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Abstract: Robot autonomous exploration is a challenging and valuable research field that has attracted
widespread research interest in recent years. However, existing methods often encounter problems
such as incomplete exploration, repeated exploration paths, and low exploration efficiency when
facing large-scale scenes. Considering that many indoor and outdoor scenes usually have a prior
topological map, such as road navigation maps, satellite road network maps, indoor computer-aided
design (CAD) maps, etc., this paper incorporated this information into the autonomous exploration
framework and proposed an innovative topological map-based autonomous exploration method for
large-scale scenes. The key idea of the proposed method is to plan exploration paths with long-term
benefits by tightly merging the information between robot-collected and prior topological maps.
The exploration path follows a global exploration strategy but prioritizes exploring scenes outside
the prior information, thereby preventing the robot from revisiting explored areas and avoiding
the duplication of any effort. Furthermore, to improve the stability of exploration efficiency, the
exploration path is further refined by assessing the cost and reward of each candidate viewpoint
through a fast method. Simulation experimental results demonstrated that the proposed method
outperforms state-of-the-art autonomous exploration methods in efficiency and stability and is
more suitable for exploration in large-scale scenes. Real-world experimentation has also proven the
effectiveness of our proposed method.

Keywords: autonomous exploration; path planning; PCATSP; prior information; topological map

1. Introduction

Autonomous robot exploration technology requires robots to collect data within a
given region and construct corresponding environmental maps. As a critical technology that
reveals robotic autonomy, relevant research in robotics has garnered significant attention,
driving widespread applications in geological exploration, 3D reconstruction, post-disaster
rescue, and other fields.

Numerous autonomous exploration methods have been proposed in recent years and
are divided into sampling-based and frontier-based categories. Sampling-based methods
originated from the NBV (Next Best View) algorithm in the field of 3D reconstruction.
RH-NBV (recurrent hybrid neural-based visual) first introduced the NBV algorithm into
the autonomous exploration field [1], which consisted of the robot randomly sampling
viewpoints in explored free space, constructing a rapidly exploring random tree (RRT),
and evaluating the utility of each branch on the RRT. Finally, the robot focuses on the
branch with the highest information reward and selects the first node of this branch as the
local target. After that, numerous researchers have extended and improved the RH-NBV
to meet the requirements of various application scenarios [2–6]. However, sampling-
based autonomous exploration methods have lower exploration efficiency and lead to
the robot being trapped. Ref. [7] first introduced the frontier-based exploration method,
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which groups free voxels adjacent to unknown voxels as frontier clusters and then drives
the robot towards these frontier clusters to move to explore unknown areas. Since then,
many frontier-based exploration methods have been proposed to meet various application
requirements [8–10]. Ref. [11] proposed to select a viewpoint with minimal speed changes
as the next goal within the Field Of View (FOV) of sensors, aiming to maintain the high
movement speed of unmanned aerial vehicles (UAVs) and achieve efficient exploration.
Fast UAV expLoration (FUEL) proposes the incremental frontier information structure (FIS)
to address the problem of high computation of frontier extraction and low decision fre-
quency of the path planner [12]. Based on FIS, UAVs can quickly and incrementally extract
environmental information that the planner needs and promptly plan the exploration path.

However, most autonomous exploration methods tend to greedily guide the robot
to exploration scenes with immediate rewards and neglect some targets with long-term
rewards, resulting in lower efficiency in global exploration [12]. Although some methods
plan paths from the global exploration standpoint, the robot inevitably overlooks some
scenarios during exploration because of the limited perception range of sensors and the
unpredictability of unknown environments [12,13]. To thoroughly explore a given region,
the robot must revisit areas containing those missed scenarios, resulting in a waste of
resources. Furthermore, when exploring large-scale scenes, the more information the robot
collects with exploration, the more the path planner computes, which poses a significant
challenge to onboard computers.

In order to solve the above problems, the work [14] proposed that supplying robots
with prior information about a given region can aid them in making decisions that align
with long-term benefits. Ref. [15] proposed a probabilistic information gain map as the
prior knowledge to guide exploration. Ref. [16] introduced a general information theory
framework to control multiple robots to search and rescue, wherein the prior knowledge
of people is modeled to capture target positions and dynamics. Ref. [17] employs hand-
drawn sketches as prior information, enabling the robot to explore even when the metric
description of the environment is incomplete.

