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Abstract: The current challenge in drone swarm technology is three-dimensional path planning and
adaptive formation changes. The traditional A* algorithm has limitations, such as low efficiency,
difficulty in handling obstacles, and numerous turning points, which make it unsuitable for complex
three-dimensional environments. Additionally, the robustness of drone formations under the leader—
follower mode is low, and effectively handling obstacles within the environment is challenging.
To address these issues, this study proposes a virtual leader mode for drone formation flight and
introduces a new Theta*~APF method for three-dimensional space drone swarm path planning. This
algorithm optimizes the A* algorithm by transforming it into an omnidirectional forward Theta*
algorithm. It also enhances the heuristic function by incorporating artificial potential field methods
in a three-dimensional environment. Formation organization and control of UAVs is achieved using
speed-control modes. Compared to the conventional A* algorithm, the Theta*-APF algorithm reduces
the search time by about 60% and the trip length by 10%, in addition to the safer flight of the UAV
formation, which is subject to artificial potential field repulsion by about 42%.

Keywords: UAVs cluster; Theta* global path planning; APF; obstacle avoidance

1. Introduction

Currently, single UAVs are widely used in industrial production, logistics transporta-
tion, and other fields. In comparison to single-UAV systems, multi-UAV systems operat-
ing in formation can significantly enhance the flexibility of individual UAVs and greatly
compensate for their limitations [1,2]. At the same time, the diversity of UAV mission
environments poses challenges for safe flights in complex 3D spaces. An excellent path-
planning algorithm can guide UAVs to reach their designated locations safely and quickly,
thereby improving mission efficiency. Several algorithms, such as the artificial potential
field method, the dynamic window method, the random trees algorithm, and the Dijkstra
algorithm, etc. [3-9], have been applied in 2D path planning. Based on the existing related
2D path-planning algorithms, the development of a path-planning algorithm that can meet
the needs of UAV formations to navigate in 3D environments will be able to be of great
practical significance in the execution of UAV formation missions, such as performances,
disaster relief, exploration, and so on.

The key technology for multi-UAVs formation flight lies in various control algorithms,
including the flight-control algorithm for each individual UAV within the formation, the
local path-planning algorithm, and the information communication and formation-control
algorithm among multiple UAVs. Multi-UAV systems can bring numerous advantages by
operating in formation. During the execution of multi-UAV missions, UAVs must possess
good obstacle perception and avoidance capabilities due to the complexity and uncertainty
of the surrounding environment. It is necessary to coordinate the trajectories of a single

Drones 2024, 8, 125. https:/ /doi.org/10.3390/ drones8040125

https:/ /www.mdpi.com/journal /drones


https://doi.org/10.3390/drones8040125
https://doi.org/10.3390/drones8040125
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://doi.org/10.3390/drones8040125
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8040125?type=check_update&version=2

Drones 2024, 8, 125

20f19

UAV and multiple UAVs to ensure that obstacles are avoided while handling the scheduled
tasks. In the field of multi-UAVs formation flight and path navigation, numerous schol-
ars have conducted extensive research [2,10-21]. Among them, Shao et al. [2] proposed
an improved particle swarm optimization (PSO) algorithm that enhances the speed and
optimality of path planning. They achieve this by accelerating the convergence rate of
the algorithm through a strategy. Pan et al. [12] proposed an improved artificial potential
field method for UAV formation path planning and adopted a leader-follower mode to
ensure that the following UAV maintains the desired angle and distance. Liu et al. [13]
proposed an improved RRT* formation path-planning algorithm that optimizes the speed
of UAV formation in complex environments. Hoang et al. [14] proposed an angle-encoded
particle swarm optimization (8-PSO) algorithm that accelerates the convergence of the
particle swarm and confirmed its validity and feasibility in formation path planning.
Chen H et al. [15] improved the traditional artificial potential field method for path plan-
ning by introducing a local minimum value judgment mechanism to break out of local
minimum values. Chen Q et al. [16] proposed a trajectory-planning method that fuses
Dubins trajectory with particle swarm optimization (PSO), generating feasible trajectories
in real time during formation transformations. Wu et al. [17] proposed a method to cal-
culate the collision probability of drones while considering task space and UAV number
constraints, implementing automatic tracking and prediction of UAV cluster trajectories
to prevent path conflicts in clusters. Carlos et al. from the University of Toronto [18]
implemented a multi-UAV trajectory-planning and obstacle-avoidance algorithm based on
DMPC distributed model predictive control, utilizing “on-demand control” to optimize
the scalability of the system; this significantly reduces the computational time compared
to traditional algorithms. Palossi et al. [19] achieved parallel real-time path planning for
UAVs using the Dijkstra algorithm through a parallel algorithm of UAV real-time path
planning. Yao J et al. [20] enhanced the A* algorithm by reducing the search time and
search compensation, enabling it to avoid specific obstacles. Zhang et al. [21] introduced
the branch-selection fast-exploration random tree (BS-RRT) algorithm to address the issue
of UAV path planning in narrow urban channels.

