k,AR[n]Θ[n]hk,TA[n]

√
pk[n]sk︸ ︷︷ ︸

The desired signal

+nd

+
K

∑
j ̸=k

hH
k,AR[n]Θ[n]hj,TA[n]

√
pj[n]sj︸ ︷︷ ︸

Interference from other D2D transmitters

+
L

∑
l=1

(hH
l,AU [n]Θ[n]HBA[n])ωl [n]sl︸ ︷︷ ︸

Interference from BS

,

(4)

where ωl [n] ∈ CNt×1, ∀l ∈ L, and pk, sk represent the active beamforming vector at the
BS, the power coefficient of the transmitter Dt

k, and the transmit data from the Dt
k to Dr

k,
respectively. nd ∼ N (0, σ2

d ) denotes the AWGN noise. The corresponding SINR at Dr
k is

γD,k[n] =
|(hH

k,AR[n]Θ[n]hk,TA[n])|2 pk[n]

∑K
j ̸=k|(h

H
k,AR[n]Θ[n]hj,TA[n])|2 pj[n] + IC

, (5)

where IC = ∑L
l=1|h

H
l,AU [n]Θ[n]HBA[n]ωl [n]|2 + σ2

d .
In addition, the signal received at CU l can be denoted as

yC,l [n] = hH
l,AU [n]Θ[n]HBA[n]ωl [n]sl︸ ︷︷ ︸

The desired signal

+n0

+
K

∑
k=1

hH
l,AR[n]Θ[n]hk,TA[n]

√
pk[n]sk︸ ︷︷ ︸

Intereference from D2D transmitters

+
L

∑
j ̸=l

(hH
l,AU [n]Θ[n]HBA[n])ωj[n]sj︸ ︷︷ ︸
Intereference from other CUs

,

(6)
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where n0 ∼ N (0, σ2
0 ) denotes the AWGN noise at CU l. Accordingly, the corresponding

SINR at CU l is

γC,l [n] =
|(hH

l,AU [n]Θ[n]HBA[n])ωl [n]|2

∑K
k=1|(h

H
l,AR[n]Θ[n]hk,TA[n])|2 pk[n] + ICl

, (7)

where ICl = ∑L
j ̸=l |(h

H
l,AU [n]Θ[n]HBA[n])ωj[n]|2 + σ2

0 . Thus, the achievable rate of receiver
Dr

k and CU l in the n-th time slot can be described as

RD,k[n] = log2(1 + γD,k[n]), (8a)

RC,l [n] = log2(1 + γC,l [n]), (8b)

respectively.
The propulsion power consumption of a rotor-craft UAV is modeled as [36]

EUAV[n] = δn

[
P0

(
1 +

3(V[n])2

U2
tip

)
+

1
2

d0ρsA(V[n])3

+ Pi

(√
1 +

(V[n])4

4v4
0
− (V[n])2

2v2
0

) 1
2 ]

,

(9)

where V[n] =
√
∥q[n]−q[n−1]∥2

δn
stands for the UAV’s instantaneous speed in the n-th time

slot; P0 and Pi are the constant blade profile power and induced power, respectively; Utip
and v0 are the constant blade tip speed and mean rotor-induced velocity during hover,
respectively; ρ, s, and A are the air density, rotor solidity, and rotor disc area, respectively;
and d0 stands for the fuselage drag ratio.

Considering the energy expenditure of the system circuit and IRS elements, the system
EE is expressed as

EE[n] =
∑K

k=1 RD,k[n] + ∑L
l=1 RC,l [n]

∑L
l=1∥ωl [n]∥2 + ∑K

k=1 pk[n] + ECR[n]
, (10)

where ECR[n] = ECIR + EIRS + EUAV[n], with ECIR and EIRS being the power consumption
of the circuits and the IRS, respectively.