As the concision of a topological map, many researchers use them as prior informa-
tion to guide robots in autonomous exploration. Ref. [18] proposed a novel autonomous
exploration method based on a prior topometric graph, which verifies that prior informa-
tion could aid the robot in swiftly completing the exploration of unknown environments.
Ref. [19] proposed a path planning method based on topology information for 3D recon-
struction, in which the multi-view stereo path planning is decomposed into a collection of
overlapped viewing optimization problems that can be processed in parallel. In [14], the
prior topometric map is employed to improve exploration efficiency and guide the robot to
trigger a loop close, improving the localization accuracy of the Simultaneous Localization
And Mapping (SLAM) system. Finally, the environmental information collected will be
used to refine prior information.

Furthermore, some researchers focus on the generation of topological maps. Ref. [20]
proposed a framework called “topomap” to provide robots with customized maps to
simplify robot navigation tasks, transforming the sparse feature-based map from visual
SLAM into a three-dimensional topological map. Ref. [21] proposed an efficient and flexible
algorithm that generates a trajectory-independent 3D sparse topological skeleton graph
captured from the spatial structure of free space.

Inspired by the abovementioned research, we select the topological map as the prior in-
formation to guide in robot exploration and employ the frontier-based exploration method
suitable for exploring large-scale scenes to plan exploration paths. As a form of map repre-
sentation, the topological map briefly provides relative position and connectivity between
critical places in complex scenes, which could guide the robot in planning paths that follow
long-term benefits [20]. In practical cases, many methods can easily acquire the skeleton
structure of the environment as the topological map [20–23].

To fully take advantage of the guiding function of prior topological maps, we propose
an autonomous exploration method based on topological maps. The proposed method
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employs a hierarchical path planning framework, integrates frontier information with prior
topological maps, and plans the exploration path with long-term benefits. It first plans
a global exploration path by solving the constructed Priority Constrained Asymmetric
Traveling Salesman Problem (PCATSP). The global exploration path would follow opti-
mal or customized global exploration strategies to guide the robot to cover frontiers but
prioritizes exploring scenes outside the prior information, thus preventing the robot from
revisiting previously visited areas. Then, the exploration path is refined from the global
exploration path by quickly evaluating the rewards and costs of the candidate viewpoint
for each frontier.

Because of the one-pass exploration process, our method will maintain the frontier at a
small number, preventing excessive computational burden on the solver during exploration.
The above properties make our method more suitable for autonomous exploration in large-
scale scenes, and the contributions of this paper are as follows:

(1) An autonomous exploration method based on prior topological maps. The robot
follows an optimal or customized strategy to explore a given region autonomously but
prioritizes exploring scenes outside prior information, preventing the robot from revisiting
the explored areas.

(2) A path planning method integrates information between frontiers and prior topo-
logical maps, which makes the topological map deeply involved in the path planning of
robot exploration.

(3) A local path planning method, which quickly evaluates the rewards and costs of
each candidate viewpoint to optimize the global exploration path, enhances the stability of
exploration efficiency.

2. Design Objectives

Give the robot a region to autonomously explore, and provide it with a topological
map of the region to be explored. The topological map should reflect the fundamental
layout of the region but may not represent all of its spaces. The objectives we address are
as follows:

Objective 1: The robot completes a comprehensive exploration of the given region.
When there are no frontier clusters extractable within the given region, it indicates the
completion of an information gathering task.

Objective 2: The robot utilizes real-time collected scene information and prior topo-
logical maps to plan exploration paths. When the robot encounters scenes that are not
included in the priori information, the exploration path will guide the robot to prioritize
exploring scenes beyond a priori information.

Objective 3: The exploration path enables the robot to complete an exploration of the
visited area in a one-pass manner, preventing the robot from repeatedly visiting the areas
that have been explored.