Currently, common path-planning algorithms include the artificial potential field
method, the dynamic window method, the random number algorithm, Dijkstra’s algorithm,
etc. However, these algorithms all have some drawbacks. Due to the three-dimensional
(3D) nature of UAV flight, the applicability of these algorithms is still relatively limited.
For instance, the artificial potential field method frequently fails to identify the optimal
path when the gravitational force is too weak, and it readily becomes trapped in local
optima when the gravitational force is too strong, resulting in increased performance
overheads [22], p. 2. The dynamic window method also faces the problem of being prone
to falling into local optima [23], pp. 1-2. The Dijkstra algorithm suffers from significant
performance overheads and cannot be executed in a 3D environment [24], p. 1. The A*
algorithm, which is an improvement on the Dijkstra algorithm, often fails to plan the
optimal path due to limited movement directions [25], p. 1. In addition, current research
on path planning often simplifies the flight environment, and the flight scenarios do not
accurately represent the complex situations found in both indoor and outdoor environments.
As a result, there is a significant discrepancy between the simulation results and the actual
conditions. Some studies do not take into account the 3D flight characteristics of UAVs,
and their path planning is limited to two dimensions. Some algorithms also lack sufficient
obstacle avoidance processing for obstacles in the environment, which makes it challenging
for UAVs to navigate around them [26].

There are several organizational models for drone formations, including the leader—
follower mode and the virtual pilot mode. The leader—follower mode was first proposed
by Desai ] P [27] and is a widely used algorithm, but the model relies too much on the
navigator and is difficult to deal with navigator crashes and lacks sufficient robustness.
Weitzenfeld A et al. [28] proposed an algorithm with a backup navigator to improve the
leader—follower model’s robustness. Lewis M A [29] et al. proposed the virtual navigator
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concept, in which there is no real navigating UAV, but a virtual navigator instead, which
further improves the stability compared to the leader—follower model.

To address the aforementioned issues, this paper proposes a path-planning algorithm
called the Theta*-APF method. Compared to the traditional A* algorithm [30], this al-
gorithm reduces the path search time by approximately 60% and the total length of the
planned path by approximately 10%. The algorithm also works well in environments
with complex obstacles, such as indoors where various objects are placed, between urban
complexes, etc. In addition, we utilize the virtual leader-follower model to coordinate the
formation flight of drones. We combine this model with a global artificial potential field
method to enable local obstacle avoidance for the drone formation.

2. Theta*—Artificial Potential Field Method Path-Planning Algorithm
2.1. A* Algorithm

As a heuristic search algorithm, the A* algorithm combines the advantages of Dijkstra’s
algorithm with the greedy algorithm strategy [31]. It is commonly used for solving point-to-
point optimal path-planning problems in known static maps. The A* algorithm performs
path planning in grid maps by starting from the initial node and expanding outward step
by step. At each expansion, it uses an evaluation function to calculate the total movement
cost of the newly searched nodes and selects the node with the lowest movement cost for
the next expansion. The A* algorithm continuously selects new nodes for expansion and
iterates until the destination node is reached. The core of the algorithm is the evaluation
function, as shown in Equation (1).

f(n) = g(n) +h(n), ©)

In the above equation, g(n) denotes the cost of moving from the starting point to
the current node. It refers to the length of the path from the starting point to the current
node. h(n) denotes the expected cost from the current node to the end point, i.e., it is
the heuristic function of the A* algorithm. f(#) denotes the integrated cost of the current
node’s movement, i.e., it is the integrated priority of the next move.

The choice of the heuristic function /(n) in the A* algorithm is especially critical as it
can control the search speed and accuracy of the algorithm. The smaller the value of h(n),
the more nodes are searched by the A* algorithm, making it easier to select the globally
optimal path but slowing down the search speed. On the other hand, a larger value of h(n)
results in fewer nodes being searched by the A* algorithm, making the search faster but
increasing the risk of falling into a local optimal path. When the value of i1(n) is 0, the A*
algorithm no longer utilizes the heuristic function, and instead degrades to the Dijkstra
algorithm. If the value of &(n) is much larger than the value of g(n), at this time, the role of
g(n) will be ignored. The A* algorithm’s search speed is greatly improved, but it may not
be able to find the optimal path. It is generally recognized that, when g(n) and h(n) are
equal, the A* algorithm will be able to find the optimal path without any additional node
searches, making the search time relatively efficient.