3. Problem Formulation

The aim of this paper is to enhance the average system EE by simultaneously optimiz-
ing the flight path of the UAV, Q = {q[n], ∀n}, the passive beamforming matrix at the IRS,
Θ = {Θ[n], ∀n}, the power allocation coefficients for D2D transmitters, P = {pk[n], ∀k, n},
and the BS’s active beamforming matrix, Ω = {ωl [n], ∀l, n}. The optimization problem can
be represented as

P1 : max
Q,P,Ω

1
N

N

∑
n=1

EE[n], (11a)

s.t.(1a), (1b), (1c), (11b)
L

∑
l=1
∥ωl [n]∥2 ≤ PBS, (11c)

pk[n] ≤ PD2D, ∀k, (11d)

θm ∈ (0, 2π], βm = 1, ∀m (11e)

RD,k[n] ≥ Rth,k, ∀k, (11f)

RC,l [n] ≥ Rth,l , ∀l, (11g)
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where (11b) is the UAV’s movement constraint; (11c) and (11d) denote the power constraints
at D2D transmitters and the BS, with PD2D and PBS being the maximal transmit power of
each transmitter and the BS, respectively; constraints (11f) and (11g) are the QoS constraints
of each D2D pair and CU, respectively. The non-convex constraints (11b) and (11e) make
the problem intractable to solve. To tackle this challenge, the following section will utilize a
MADRL algorithm.

4. The Proposed Solution

In this section, we begin by employing the Markov Game framework to model the
optimization problem P1. Then, we will introduce the various elements of the multi-agent
environment. Since a fully decentralized MARL-based algorithm faces the problem of a
non-stationary environment and is difficult to converge, a MATD3 approach based on the
CTDE framework is adopted.

4.1. Markov Game Formulation

Since the transmitter in each D2D communication pair cannot directly communicate
with other transmitters, the formulated problem P1 can be regarded as a Markov Game.
In this setting, each communicating node serves as an agent and aims to optimize the
long-term cumulative reward by utilizing observations and selecting actions based on
its individual policy. Given the non-stationary nature of the environment, it is necessary
for all agents to work cooperatively in order to maximize the shared reward. To ensure
each communication node works cooperatively, the UAV-IRS, the BS, and each transmitter
are considered as agents. Hence, there are K + 2 agents in the system. Let Ik, Ib, and
Iu represent the agents of each transmitter, the BS, and the UAV-IRS, respectively. Thus,
the set of all agents can be defined as I = {I1, . . . , IK, Ib, Iu}. The Markov Game for
the considered UAV-IRS-assisted D2D communication scenario can be viewed as a tuple
({oi}i∈I , {ai}i∈I ,P , r, γ), where the set of the observation space and action space of K + 2
agents are denoted as O = {o1, . . . , oK, ob, ou} and A = {a1, . . . , aK, ab, au}, respectively. P
refers to the probability of all agents performing actions by exploiting the current state
and transitioning to the subsequent state, r is the reward function, and γ is the reward
discount factor. In a Markov Game, each agent aim to maximize its own total expected
reward Ri = ∑n=N

n=0 γri, 0 < γ ≤ 1. In order to solve the problem of non-stationarity in a
multi-agent environment, it is assumed that the policies of all other agents are known. The
specific design of observations, actions, and rewards are as follows.

4.1.1. Observation

The observations of Ik, Ib, and Iu are denoted as ok, ob, and ou, respectively. Since each
D2D transmitter only knows its local observations and partial interference information, to
simplify the analysis process, it is assume that the CSI can be obtained by adopting the
channel estimation method that is used in [37,38]. The observation ok contains the CSI
between Dt

k and Dr
k, and the interference information from other D2D transmitters and the

BS at the (n− 1)-th time slot, which can be represented as

ok[n] = {hH
k,AR[n− 1]Θ[n− 1]hk,TA[n− 1],

hH
k,AR[n− 1]Θ[n− 1]hj,TA[n− 1],

hH
l,AU [n− 1]Θ[n− 1]HBA[n− 1]}, ∀k ∈ K.

(12)

Similarly, the observation of the BS contains the CSI between the BS and CUs, and the
interference channel information from D2D transmitters and the BS at the (n− 1)-th time
slot, and can be expressed as

ob[n] = {hH
l,AU [n− 1]Θ[n− 1]HBA[n− 1],

hH
l,AR[n− 1]Θ[n− 1]hk,TA[n− 1]}, ∀l ∈ L.

(13)
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Additionally, the observation ou contains the UAV trajectory and the CSI from the
UAV-IRS to other devices at the n− 1th time slot, and is given as

ou[n] ={q[n− 1], hH
k,AR[n− 1]Θ[n− 1]hk,TA[n− 1],

hH
l,AU [n− 1]Θ[n− 1]HBA[n− 1],

hH
l,AR[n− 1]Θ[n− 1]hk,TA[n− 1]}.