3. Methods

We define the topological map as follows. G(S, E) consist of the global targets set
S = {s1, s2, . . . , sn} and the undirected edges set E = {e1, e2, . . . , em}. s denotes a global
target corresponding to a corner or intersection in the environment. ek = (si, sj) is an
undirected edge, connecting si and sj, representing a straight-line scene, such as a road or
corridor. With the support of a prior topological map, we can obtain a global exploration
strategy O = {o0, o1, o2, . . . , oh} for the given region by customizing or solving the Chinese
Postman Problem (CPP) [24], which is a priority queue. ok = (si, sj) denotes a directed line
segment from si to sj, corresponding to the exploration guidance. Define f as the frontier
cluster, and F = { f 1, f 2, . . . , f n} as a set of remaining frontier clusters in a scene. We adopt
the incrementally frontier information structure (FIS) proposed by FUEL to update frontier
clusters efficiently [12]. Viewpoint sequential queue VPk = {vpk

1, vpk
2, . . . , vpk

m} of frontier
cluster f k is extracted by random sampling, where vpk

1 is a viewpoint with the largest
reward of f k and will replace f k in constructing PCATSP.
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Figure 1 shows an overview of the proposed method, which operates upon a voxel grid
map. We employ a hierarchical architecture to plan the exploration path, which consists of
global path planning (Section 3.1) and local path planning (Section 3.4). The global path
planning module takes a prior topological map, global exploration strategy, and frontier
clusters as input to plan the global exploration path based on the Priority Constrained
Asymmetric Traveling Salesman Problem (PCATSP). Nodes with priority in PCATSP will be
extracted (Section 3.2), and the movement cost of some frontier clusters will also be updated
(Section 3.3). Then, the global exploration path is given to the local path planning module,
which refines the input path based on rewards and costs of each viewpoint candidate to
improve the stability of exploration efficiency. Finally, the exploration path will output to
the trajectory generation module. The exploration task will be completed when no frontier
clusters can be extracted from environment.

Figure 1. The overview of the proposed exploration method.

3.1. PCATSP-Based Global Path Planning

PCATSP is a variation of the classic Traveling Salesman Problem (TSP), which aims
to find a minimum-cost Hamiltonian circuit, with the constraint that some nodes must
be visited before others. If splitting the start and end points of PCATSP into two nodes,
PCATSP is equivalent to finding a path between the start and end points that satisfy priority
constraints, which is also considered a Sequential Ordering Problem (SOP) [25]. To address
Objective 3, our basic idea of global path planning is to solve PCATSP with frontiers and
priority-constrained global targets. It is equivalent to inserting frontiers into a sequential
queue of global targets, utilizing the global targets to influence the covered sequence of
some frontier clusters.

However, the construction of PCATSP faces the following challenges: First, constrained
by the perception range of sensor and obstacle obstruction, the robot cannot accurately
calculate the movement distance between global targets in unknown space and viewpoints
inside the free space. Second, for TSP, the farther the metric distance between frontier
cluster and global target, the less influence the global target can exert. So, we need to enable
global targets to influence specific frontier clusters.

To address the above challenges, we define the following: if a global target si is inside
the free space, and the other global target sj connected to si is in unknown space, then
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the shortest path Ppk ,sj between any node pk in free space and global target sj in unknown
space is given by

Ppk ,sj = Ppk ,a + Pa,sj , (1)

where a is an intersection point of frontier and undirected edge ek that connects si and sj,
as shown in Figure 2a. Pa,sj is a portion of ek in unknown space, and Ppk ,a is a search path
from pk to a.

(a) (b)

Figure 2. The basic scheme for autonomous exploration based on a prior topological map. (a) Extract-
ing an agent for global target sj that is in unknown space. (b) Obtain the exploration path tourexplore
from tour provided by the PCATSP solver.

Based on the above definition and by incorporating the solving property of TSP, if all
elements in a certain row or column of cost matrix D of TSP are subtracted by the same
value, a new cost matrix D∗ for the TSP will be obtained. However, D and D∗ correspond
to the same TSP solution [26]. Thus, we can subtract Pa,sj from all Pp,sj , and leave the TSP
solution unchanged. It is equivalent to setting an agent point for the global target on the
frontier. For constructing PCATSP, the intersection point aj could be extracted on a frontier
cluster as an agent for global target sj and the priority can be set to aj based on global
exploration strategy O.

Hence, based on the above theory, we define agent aj as the intersection point of a
frontier cluster f k and an undirected edge ek = (si, sj), which is associated with a global
target sj in unknown space and possesses access priority. Then, the path between any point
inside free space and an agent on frontier could be found by a path-searching algorithm,
and then path length could also be accurately calculated. The method of agent extraction
and priority assignment will be elaborated in Section 3.2.