The most commonly used methods for calculating the main heuristic function are
Manhattan distance calculation, Euclidean distance, and Chebyshev distance. In these
methods, the current node is set as (xp, y,,) and the end point is set as (xe, ye).

2.1.1. Manhattan Distance

Manhattan distance is the sum of the horizontal and vertical distances between two
points. The formula for Manhattan distance is shown in Equation (2).

h(x) = [xn = Xe| + |y — Vel » ©)
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2.1.2. Euclidean Distance

The Euclidean distance is the straight-line distance between two points, as shown in
Equation (3).

h(x) = v/ (0 — %) + (v = ve) ©)

2.1.3. Chebyshev Distance

The Chebyshev distance is defined as the maximum absolute difference between the
coordinates of two points on the x and y axes, as represented by Equation (4).

h(x) = max{[xn = e, [y = Vel} . )

2.2. Theta* Algorithm

The traditional A* algorithm can only move between neighboring nodes each time.
It can only move one cell at a time with eight fixed directions: a~h. This algorithm uses
the 8-neighborhood search method, as shown in Figure 1. The traditional 8-neighborhood
search method restricts the robot’s moving distance and direction, which does not reflect
the reality that the robot can move any distance in any direction. Therefore, the optimal
path found by the traditional A* algorithm can often be further optimized to achieve a better
distance. Therefore, the A* algorithm is extended to optimize it into an omnidirectional
A* algorithm. This algorithm can advance any distance in any direction using reverse
reasoning. At this point, the A* algorithm evolves into the Theta* algorithm [32]. The
advancement of the robot is no longer limited by angle and distance, as shown in Figure 2.
The path of the Theta* algorithm is significantly better compared to the A* algorithm,
which reduces the redundant turning points in the path of the A* algorithm and reduces
the length of the journey.

a b ©
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Figure 1. Traditional A* algorithm with 8-neighborhood search.
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Figure 2. Optimization of the Theta* algorithm for the A* algorithm.

2.3. Heuristic Functions for the Artificial Potential Field Method

The artificial potential field method was proposed by Khatib in [18]. The basic idea
is to artificially introduce a virtual potential field into the environment. In path-planning
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problems, as depicted in Figure 3, the destination is located at the lowest point of the
potential field, while obstacles are situated at the highest points. The strength of the

potential field for other points in the environment gradually increases as the distance from
the destination decreases.
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Figure 3. Schematic diagram of an artificial potential field, the change in color from blue to red
represents an increase in the strength of the artificial potential field.

At any given point within the artificial potential field, the robot experiences both the
gravitational force exerted by the endpoint and the repulsive force exerted by the obstacle.
As the robot moves closer to the endpoint, the gravitational force decreases, while the
repulsive force increases as the robot moves closer to the obstacle. Eventually, under the
combined influence of gravitational force and repulsive force, the robot moves forward

spontaneously, avoiding obstacles, reaching the endpoint. The forces on the robot are
shown in Figure 4.

Y A Target point

Obstacle

Gravitationa .
|
.
. .
.
.

Repulsion

0 X

Figure 4. Schematic representation of the forces on the robot under an artificial potential field.

The strength of the potential field at the robot’s location is represented by Equation (5),
and it is influenced by a combined force as depicted in Equation (6).

U = Uaxt + Urep ’ (&)

F = Fan + 1:"rep ’ (6)
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where U is the potential field at the current position of the robot. U,y represents the
gravitational potential field at the current position, while Uyep represents the repulsive
potential field at the current position. F is the total force on the current robot, F,i represents
the gravitational force acting on the robot, and Fyep denotes the repulsive force acting
on the robot. The gravitational potential field U,y at the current position is determined
by the distance between the robot’s current position and the endpoint, as illustrated in
Equation (7).

1

2
5A(xi -X)7, 7)

where A is the gravitational field constant, and X; and X are the robot’s current position
vector and desired position vector, respectively. The gravitational force Fay, is the negative
derivative of U,y, as shown in Equation (8). As the robot approaches the end point, the
gravitational force it receives becomes smaller.