(14)

4.1.2. Action Space

For agent Ik, the action ak[n] = {pk[n]},∀k ∈ K includes the power allocation coefficient
of the k-th transmitter. For agent Ib, the action ab[n] = {ω1[n], . . . , ωl[n], . . . , ωL[n]} includes
the active beamforming vector for all CUs. For agent Iu, the action au[n] = {Θ[n], q[n]}
contains the passive phase shift matrix and the UAV’s trajectory.

4.1.3. Reward Function

Considering our objective of improving the average EE, the reward function can be
formulated as follows:

r(a[n], s[n]) = EE[n] + ηr,k

K

∑
k=1

pr,k[n] + ηr,l

L

∑
l=1

pr,l [n]

+ηb pb[n] + ηg

K

∑
k=1

pg,k[n] + ηu pu[n],

(15)

where pu, pg,k, pb, pr,k, pr,l are the penalties when the constraints are not satisfied. Let
pr,k = [Rth,k − RD,k[n]]+ and pr,l = [Rth,l − RD,l [n]]+ denote the QoS constraint penalty;
Let pg,k = [PBS −∑L

l=1∥ωk[n]∥2]+ and pb = [PD2D − pk[n]]+ denote the maximum transmit
power constraint penalty, respectively, in which [x]+ = max{0, x}; the UAV’s trajectory con-
straint penalty is defined as pu. The non-negative constants ηr,k, ηr,l , ηb, ηg, ηu represent
the weight coefficients used to balance the different penalty functions.

4.2. MATD3 Approach

MATD3 is a multi-agent extended version of the single-agent TD3, which adopts the
mode of the CTDE framework in the training process. As demonstrated in Figure 2, each
agent first obtains the local observation oi[n] and feeds it into the actor network. Then,
each agent obtains the action ai[n] to execute according to its own policy πi[n] at the time
slot n, and interacts with the environment to obtain a new observation oi[n + 1] and store
(oi[n], ai[n], r[n], oi[n + 1]) in the experience buffer pool D. Subsequently, the critic network
of each agent incorporates the global state, which encompasses the observations and actions
of all other agents.

Figure 2. The structure of the MATD3-based algorithm.
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Unlike multi-agent DDPG (MADDPG), MATD3 integrates two techniques: clipped
double Q-learning (CDQ) and target policy smoothing. In the MATD3 algorithm, the train-
ing of the critic network is performed centrally, and input to the critic network includes
both the observed states and the actions taken by other agents. The centralized training
process assumes training taking place in the UAV-IRS, during which all communication
nodes upload channel state information while forwarding data through UAV-IRS. The
CDQ-learning technique is utilized to mitigate the issue of Q-value overestimation. Specif-
ically, each agent comprises an evaluated actor network, two evaluated critic networks,
a target actor network, and two target critic networks. Each evaluated actor network
outputs action ai[n] = πi(oi[n]|θ

µ
i ) + ni[n] with the local observation oi[n] and the network

parameter θ
µ
i . The evaluated critic networks output the Q values Qi,1(oi[n], ai[n]|θ

q
i,1) and

Qi,2(oi[n], ai[n]|θ
q
i,1) to evaluate the action of the actor network with the local observation

oi[n] and the action ai[n]. Specifically, the centralized Q value is the minimum value be-
tween Qi,1 and Qi,2. During the training phase, a mini-batch of data is utilized to update
the critic network parameter θ

q
i by minimizing the temporal difference (TD) error. Differ-

ently from the single-agent TD3, the critic input of each agent on MATD3 has additional
information, such as the actions and observations of other agents, in addition to its own
state–action information. TD3 adopts the target network approach to fix the Q-network in
the TD target.

The target value y can be computed through

y = ri + γmin{Qi,1(o′, a′1, . . . , a′I |θ
q′
i,1),

Qi,2(o′, a′1, . . . , a′I |θ
q′
i,2)} |a′={πi(o′i |θ

µ′
i )+ϵ,i∈I}

, (16)

where ϵ = clip(N (0, σ),−c, c) is the clipped Gaussian noise and c is a variable parameter.
The evaluated critic network is updated through minimizing the loss function:

min L(θq
i,j) = Eo,a,r,o′ [(Qi(o, a1, . . . , aI |θ

q
i,j)− y)2], i ∈ I , j ∈ {1, 2}. (17)

The evaluated actor network of each agent is updated through gradient descent:

∇θ
µ
i

Ji(πi) = Eo,a∼D

[
∇θ

µ
i πi

(
oi|θ

µ
i

)
×

∇ai Qi

(
o, a|θq

i,1

)∣∣∣
a={πi(oi |θ

µ
i ),i∈I}

]
.