Finally, we can naturally combine the prior topological map with real-time updated
scene information in path planning based on PCATSP. We can then solve the PCATSP with
the extracted agent set A = {ai, aj, . . . , al} and frontier cluster set F, where agents with
priority will influence the visited order of nearby frontier clusters.

In this section, we suppose that the movement cost c
(

pi, pj
)

between any two nodes
pi and pj is calculated as follows:

c
(

pi, pj
)
=

L
(

Ppi ,pj

)
vmax

, (2)

where Ppi ,pj is the shortest search path between nodes pi and pj; L() denotes the length of
search path; and vmax is the maximum velocity of the robot.

PCATSP solver provides a path tour composed of input nodes. By removing A from
tour, we obtain a global exploration path tourexplore = {vpi

1, vpj
1, . . . , vpl

1} that satisfies
global exploration strategy O, as shown in Figure 2b [27]. However, tourexplore cannot
guarantee that the robot with the priority will explore areas outside prior information, i.e.,
Objective 2. To address this objective, frontier clusters that guide the robot towards global
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targets will be recognized, and movement cost between these frontier clusters and the robot
will be increased. Details are discussed in Section 3.3.

Figure 3 is a schematic diagram of the robot exploration process. The blue arrows
represent the global exploration strategy, and green arrows are basic exert programs for
global exploration paths. Based on our method, the robot explores the given region
according to the global exploration strategy but prioritizes exploring scenarios outside
prior information. Finally, following the global exploration strategy, the robot actively
loops close and completes the exploration.

(a) (b)

(c) (d)

(e) (f)

Figure 3. The schematic diagram of the exploration process. (a,b) Robot prioritizes exploring
scenarios outside prior information. (c,d) After exploring scenarios outside prior information, the
robot explores the unknown environment according to a global exploration strategy. (e,f) Robot
actively conducts loop exploration according to the global exploration strategy and finally covers the
frontier clusters near the lowest-priority agent.
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3.2. Agent Extraction and Priority Assignment

When the position of a global target si is explored by the robot, other global targets sj
connected to si will be searched on a topological map. Then, the directed line segment ek =
(si, sj) is constructed based on ek = (si, sj), indicating from si to sj. During implementation,
we set up some satellite points for each global target to prevent the robot from missing them.
The satellite points are evenly distributed at a set distance around the global target point.

The Oriented Bounding Box (OBB) of each new frontier cluster is extracted by principal
component analysis (PCA), which is used to extract agents. As shown in Figure 4a, if f k is
crossed by ek, OBB of f k must be crossed, and the following condition is met:((

sj − si
)
×
(
obbp − si

))
z

((
sj − si

)
×
(
obbq − si

))
z < 0,

p, q ∈ {0, 1, 2, 3}, p ̸= q,
(3)

where obb are vertices of OBB. For the new frontier clusters that meet the condition, proceed
with the following secondary evaluation to identify which global target the forthcoming
agent will belong to:

π > cos−1
(
(R − f k

ave) ·
(

sj − f k
ave

))
≥ χ,

0 < cos−1
(
(R − f k

ave) ·
(

si − f k
ave

))
≤ ψ,

(4)

where R is the position of the robot, and f k
ave is the average position of f k, as shown in

Figure 4b.

(a) (b)

Figure 4. Method of agent extraction. (a) Crossing determination. (b) Angle determination.

If the above conditions are met with the newly extracted frontier cluster f k, the cell
closest to f k

ave in f k will be defined as an agent aj for global target sj. An agent of the global
target is independent of the frontier cluster but is associated with it; if a frontier cluster is
deleted or updated, the corresponding agent will be deleted.

The movement cost between an agent aj and other nodes of PCATSP are calculated
as follows:

c
(

R, aj) = C,
c
(
aj, R

)
= 0,

c
(
aj, x

)
= c
(
x, aj) = L

(
P

aj ,x

)
vmax

, x = vpk
1, ai,

(5)

where C is a large value, ensuring that the robot prioritizes exploring scenes outside prior
information.

The priority pryaj of agent aj is assigned as follows:

pryaj =

{
u, ek = ou

size(O) + 1, others
, (6)

which is determined by the sequential position of its ek in O. ou is a directed line segment
in O, where u represents its ordinal position in O. The higher the sequential position of ek,
the lower the priority of the agent extracted from ek. If ek is not found in O, the priority of
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the agent equals size(O) + 1, and these agents with the lowest priority will not be actively
explored, as shown in Figure 3. Additionally, during exploration, not only will one agent
be generated by a directed line segment, but all agents will point towards the same global
target. In such cases, we define the agent that is further away from the global target to have
a higher priority, ensuring the robot does not miss the scene during exploration.