Uatt =

Fatt = —grad(Uay) = A(X = Xi) , (8)

The robot’s current position repulsive force field Urep, is the sum of the repulsive
force fields Uirep, generated by any obstacle at the robot’s current position, as shown in

Equation (9). Uirep is a function of the distance between the robot’s current position and the
obstacle, as shown in Equation (10).

Urep = ZUi‘ep 7 (9)
U — (5 = 55)% o pi < po (10)
o 0 ,Pi>po

where y is the constant for the repulsive force field, p; represents the distance between the
current position of the robot and the obstacle, and pg is the maximum distance at which the
obstacle generates the repulsive force. When p; > po, the robot is considered to be too far
away from the obstacle, and the obstacle no longer exerts a repulsive effect on the robot. As
a result, the obstacle does not affect the robot’s movement. Similarly, the current position
of the robot is influenced by the repulsive force, Frep, exerted by obstacles. This force is the
sum of the repulsive forces, Firep, generated by each obstacle at the robot’s current position,
1

as depicted in Equation (11). The repulsive force F},, is the negative derivative of Uirep, as

rep
illustrated in Equation (12). .
Frep = ZFiep ’ (11)
1 1.1 9pi ,
nG —p)pzax, o PisPo (12)

Fiep = —g7ad(Usep) = ,
rep g ( rep) {0 , pi > po

Based on the characteristics of artificial potential field [3,12,15,22], a heuristic function
for the A* algorithm is proposed. This function utilizes the artificial potential field method
to calculate the expected cost of neighboring nodes for the parent node of the A* algorithm.
The cost is adjusted based on the proximity to the end point, with nodes in the low-potential-
field region being reduced and the nodes in the high-potential-field region being increased.
Additionally, the positional relationship between the end point and the current parent node
influences the calculation of the expected cost for the neighboring nodes.

As shown in Figure 5, the neighboring nodes of the parent node are numbered from
the positive direction of the y-axis as 0, 1, 2, ..., 7, respectively; the series is taken as the set
i, as shown in Equation (13).

i={1,2,3,4567}, (13)
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Figure 5. Schematic of mobile costing.

The facing angle « of the neighboring nodes of the parent node n (e.g., points 0 to 7 in
Figure 5) is a function of i, as shown in Equation (14).

N EEE ,i<2 14)
S\ -Z(i-2) ,i>2]

Since the path-planning algorithm can become unstable if the heuristic function is
set to be too large, i.e., when the expected cost exceeds the move cost, it is possible to get
stuck in a local optimum and ignore the global optimal path. Therefore, the expected cost
calculated by the optimized heuristic function should not exceed the move cost. The move
cost f; is a function of i, as shown in Equation (15).

1, i%2=0
- ) 15
h {ﬁ %2 =1 (15)

That is, nodes adjacent to the parent node n in the positive direction move at a cost of
1, and nodes adjacent to the diagonal move at a cost of v/2. The strength of the artificial
potential field at the current parent node n is determined by the distance between the
parent node n and the end point e. This strength is represented by Equation (16), X, and Xe
are the parent node n’s position vector and the end point e’s vector respectively.

U= %/\(Xn —Xe)?, (16)
As 1
2
Pn = \/(Xn o Xe)z + (Yn - Ye) ’ (18)

The gravitational force, i.e., the expected cost factor, is the negative inverse of the
strength of the potential field, as demonstrated in Equation (19).

F = —grad(U) = —Ap,,, (19)

The distance of each parent node from the endpoint is stored in the array, as shown in
Equation (20).
P:{P1/P21P3/~'/Pn}/ (20)
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A is no longer a constant in the optimized heuristic function, but rather a function of
f1 and P, as shown in Equation (21).

__h
A= max(P) ’ @)
Finally, the optimized heuristic function h(n) is shown in Equation (22). As shown in
Figure 6, 0 is the angle pointing to the target point from the parent node.

AY

. -@

- .
- Target point

4
6 Parent node

Figure 6. Schematic diagram illustrating the action of the heuristic function h (n) using the artificial
potential field.

h(n) = F cos(a —6), (22)

AV (0 =)+ (70— ye) cos(a— )
max{py, p2,p3,* -, Pn}

h(n) = , (23)

Under the influence of the artificial potential field, the anticipated cost between ad-
jacent nodes will no longer be uniform and will decrease as the distance to the endpoint
decreases, as illustrated in Figure 6.

In this way, under the influence of an artificial potential field, the next parent node is
selected from the neighboring nodes, giving preference to the neighboring nodes that are
closer to the end point. Since the expected cost is never more than the actual cost of each
move, the algorithm is less likely to fall into local optimality. This ensures the robustness of
the algorithm.