(18)

The target network parameters θ
q′
i,1, θ

q′
i,2 and θ

µ′
i are updated by

θ
q′

i,1 ← θ
q
i,1 + (1− τ)θ

q′

i,1,

θ
q′

i,2 ← θ
q
i,2 + (1− τ)θ

q′

i,2,

θ
µ′

i ← θ
µ
i + (1− τ)θ

µ′

i .

(19)

4.3. Prioritized Experience Replay

The technique of classical experience replay involves randomly selecting samples
from the experience replay buffer in a uniform manner. This is carried out to reduce the
correlation between the samples. However, the importance of experience is ignored. In the
case of sparse rewards, agents receive a reward only after executing multiple correct actions,
resulting in limited transitions to encourage proper learning. Therefore, using random
sampling of experiences in this scenario can result in reduced learning efficiency. Prioritized
experience replay is adopted to solve such problems [39], which is an improved method
of the experience replay buffer. It determines the order in which experience samples are
extracted by introducing a priority and replay probability. Based on priority, high-priority
experience samples are more likely to be extracted and used for training the agent.
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In this paper, proportional prioritization is adopted to restore the priority of a transi-
tion, which can be expressed as follows:

pt
i = |δt

i |+ ϵ, (20)

where δi is the TD error and ϵ is a small fixed value to avoid the probability of zero. The
TD error represents the difference between the current Q value and the Q value that should
be pursued in the next step, and higher TD errors will be assigned a higher priority. Thus,
the sampling probability can be defined as follows:

Pt
i =

(pt
i)

α

∑k(pk
i )

α
, (21)

where α is the hyperparameter that regulates the degree of priority.
Due to the introduction of bias through PER, which alters the data distribution, it

becomes necessary to employ importance sampling to mitigate the impact. The weights for
importance sampling can be defined as follows:

wt
i =

(
1

N0
· 1

Pt
i

)β

, (22)

where β is the hyperparameter that regulates the degree of bias introduced by PER and
N0 corresponds to the number of existing transitions in the experience replay pool. Conse-
quently, Equation (16) can be reconstructed as the loss function:

L(θq
i ) = Eo,a,r,o′ [ωi(Qi(o, a1, . . . , aI |θq)− y)2]. (23)

Algorithm 1 outlines the training process of the optimization for resource allocation
and trajectory using MATD3.

Algorithm 1: Joint resource allocation and trajectory using MATD3

1 Initialize the parameters of the evaluated actor network θ
µ
i , and the evaluated

critic networks θ
q
i,1 and θ

q
i,2, respectively;

2 Initialize target actor and critic network parameters θ
µ′

i , θ
q′

i,1, and θ
q′

i,2, respectively;
3 Initialize prioritized experience reply buffer D;
4 Initialize observation of each agent i;
5 for i=0 to maximum training episode E do
6 Each agent i get local observation oi;
7 for j=0 to maximum training stepM do
8 Each agent i gets local observation oi;
9 Execute actions A = {a1, . . . , aK, ab, au};

10 Get new observation o′i and reward ri;
11 Store transition (oi, ai, ri, o′i) into D;
12 Sample a mini-batch of transitions (oi, ai, ri, o′i) from D (21);
13 Get the target value y (17);
14 Update the parameters of the critic network by minimizing the loss

function described in Equation (23);
15 Update the parameters of the actor network using the policy gradient

method outlined in Equation (18);
16 Update target network parameters (19).
17 end
18 end
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4.4. Complexity Analysis

The time computation complexity depends on the network operations between two
layers. Since our proposed algorithm includes two actor networks and four critic networks,
its complexity is given by O(2× ∑La

l=1 na
l · n

a
l+1 + 4× ∑Lc

u=1 nc
u · nc

u+1), in which the nl-th
and the nu-th are the number of operations of the l-th actor and the u-th critic network
layers, respectively; La represents the number of layers in the actor network, while Lc
represents the number of layers in the critic network. For the online execution phase, the
time complexity of each actor network is O(2×∑La

l=1 na
l · n

a
l+1).