3.3. Update of Movement Cost of Frontier Clusters

As mentioned earlier, to ensure that the robot prioritizes exploring scenes outside
prior information, the system needs to recognize frontier clusters that would guide the
robot towards a global target and set a higher cost between them and the robot. To achieve
this, we classify frontier clusters into three categories:

The first class includes frontier clusters with agents and other frontier clusters that are
adjacent to these frontier clusters. They will guide the robot towards global targets.

The second class includes frontier clusters adjacent to the first class frontier clusters.
These frontier clusters may guide the robot towards global targets. We utilize density-
based spatial clustering of applications with noise (DBSCAN) algorithm to recognize these
frontier clusters and rely on the following methods to identify whether they could guide
the robot to global targets [28]:

e
−rsj , f k /rsj ,si ecos αk−1 cos βk ≥ ε,

rsj , f k < rsj ,R ≤ rsj ,si + γ,
(7)

as shown in Figure 5a, αk is the angle between vector
−−→
f k
avesj and −→sisj; βk is the angle between

vector
−−→
f k
avesj and

−−→
R f k

ave; and r is the Euclidean distance between two points.
However, as the robot explores, the relative position between frontier clusters and

robot changes, and frontier clusters cannot always satisfy Equation (7), as shown in
Figure 5b,c. Thus, to keep the consistency of determination for these frontier clusters
during exploration, we employ the Dynamic Time Warping (DTW) algorithm to evaluate
similarities between path PR,aj and all paths of PR,F = {PR, f 1 , PR, f 2 , . . . , PR, f n}, as shown in
Figure 5d [29]. If the similarity ranking of f k satisfies the following condition, f k is still
believed to guide the robot towards global target sj:

rank
(

dtw
(

PR,aj , PR, f k

))
≤ φ. (8)

The third class consists of the remaining frontier clusters. They will guide the robot to
explore scenes outside prior information.

For the frontier clusters f k∗ that guide the robot towards global targets, the movement
cost from the robot to them is set as follows:

c
(

R, vpk∗
1

)
= C. (9)

The movement cost from robot to other frontier clusters f k is computed as follows:

c
(

R, vpk
1

)
= max

 L
(

P
R,vpk

1

)
vmax

,
min(|ξk

1−ξR|,2π−|ξk
1−ξR|)

ωmax

+ λ cos−1 (vpk
1−R)·vR

∥vpk
1−R∥∥vR∥

, (10)

which considers the path length, yaw change, and motion consistency, where pk
1 and ξk

1 are
coordinates, and the yaw angle of viewpoint vpk

1, ωmax is the maximum angular change
rate; ξR is the yaw angle of the robot; and vR is the current velocity.
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As c(vpk∗
1 , R) and c(vpk

1, R) do not impact the solution results of open-loop path
planning, we set them to 0. The movement cost between all frontier clusters are calculated
as follows:

c
(

vpi
1, vpj

1

)
= c
(

vpj
1, vpi

1

)
= max


L

(
P

vpi
1,vpj

1

)
vmax

,
min

(∣∣∣ξ i
1−ξ

j
1

∣∣∣,2π−
∣∣∣ξ i

1−ξ
j
1

∣∣∣)
ωmax

 . (11)

(a) (b)

(c) (d)

Figure 5. Determination of the second category of frontier clusters. (a) Determine whether the
second-category frontier f k guides the robot towards the global target based on angle and distance
conditions. (b) Robot moves towards other scenes following the generated exploration path. (c) As
the robot moves, f k no longer meets the initial judgment criteria. (d) To maintain the consistency of
the previous judgment to f k, perform a secondary judgment of f k by DTW.

3.4. Local Path Planning

The global path planning module aims to assist the robot in making decisions at a
global standpoint for efficient exploration. The local path planning module aims to find
the best viewpoints to make the robot to follow. Many previous works refine a path by
evaluating the cost and reward for efficient exploration, but they consume significant
computational resources in information evaluation [1,30]. Thus, we define the potential
reward of a candidate viewpoint as a volume of unknown space within its a Field of View
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(FoV) and propose a simple and fast reward evaluation method based on incremental
frontier information structure (FIS). Finally, the local path is refined by synthesizing the
reward and movement cost of each viewpoint candidate.