3. Drone Formation Organization
3.1. Virtual Pilot Formation-Control Algorithm

The UAYV formation constructed in this study includes five drones, which is a relatively
small number. The mathematical model of the leader—follower mode is easy to construct
and has a simple structure. Therefore, the virtual pilot mode is considered for organizing
the formation of UAVs. In this mode, all physical drones in the formation act as followers,
while a virtual leading UAV is created through the control system and positioned at the
center of formation. This virtual lead UAV is responsible for organizing the formation
shape, navigation, obstacle avoidance, and target tracking. The UAVs are responsible for
tracking the flight state and trajectory of the virtual lead UAV and maintaining their relative
positions within the formation.
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The objective of the UAV formation is for all UAVs to reach the desired position and
desired velocity of the formation flight, as depicted in Equation (24).

t—oo

lim (s;(t) —s;(t)) =

t—oo

lim (v;(t) — vj(t)) = 0 (24)
o

where v;(t) and s;(f) denote the current velocity vector and position vector of UAV;
respectively, and v;(t) and s;(t) denote the desired velocity vector and position vector of
UAV respectively; vj(t) is also the current velocity vector of the virtual navigator. During
the formation flight, the virtual navigator continuously sends its desired position to each
UAV. Each UAV then acquires its own positional status and continuously adjusts itself to
follow the desired position. The schematic diagram is shown in Figure 7.

Y A
( v, (1)
i 1P|
. W
Virtual Pilot ,+” Desired (t )
,/' Position © J
A Velocity
/" command 5;‘ (t)
UAV; Current
velocity 4 i ( ! )
Current
positionS i ( t )
>
0 X

Figure 7. Schematic diagram of the drone-control method.

The UAV control adopts the velocity command mode, i.e., the UAV can follow the
input desired velocity and automatically adjust its own attitude using a proportional control
strategy. The tracking of the virtual navigator’s position by the UAV is also introduced, as
shown in Equation (25).

3i(t) = vj(t) +x(s;(t) = si(1)), (25)

where 6;(t) represents the speed-control command sent to the UAV;, « is a coefficient. In this
way, the velocity of LLAV; is not only affected by the difference between its desired position
and its current position, but also by the current position of the virtual navigator. This allows
the UAV to track its position while also tracking the velocity of the virtual navigator.

3.2. Global Artificial Potential Field Method

In this paper, a formation-control algorithm based on a virtual navigator is used to
achieve multi-UAV formation organization and mission execution. During the formation
flight, each UAV obtains its own position information and desired position information
through local communication. It then adjusts its speed in real time to achieve the forma-
tion and control of multiple UAVs. In the given algorithm, the UAVs do not acquire or
respond to the position information of other UAVs. Additionally, the UAVs are unable to
perform evasive maneuvers to avoid obstacles in the environment. If no corresponding
measures are taken, the UAVs may collide with obstacles and other UAVs during flight and
formation switching.

This paper utilizes the artificial potential field method to address them. As mentioned
earlier, the artificial potential field method can be utilized for path planning to avoid
obstacles and impassable regions. It is also a widely adopted and effective approach
for resolving collision issues. Therefore, the plan is to implement a multi-UAV collision-
avoidance strategy based on the artificial potential field method.
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Obstacles in the map are set to be saved as a priori information in a raster map, and
UAV formations can read the location of the obstacles from the map between them during
flight. The UAV calculates its own positional relationship with the obstacle in real time.
When the distance from the obstacle is less than the obstacle repulsive field threshold,
po1, the UAV experiences an obstacle repulsive force. The repulsive force increases as the
distance from the obstacle decreases. The obstacle potential field function is shown in
Equation (26).

Uig = {%yl(”l’” ") PaSpo (26)
0 + Pig > P

where yi1 is a constant, pj; represents the distance between UAV; and obstacle q, and
Po; is a constant distance indicating the upper limit at which the obstacle generates a
repulsive force. When p;; > po1, UAV; is not affected by the repulsive force from obstacle
g. Therefore, the repulsive force of UAV; caused by obstacle g is the negative derivative
of Ujq, which is Fyg, as shown in Equation (27), where X; represents the current position
vector of UAV ;.

mp, — ﬂ)p?gwi s Pig < Po1

Fiq = —grad(Uiq) = , (27)

All UAVs use broadcasting to transmit their own state information at a specific fre-
quency. Additionally, all UAVs are capable of receiving the state information released by
other UAVs. Therefore, with little network latency (millisecond latency), it can be assumed
that each UAV in the UAV formation has access to the real-time positions of the other UAVs.
When the distance between two UAVs is less than the threshold for the UAV repulsive field,
both UAVs will experience a repulsive force on each other. The closer the distance, the
stronger the repulsive force. Let UAV be subjected to the repulsive force field generated
by other UAVs besides itself, and let the repulsive force field of UAV be as shown in
Equation (28).