5. Simulation Results

In this section, we validate the efficacy of the proposed algorithm in optimizing
resource allocation and designing the UAV trajectory. It is assumed that the UAV maintains
a constant altitude of Hu = 25 m throughout the flight. For comparison, we compare the
system EE performance under fixed position and random trajectory. The UAV-IRS’s initial
position is configured as (25 m, 25 m, 25 m), while the location of the BS is fixed at (0 m,
30 m, 5 m). Moreover, the position of the UAV in the fixed position scheme is consistent
with the initial position of the proposed scheme. All CUs and D2D pairs are located
around the initial UAV position. The simulation platform is based on AMD Ryzen 7735H,
NVIDIA GeForce RTX4060, python3.7.4 and Torch-1.12.1. Each agent’s actor and critic
networks are built with three fully connected layers, comprising 512, 256, and 128 neural
units, respectively. The energy consumption model parameters of the rotary-wing UAV
are set based on [36]. Formal verification is crucial in IoT systems to ensure safety, security,
and reliability by detecting errors, verifying complex interactions, and enhancing trust in
the system’s performance, scalability, and compliance with specifications [40,41]. In order
to reduce the complexity of the experiment and considering that we currently only have
a single drone, we have not yet addressed the issues of safe drone operation and carried
out formal verification. For the relevant parameters of the probabilistic path loss model,
we set a = 9.61, n = 0.16 [35]. According to [42], the total energy consumption of the
system’s circuit power and the IRS is set as EIRS + ECIR = 4w. For the hidden layer, the
Relu activation function is applied and, for the output layer of actor networks, the Tanh
activation function is employed. The number of training episodes is set as 5000 and each
episode has 200 time steps. In this paper, each time step is treated as a time slot. Additional
simulation parameters can be found in Table 1 [36,43].

Figure 3 illustrates the trajectory of the UAV after optimization. Obviously, the UAV
will fly to a fixed area and fluctuate in a small range after the optimization. When it flies
to the center of the map, the UAV hovers at the center of all users to enhance the average
system EE while meeting the QoS constraints of all users.

Figure 4a shows the episode return variation during training with different learning
rate settings. Observing the learning process under different learning rate settings, it
becomes apparent that the MATD3-based algorithm gradually converges. Obviously, the
learning curve tends to converge after 1000 episodes. Specifically, the proposed algorithm
at the learning rate of 0.0001 converges faster and obtains a better performance than the
proposed algorithm at the learning rate of 0.001 and 0.00001. The reason behind this is that
the excessively large learning rate may result in excessively large weight updates, thereby
causing the loss to become too small and missing the optimal solution. Furthermore, a too
small learning rate also leads to poor performance, since it results in tiny updates to the
parameter, making it difficult for the algorithm to effectively learn the characteristics of the
environment and the reward function. Figure 4b illustrates the average EE versus episodes
with the same parameter setting. This proves that the reward setting is consistent with
our optimization goal. Finally, the proposed algorithm is superior when examining the
converged average EE with the learning rate being set to 0.0001.
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Table 1. Simulation parameters.

Parameters Description Value

σ0, σd Noise power −169 dBm
f Carrier frequency 2.8 GHz

PBS The BS’s maximum transmit power 30 dBm
PD2D Transmitter’s maximum transmit power 23 dBm

α0 Path loss exponent 2.2
K Number of D2D pairs 2
L Number of CUs 2

Utip Blade tip speed 200 m/s
d0 Drag coefficient of the UAV fuselage 0.3
ρ The air density 1.225 kg/m3

s The solidity of the UAV’s rotor 0.05
A Rotor disc area of the UAV 0.79
P0 The blade profile power of the UAV 580.65
Pi The induced power of the UAV 790.6715

Rth,l Minimum rate requirements of CU l 0.25 bps/Hz
Rth,k Minimum rate requirements of D2D k 0.25 bps/Hz
vmax UAV’s max velocity 25 m/s

δn Time slot length 0.1 s
ηNLoS Additional attenuation coefficient of LoS −20 dB
ηLoS Additional attenuation coefficient of LoS −1 dB

γ Discount factor for rewards 0.95
τ Soft update rate 0.01
B Batch size 256
N Experience buffer size 50,000
M Maximum training steps per episode 200
E Maximum training episodes 5000
α The hyperparameter of PER 0.6
β The hyperparameter of PER 0.4

Figure 3. The UAV-IRS trajectory.