Cells of a frontier cluster are stored in FIS [12]. We use them to evaluate the volume of
unknown space in FOV. As shown in Figure 6, each truncated pyramid is constructed based
on cells that the candidate viewpoint could cover, and its volume is calculated as follows:

V =

(
hrw

(
hrwecell

hcell

)2
− hcell(ecell)

2

)
/3, (12)

where ecell is width of cell, hcell is distance between cell and candidate viewpoint. hrw is
effective distance to calculate reward and computed by:

hrw = min(hmax, hcell + δ), (13)

hmax is maximum range of FOV, and δ is used to control the depth of truncated pyramid to
balance movement cost and expected rewards.

Figure 6. The schematic diagram of calculating the reward of a viewpoint.

The expected reward rwk
i of a candidate viewpoint vpk

i is evaluated by accumulating V:

rwk
i =

n

∑
x=1

Vk
x + η

m

∑
y=1

V l
y, (14)

where Vk
x is taken from current frontier cluster f k, and V l

y is taken from next adjacent
frontier cluster f l to be visited. m and n, respectively, represent the number of cells that vpk

i
could cover. η is a weight coefficient.

We formulate local path planning as a graph search problem and refine an optimal
path from the global exploration path by balancing expected reward and movement cost,
where viewpoints of each frontier cluster serve as candidate points. Suppose that the

optimal exploration path path = {vp1
i , vp2

k , . . . , vp
Nr f
j , vp

Nr f +1
1 } provided by the Dijkstra

algorithm will minimize the cost/reward ratio:

c
(

P
R,vp

Nr f +1

1

)
=

c(R,vp1
i )

W1
i

+
c
(

vp
Nr f
j ,vp

Nr f +1

1

)
W

Nr f +1

1

+ ∑
Nr f −1
n=1

c(vpn
k ,vpn+1

k )
Wn+1

k

, (15)
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where Nr f + 1 is the size of the frontier clusters to be optimized, and

Wn
k =

rwn
k

VFOV
, (16)

VFOV is the volume of FOV.
Finally, the exploration path path is output to the trajectory generation module.

4. Experiments
4.1. Implementation Details

We set ψ = π/3, χ = 2π/3, and C = 500 in Section 3.2, ε = 0.4, γ = 3 m, and φ = 6
in Section 3.3, and δ = 1.5 m and η = 1.25 in Section 3.4. Additionally, we employ the SOP
solver from LKH-3.0 to solve PCATSP and implement the Chinese Postman Problem (CPP)
solver ourselves for the global exploration strategy [27,31]. All simulation experiments are
conducted in ROS-Kinetic Gazebo platform on Ubuntu 18.04 computer system, running
on an CPU. For real-world experiments, the unmanned ground vehicle shown in Figure 7
was utilized to explore a given region. We equipped it with a depth camera, an inertial
measurement unit, and an onboard computer with Ubuntu 18.04 computer system.

Figure 7. Real-world experiment vehicle platform.

4.2. Benchmark Comparisons

In this section, we conduct benchmark comparisons using simulation experiments
to verify the effectiveness and exploration efficiency of the proposed method. Robot
exploration in maze scenes is the most effective method to verify the efficiency of au-
tonomous exploration [13]. Thus, we manually constructed two large-scale mazes, Maze-1
(48 × 63 × 2 m3) and Maze-2 (66 × 62 × 2 m3), in Gazebo simulation platform. The cross-
sectional length of the road in Maze-1 is 4∼6 m, and in Maze-2, 8∼10 m. The topological
maps of these mazes are generated by manually placing global targets on corners and
intersections, and then connecting them according to the topology of mazes to simulate
maze information [18]. But, we leave some space for the robot to explore autonomously
without prior information. The mazes and their prior topological maps are shown in
Figure 8.