U, — {%Mz(pll,w - %)2 s Piw < P02 ’ (28)
0 s Piw > P02

where 15 is a constant, p;y, is the distance between UAV; and UAV, and py, is a distance
constant indicating the upper limit of the distance at which the UAV generates a repulsive
force. UAV; is not subjected to the repulsive force of UAV,, when p;,, > pop. Therefore,
the repulsive force F;,, of UAV; by UAV, is the negative derivative of Uiy, as shown in
Equation (29).

1 1 N\_1 9Piw L Dy <
Fiw = —grad(U,,,) = {ﬂz(l’iw Poz)piwz 9X; Piw > P02 / 29)
0 s Piw > P02

Therefore, the total repulsive force field on the UAV is given by Equation (30).
Ui =) Uq+) Ui, (30)

Fi=) Fiq+) Fiw, (31)
The total repulsive force on UAV is in Equation (31).

4. Algorithm Validation
4.1. Simulation of Theta*-APF Algorithm Path Planning
In order to show the path-planning effect of the different algorithms more clearly

and realize the comparison between different algorithms, we first carry out simulation
experiments under the 2D raster map. In a 2D raster map with 100 x 100 grid numbers,
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the starting point and the end point are selected, and the simulation experiments are
performed for A* algorithm and Theta*~APF algorithm, respectively; the results are shown
in Figure 8. Subfigure (a) is a blank map, the black part is the area of impassable obstacles,
the blue triangles indicate the starting point, and the red triangles indicate the target point.
Subfigure (b) shows the distribution of the artificial potential field strength throughout
the map, where the obstacle region has the highest artificial potential field strength, the
target point has the lowest artificial potential field strength, and the rest of the nodes have
a corresponding increase in artificial potential field strength with the increase in distance
from the target point. The strength distribution of the artificial potential field can be plotted
more intuitively in a two-dimensional environment (the strength of the artificial potential
field in a three-dimensional scenario is actually four-dimensional data, which is difficult to
represent), which is the reason why a two-dimensional scenario is chosen for simulation in
the first place. Subfigure (c) illustrates path planning using the traditional A* algorithm
(using the Manhattan distance calculator as a heuristic function), where the yellow areas
indicate the nodes that were processed during the path-search process, and the red line
indicates the final planned path. Subfigure (d) shows the path planning results using the
Theta*-APF algorithm for the same case, the planned paths are shown as blue lines in the
figure, where the planning results of the A* algorithm are also plotted (red lines, consistent
with subfigure (c)). Comparing subgraph (c) and subgraph (d) it can be clearly seen that
the number of search nodes (yellow part) in the case of path planning using Theta*~APF
algorithm is significantly smaller than that of path planning using A* algorithm.
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Figure 8. Simulation of Theta*~APF algorithm path planning.
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The same results can be seen in Table 1, which shows the specific data in the case
of path planning using both algorithms, from which it can be seen that the Theta*~APF
algorithm outperforms the traditional A* algorithm in all relevant metrics.

Table 1. Performance parameters of the A* algorithm and the Theta*-artificial potential field method

algorithm.
. . Number of Search Path Length Inflection .
Path-Planning Algorithm Nodes (Grids) (Grids) Number Search Time
A* Manhattan distance calculation method 6679 137.095 6 21.666 s
4222 119.207 3 10.380 s