Figure 5 demonstrates the average EE versus the number of episodes of different
schemes with M = 25. The benchmark schemes include DDPG, TD3, SD3 [44], MADDPG,
MATD3 with fixed UAV position, and MATD3 with fixed phase shifts. The state input of
all single-agent algorithms (DDPG, TD3, SD3) is set to global state information. The EE
improvement achieved by simultaneously optimizing the resource allocation and the UAV
trajectory is clearly superior to that of the fixed position and the fixed phase shift schemes.
The main reason is that the reflective surface in the fixed position is difficult to meet the
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rate constraint of all users, and another reason is that the UAV-IRS requires greater energy
consumption to sustain a hover state and maintain a fixed position, compared to main-
taining a flight state. It can also be observed that the MATD3-based scheme surpasses the
MADDPG-based scheme and all single-agent-based schemes; the DDPG-based scheme per-
forms the worst due to the presence of high input dimensions. Furthermore, since MATD3
introduces dual Q-value networks, it increases the complexity of the training process and
then results in a slower convergence speed compared to the MADDPG-based scheme.

(a) (b)

Figure 4. The training process of MATD3 algorithm under different learning hyperparameters.
(a) The episode return versus episodes. (b) The average EE versus episodes.

Figure 5. The average EE versus episodes.

Furthermore, Figure 6 illustrates the correlation between the number of elements (M)
in the IRS and the average EE. It can be observed that increasing M can enhance the system
EE when it is small; however, the EE performance gain becomes smaller and smaller when
M is very large. This is due to the increased dimensionality of the action space, which
requires more time for the algorithm to achieve convergence. In the comparison, it is
evident that the proposed MATD3-based approach obtains a higher EE than the other two
benchmarks in the case of more IRS elements.

Figure 7 illustrates the relationship between the system’s average EE and the maximum
transmit power constraint , PD2D, under various schemes. Specifically, in the fixed position
method, without optimizing the movement, the UAV is fixed at a fixed location and during
the entire time period. In the random trajectory method, without optimizing the trajectory,
the UAV moves randomly. The average EE of the proposed scheme gradually improves
with an increase in the maximum transmit power budget, PD2D, as illustrated in Figure 7.
This improvement can be attributed to the increase in the system sum rate achieved by
allocating more transmit power. It can also observed that the random trajectory scheme
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and fixed position scheme cannot gain improvement by increasing the transmit power.
Furthermore, the figure demonstrates that, by deploying the IRS in a flexible manner, the
performance of the system EE can be greatly enhanced.

Figure 6. The average EE versus M.

Figure 7. The average EE versus PD2D.

6. Conclusions

This study investigates the application of UAV-IRS-assisted D2D communications
to enhance system EE by jointly optimizing the UAV trajectory, D2D transmitter power
coefficients, BS’s beamforming vector, and IRS passive beamforming matrix, while the rate
requirements of all cellular users and D2D users are simultaneously satisfied. Considering
the distributed nature of D2D communication, we use MADRL to train each communication
node and propose a training framework based on the CTDE framework. To address
the formulated problem, we initially formulate it as a Markov Game and subsequently
introduce a solution approach utilizing MATD3. The numerical results indicate that our
proposed scheme greatly improves the EE. However, the scalability of MATD3 in real-world
scenarios is a potential challenge. As the number of agents increases, the complexity of the
interaction among them grows exponentially. This can lead to issues such as communication
overhead, increased computational resources, and difficulties in maintaining a stable
training process. Another point to note is that this work does not consider the onboard
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energy constraints of the UAV and the channel allocation for D2D communications, which
will be addressed in future works. In the current experiments, we have overlooked the
complexity of the real environment. In future work, we will consider further designing
path planning for security issues and conducting formal verification using real-time data.
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Abbreviations
UAV-IRS Unmanned aerial vehicle-mounted intelligent reflecting surface
IRS Intelligent reflecting surface
UAV Unmanned aerial vehicle
MISO Multiple input and single output
MIMO Multiple input and multiple output
BS Base station
CU Cellular user
SINR Signal-to-interference-plus-noise ratio
MDP Markov decision process
LoS Line-of-sight
NLoS Non-line-of-sight
MADRL Multi-agent deep reinforcement learning
DDPG Deep deterministic policy gradient
TD3 Twin delayed deep deterministic policy gradient
MADDPG Multi-agent deep deterministic gradient
MATD3 Multi-agent twin delayed deep deterministic policy gradient
EE Energy efficiency
CTDE Centralized training and decentralized execution
PER Prioritized experience replay
QoS Quality of service
CSI Channel state information
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