We employ the optimal exploration strategy provided by the CPP solver to guide robot
exploration and compare it with FUEL and FAEP [12,13]. They are state-of-the-art frontier-
based methods which have been proposed in recent years, and which exhibit high exploration
efficiency and have open-sourced their code to serve community. In all experiments, we utilize
UAV as the exploration robot, with vmax = 0.6 m/s, ωmax = 0.9 rad/s, and the maximum
acceleration is 0.6 m/s2. UAV equips depth camera to collect environmental information.
FOV of depth camera is configured as [80 × 60] deg, hmax is 4.5 m. The grid map of the
local update range is 5 × 5 × 2 m3. In all scenarios, three methods are run more than six
times with the same configuration.
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We evaluate the performance of the above methods based on exploration time, flight
distance, and coverage efficiency. FAEP also utilizes FIS to update frontier cluster infor-
mation and based TSP to plan global exploration paths. Therefore, we set the frontier
cluster length limit of all methods to 2 m and counted the remaining number of frontier
clusters during exploration. The number could directly reflect the computational burden
of the path planner: the more frontier clusters remain in scene, the more enormous the
solver computation.

Figure 8 displays exploration trajectories of different methods in two mazes. Our
method prevents the robot from unnecessarily revisiting explored areas but ensures that
the robot does not miss scenes outside prior information, even in scenes with large cross-
sectional road lengths like Maze-2. In contrast, other methods re-explore already visited
areas during exploration, leading to lower efficiency and inevitable resource wastage.

Figure 8. Benchmark comparison of exploration trajectories of the proposed method, FUEL, and
FAEP, in two mazes.

The detailed exploration process of our method in Maze-1 is illustrated in Figure 9.
The robot prioritizes exploring areas outside prior information in the given region. Sub-
sequently, it follows the global exploration strategy to explore other areas, disregarding
the direction of other frontier clusters during exploration. Finally, the robot actively loops
close to cover the frontier clusters near the agent with the lowest priority. The exploration
process aligns with the concept depicted in Figure 3.

Figure 9. Partial exploration trajectories generated by our method in Maze-1.
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Figure 10 displays the process of volume coverage for all methods in two mazes.
Our method demonstrates higher efficiency and nearly linear performance in conducting
exploration. In contrast, other methods exhibit coverage stagnation or slower growth
during exploration, meaning the robot moved towards a previously missed or visited space.

Figure 10. The exploration progress of three methods in Maze-1 (left) and Maze-2 (right).

The number of the remaining frontier clusters during exploration for all methods is
shown in Figure 11. Compared with other methods, our method ensures a lower count
of remaining frontier clusters. It proves that our method can avoid much computational
burden for an onboard computer and is suitable for exploring large-scale scenes.

Figure 11. The number of remaining frontier clusters during exploration of the three methods in two
mazes.

Table 1 presents a quantitative performance of three methods in two mazes. Compared
with FUEL and FAEP, the average exploration time of our method is reduced by 18.76%
and 20.87% in Maze-1, and 18.05% and 21.77% in Maze-2. Moreover, the average flight
distance of our method is reduced by 18.93% and 17.19% in Maze-1, and 15.91% and 6.79%
in Maze-2. In contrast, our proposed method outperforms other methods in exploration
time, flight distance, and stability.

The average computation time of each module is shown in Table 2. The proposed
method conducts a one-path planning with approximately 130 ms, meeting the frequency
requirements for most robots. Furthermore, only 12 ms is consumed by local path planning,
additionally proving the efficiency of the proposed reward evaluation method.

We deconstruct the proposed method to analyze the global and local path planning
module performances. OursLocal and OursGlobal correspond to implementing local and
global path planning, both built upon FUEL framework. The exploration data of OursLocal,
OursGlobal in two mazes are list in Table 1.
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Table 1. Exploration statistics in Maze-1 and Maze-2.

Scene Method
Exploration Time (s) Flight Distance (m)

Avg Std Max Min Avg Std Max Min

Maze-1

FUEL 826.599 25.275 849.384 777.630 618.773 16.821 635.879 589.081
FAEP 848.614 32.779 906.516 813.997 605.419 28.813 655.931 561.852
Ours 671.101 13.880 694.328 663.532 501.523 12.490 520.579 486.109

OursLocal 826.881 10.485 855.695 814.620 616.217 8.390 635.330 605.435
OursGlobal 670.742 24.009 693.757 626.820 497.563 16.467 517.316 469.384

Maze-2

FUEL 1407.048 46.729 1503.542 1356.909 1012.588 18.818 1036.984 984.151
FAEP 1474.686 67.125 1569.142 1418.180 913.552 33.502 960.631 885.397
Ours 1153.677 29.733 1200.470 1104.911 851.646 22.824 885.435 819.141

OursLocal 1396.996 27.841 1439.908 1339.974 1002.997 18.952 1037.262 980.147
OursGlobal 1210.028 52.735 1277.481 1138.502 886.096 41.552 940.927 831.196

Table 2. Average computation time of each module.