We conduct 20 rounds of round robin testing of the traditional A* neighborhood
search algorithm and the Theta*-artificial potential field method path-planning algorithm.
The A* algorithm chooses the Manhattan distance calculation method as the heuristic
function. The A* algorithm and the Theta*~APF algorithm use the same start and end
points in each round of testing. Figures 9 and 10 show the test results, where the data of
the A* algorithm are used as references (setting the data of the A* algorithm to 1), and the
data are presented by the ratio of the data of the Theta*-artificial potential field method
algorithm with respect to the data of the A* algorithm. Figure 9 shows the comparison of
computational time consumption, in all rounds of testing, the Theta*-artificial potential
field method algorithm computational time consumption is all less than the A* algorithm
computational time consumption, distributed in the range of 10-60% of the A* algorithm;
Figure 10 demonstrates the number of inflection points of the Theta*-artificial potential field
method algorithm planning paths and the relative value of the length of paths compared
with the A* algorithm, the blue line in the figure is the Theta*-artificial potential field
method algorithm inflection point number and path length relative to the A* algorithm.
The artificial potential field method algorithm inflection point length relative value, the
green line is the Theta*—artificial potential field method algorithm journey length relative
value; the Theta*-artificial potential field method algorithm journey length compared
to the A* algorithm is reduced by about 10; the Theta*-artificial potential field method
algorithm number of inflection points relative to the A* algorithm is reduced by 40-90%.
Although the Theta*—APF algorithm is not stable enough in terms of optimization on all
indicators (the variation of optimization effect is large), all indicators are much better than
the A* algorithm.

©— A* Relative value of time consumption
—@— Theta*-APF Relative value of time consumption

101 6o © o © © © © © © 6 © © 6 o o o © 6 ©

0.7 1
0.6 4

0.5 1

Relative value

0.4 4

0.3 4

0.2 1

0.1+

0.0 -

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19
Round number

Figure 9. Comparison of computational time consumption between A* and Theta*-artificial potential
field method algorithm.
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Figure 10. Comparison of the number of inflection points and distance traveled between the A* and
the Theta*~APF algorithm.

We extend this 2D map in 3D and perform path planning with the same starting
and ending points as Figure 8 (with the same coordinates mapped to the x—y plane), as
shown in Figure 11. Moreover, when the map is expanded from a two-dimensional raster
map to a three-dimensional voxel map, the increase in dimensionality will result in a
geometric increase in the number of grids. This, in turn, will lead to an increase in the
number of domains that need to be searched by each node. This increase is particularly
problematic for the on-board computers of UAVs. As shown in Figure 12, when the
map is expanded from 2D to 3D (assuming a height of 20 grids), the total number of
grids will be expanded by 1900%, and if the traditional A* algorithm is used for path
planning, its search time will be expanded from 21.666 s to 863.096 s, which is an increase
of 3884%, whereas the path planning using the Theta*~APF algorithm for the same case
will be expanded only from 10.380 s to 30.456 s, an increase of only 193.4%. The increase
in computational time consumed by the Theta*-~APF algorithm is significantly smaller
than that using the traditional A* algorithm, which is due to the fact that the Theta*~APF
algorithm employs the heuristic function of the artificial potential field method; its search
will be more purposeful, and therefore exhibits higher efficiency in path planning in a
three-dimensional environment.

mmms A with Manhattan Distance ~
== Theta-APF

o
Z Axis/Grids

[SINFNCNT
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30
X AXJ‘S/G”. % 40

50 0

Figure 11. Path planning in a 3D environment.
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Figure 12. Changes in the number of search grids and search time from 2D to 3D maps.

4.2. Simulation of UAV Formation Flight in 3D Environment

The simulation scenario used has dimensions of 80 m x 80 m x 4 m, and the obstacle
setting is complex. The scenario simulates a large 3D indoor scene in which a formation of
UAVs can fly in formation, with obstacles (gray part) set up to simulate items placed in an
actual indoor environment. The simulation scenario is shown in Figure 13.

Figure 13. Gazebo simulation scene.

The formation of UAVs in the 3D simulation is achieved through the successive
planning of multiple path points. This planning ultimately results in the formation of a
loop, and the flight trajectory of the UAV is output and plotted in real time. This process is
used to evaluate the efficiency and reliability of the Theta*~APF method for the 3D path-
planning algorithm. Although our tests were conducted in a 3D simulation environment,
most of the plots below are top views due to the difficulty in accurately comparing the
strengths and weaknesses between multiple paths in 3D plots.

Figure 14 shows the flight trajectory of UAVO (one of the aircrafts in the formation)
under different path-planning algorithms. The red path is the flight trajectory under the A*
algorithm and the blue path is the flight trajectory under the Theta*-APF algorithm.
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Figure 14. UAVO flight trajectory under A* algorithm and Theta*~APF algorithm.

As can be seen from the above trajectory diagrams, both algorithms are able to avoid
obstacles and fly safely to the predefined target point when performing path planning.
However, when the A* algorithm performs path planning, due to the limitation of the
forward direction, the UAV’s trajectory is more like a zigzag in the vicinity of obstacles,
turns, and diagonal movements, and does not find the shortest path; on the contrary, when
the Theta*-APF algorithm performs path planning, the overall trajectory is smoother, and
a shorter path is found. As shown in Table 2, the distance traveled by the UAVO flight
trajectory varies with different algorithms, and the distance traveled by the Theta*~APF
algorithm decreases by about 12% compared to the A* algorithm when planning the path.

Table 2. UAVO flight distance for different path-planning algorithms.

Path-Planning Algorithm Path Length (m)
A* algorithm 370.711
Theta*-APF 325.321

During flight, UAVs are continuously affected by artificial potential field forces gener-
ated by the surrounding obstacles, which leads to spontaneous obstacle avoidance. The
closer the UAV is to the obstacle, the greater the repulsive force effect by the obstacle is;
therefore, we use the size of the artificial potential field repulsive force of the obstacle to
which no UAV formation is subjected to measure the distance and proximity of the UAV
to the surrounding obstacles during the UAV formation flight process, and then compare
the ability of the Theta*~APF algorithm and the A* algorithm to guide the safe flight of the
UAV formation under the environment of complex obstacles. As shown in Figure 15, we
plot the histograms of the magnitude of the artificial potential field force on the UAV forma-
tion during UAV formation flight under the A* algorithm and the Theta*-APF algorithm,
respectively. The x-axis data represent the magnitude of the artificial potential field force,
and the y-axis represents the frequency of occurrence of this value throughout the flight
(cumulative number of times). It is shown that, when using the Theta*~APF algorithm,
the UAV is subjected to less force from the obstacle artificial potential field for most of
the flight compared to that using the A* algorithm (the peaks of the data frequencies are
closer to the zero point); the peaks of the force using the A* algorithm are much larger than
those using the Theta*-APF algorithm (extending over a wider range of the x-axis). We
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3D flight path

have also plotted the average value of the artificial potential field force for the different
algorithms, where the force decreases by about 42.039% (from 2.148 to 1.245) using the
Theta*-APF algorithm compared to the traditional A* algorithm. This indicates that using
the Theta*~APF algorithm to guide the UAV formation flight will have higher safety than
using the A* algorithm.

_A*

S *_
1750 Theta*-APF

Average: 1.214

1500
Average: 2.148

1250

1000

Frequency/Times

250

ﬂl‘

1.5 2.0
APF Force/N

2.5 3.0 £ 4.0

Figure 15. Histogram of forces in the artificial potential field.

Based on the above simulations and comparative experiments, we have basically
verified that the Theta*~APF algorithm has significant advantages over the traditional A*
algorithm in terms of path planning time, distance traveled, path smoothing, and the safety
of guiding UAV formations to fly in an obstacle environment. Figure 16a,b illustrate the 3D
and 2D images of the flight trajectory of each UAV during formation flight, respectively.
Figure 16¢ shows the formation (diamond-shaped formation) maintained by the UAV
formation at any moment of the flight, which always flies in such a formation to achieve
obstacle avoidance as well as to avoid collisions between UAVs through localized squeezing
and deformation of the formation. The UAV formation successfully maintains formation
safe flight in complex obstacle environments, which further validates the effectiveness and
reliability of our proposed algorithm.

Y-axis/m
& &

w
&

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
X-axis/m

(b) (c)

Figure 16. UAV formation flight trajectories in (a) 3D and (b) 2D environment and UAV formation
schema (c).
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5. Conclusions and Future Works

In this paper, a new point-to-point path-planning algorithm, the Theta*-APF algorithm,
is proposed and applied to UAV formation flying in obstacle environments. The Theta*—
APF algorithm has been improved compared to the A* algorithm mainly in the heuristic
function and forward direction, which is based on the principle of the artificial potential
field algorithm, which is used as a heuristic function to improve the A* algorithm, and
introduces the widely used inverse reasoning strategy to optimize the A* algorithm into the
Theta* algorithm, resulting in the Theta*-~APF algorithm. The simulation and comparison
experiments basically verified that the Theta*~APF algorithm has significant advantages
over the A* algorithm in terms of search time, path superiority and inferiority, and safety
of UAV formation flight.

Due to various limitations, this study did not utilize physical drones for experiments.
Therefore, further research and validation are needed to assess the reliability and robustness
of the proposed algorithm in real-world settings. In future work, we also plan to deploy the
algorithm into specific UAVs for formation flight experiments. The Theta*-APF algorithm
proposed in this paper can be easily adapted to UAV formation path planning situations
in 3D environments. In addition, we will conduct further research on the organization
of UAV formations and apply the algorithm to larger scale formation flights and more
complex environments.
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