Scene
Average Computation Time (ms)

Global Planning Local Planning Total Planning

Maze-1 141.79 17.39 159.19
Maze-2 127.45 12.35 130.85

Comparing the simulation results of OursGlobal and FUEL in two mazes, the standard
deviations of OursGlobal in exploration time and flight distance are identical to FUEL.
However, the average exploration time of OursGlobal is reduced by 18.88% and 14.01%,
respectively, in Maze-1 and Maze-2. The average flight distance of OursGlobal is reduced
by 19.57% and 12.45%, respectively, in Maze-1 and Maze-2. The average performance
of OursGlobal outperforms FUEL, indicating that the primary contribution of global path
planning lies in improving exploration efficiency. The same inference can also be drawn
from comparing Ours and OursLocal.

The average exploration time and flight distance of OursLocal and FUEL in both mazes
are approximate. But, OursLocal maintains a low standard deviation, indicating more
stability. Similar performance is observed between OursGlobal and Ours. It is demonstrated
that the proposed local path planning method can effectively enhance the stability of
exploration efficiency.

Finally, we can conclude that the exploration efficiency is primarily attributed to global
path planning, while local path planning enhances the stability of exploration efficiency.

4.3. Real-World Experiment

In order to further validate the effectiveness of our proposed method, we conduct
a real-world experiment with a ground vehicle. Based on the prior topological map, the
ground vehicle will explore an indoor corridor of size 55 × 15 × 2 m3, and a cross-sectional
length of road that is 2 m, as shown in Figure 12. The prior information we provided is a
rectangular topological map that outlines the basic structure of the indoor corridor. In the
indoor corridor, the open spaces and nooks served as regions beyond prior information,
testing the effectiveness of our method.

In the experiment, we run VINS-Fusion on GPU to provide the positional state, while
the proposed method runs on CPU to plan an exploration path [32]. We set vmax = 0.5 m/s,
ωmax = 0.8 rad/s, the maximum acceleration as 0.5 m/s2, and the grid map of local update
range as 4 × 4 × 2 m3. The FOV of the depth camera is set as [80 × 60] deg, and the
maximum range hmax is 3.5 m.

Figure 13 shows the exploration trajectory of our method with the indoor environment,
where the small labeled images represent the key nodes during exploration: (a) presents
the robot exploring in the direction following a global exploration strategy; (b) and (c)
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present the instances where the vehicle prioritizes exploration directions beyond the prior
information. The exploration time of the whole process is 738 s, and the movement distance
is 167 m. It can be seen from the trajectory that the vehicle did not revisit the explored areas
during exploration, which proves the effectiveness of our proposed method.

Figure 14, respectively, shows the process of volume coverage and the number of
remaining frontier clusters during exploration. It reveals a stable and linear exploration
process while the number of frontier clusters is maintained at a small level, demonstrating
the efficiency of our proposed method.

Figure 12. The experimental scene for real-world experiment.

Figure 13. The exploration trajectory of the proposed method in real-world experiment. (a) shows
the robot exploring in the direction following a global exploration strategy; (b,c) show the instances
where the vehicle prioritizes exploration directions beyond the prior information.
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Figure 14. The process of volume coverage (left) and the number of remaining frontier clusters (right)
during exploration in real-world scenario.

5. Conclusions

This paper introduces a novel autonomous exploration method based on a prior topo-
logical map, in which a robot explores the given large-scale region, following a global
exploration strategy, but prioritizes exploring scenes outside prior information. The pro-
posed method employs a hierarchical framework to plan exploration paths. Based on
PCATSP, the global path planning module merges the prior topological map with real-time
scene information, planning efficient global exploration paths. Subsequently, the local path
planning module rapidly evaluates the rewards and movement costs for each candidate
viewpoint to refine the input global exploration paths. Finally, the output exploration path
is used to generate local trajectories. Simulation results prove that the proposed method
enables the robot to efficiently and rapidly explore a given region and is suitable for opera-
tion in large-scale scenes. The ablation study also demonstrates that our proposed local
path planning method could enhance the stability of exploration efficiency. The experiment
conducted in the real world further validates the effectiveness of our method.
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