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Abstract: In UAV autonomous exploration, large frontier clusters are commonly associated with high
information gain and are visited first. In contrast, small and isolated frontier clusters with fewer fron-
tiers are associated with smaller information gain and are thus explored with low priority. However,
these small and isolated frontier clusters are often in close proximity to UAVs and surrounded by
explored areas, which could result in back-and-forth flights that lower exploration efficiency. This
paper proposes LAEA, a LiDAR-assisted and depth camera-dominated UAV exploration algorithm
that aims to improve UAV autonomous exploration efficiency. A hybrid map is obtained that charac-
terizes rich environmental profile information in real time, enabling us to detect small and isolated
frontier clusters that can lead to repeated visits to explored areas. An environmental information
gain optimization strategy is incorporated such that frontier clusters with larger unexplored areas
behind them, as well as small and isolated frontier clusters close to the UAV, are assigned higher
weights to prioritize their visit order. An optimized flight trajectory is generated to cover unexplored
frontier clusters in the immediate vicinity of the UAV while flying to the next target. A comprehensive
comparison between the proposed algorithm and state-of-the-art algorithms was conducted via a
simulation study, which showed that our algorithm exhibits superior exploration efficiency in various
environments. Experiments were also carried out to verify the feasibility of the proposed approach in
real-world scenarios.

Keywords: aerial systems; applications; search and rescue robots; motion and path planning; mapping

1. Introduction

With the popularity and development of unmanned aerial vehicle (UAV) technology,
multirotor UAVs have been widely used in electric power inspection [1], agricultural
plant protection [2], reconnaissance and rescue [3], etc. While some UAVs may fly in
open areas, some are deployed in unstructured environments, requiring them to be able
to efficiently navigate unknown environments and provide environmental information
using only onboard sensors, which facilitates efficiency in missions such as environmental
monitoring, emergency rescue, etc.

To efficiently construct maps of unstructured environments, target evaluation criteria
have been designed to optimize autonomous UAVs’ exploration progress. The greedy
strategy, representing one of the most commonly adopted strategies, chooses either the
nearest candidate target [4] or the candidate target with the highest information gain [5]
as the next target position. However, such strategies may neglect other candidate targets
near the current UAV position, which often results in inefficient back-and-forth motions.
To alleviate this problem, the best candidate target is chosen by either satisfying the
dynamic constraints [6] or solving a traveling salesman problem (TSP) [7]. To further
improve the global nature of the exploration algorithms, a small subset of the algorithms
introduce a priori information about the environment while selecting the next target,
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e.g., detecting small frontier regions based on known maps to preferentially cover them [8],
and predicting environmental maps in real time using deep learning to more accurately
calculate information gain [9]. Meanwhile, the algorithms based on exploratory maps are
naturally incapable of properly evaluating small frontier clusters as they lack a global view
of environmental contour information, which is essential to characterize the importance of
small frontier clusters. On the other hand, algorithms based on predicted maps are heavily
dependent on pre-trained models, limiting their applicability. It is clear that the following
are the main factors restricting the exploration efficiency of existing algorithms.

(1) The improper characterization of small frontier clusters leads the UAV to neglect such
areas, which results in back-and-forth movements;

(2) Frontiers adjacent to the flight trajectories to targets are often overlooked, which could
also lead to back-and-forth movements.

To resolve the above issues, we propose LAEA, a LiDAR-assisted UAV exploration
algorithm for the efficient exploration of unknown environments. With LiDAR’s sensing
range and FOV much larger than those of depth cameras, the proposed algorithm integrates
both LiDAR and RGB-D data to construct a hybrid 2D map and obtain more information
on unexplored environments. Small and isolated frontier clusters leading to back-and-forth
movements can be efficiently detected based on the proposed hybrid 2D map. By assigning
higher access weights to these special frontier clusters, repeated visits to explored regions
can be significantly reduced by first exploring frontier clusters that are in close proximity.
Meanwhile, an environmental information gain (EIG) optimization strategy is introduced
to mimic the human behavior of looking around, which facilitates quick access to a large
amount of environmental information in unfamiliar surroundings. Thus, an efficient and
safe flight trajectory can be generated that not only has the potential to cover a large number
of unknown frontier clusters while flying to the next target, but also reduces the probability
of collision with obstacles.

We benchmarked the proposed algorithm against two state-of-the-art algorithms [7,8]
in different simulation environments, and superior performance is exhibited by the pro-
posed algorithm. An experiment was conducted on a robotic UAV platform, and the results
confirm the feasibility of using our novel approach in real-world scenarios. The main
contributions of this work are as follows:

• A hybrid 2D map is constructed that offers a more effective method to detect and
prioritize visits to small and isolated frontier clusters, which could reduce back-and-
forth movements.

• An EIG optimization strategy is proposed that significantly improves the coverage
of unknown frontier clusters during the UAV’s flight to the next target, as well as
flight safety.

• The proposed algorithm is compared with two state-of-the-art algorithms through
simulation, and then, validated on a robotic platform in different real-world scenarios.

The remainder of this manuscript is structured as follows: Section 2 introduces some
robot exploration algorithms; Section 3 provides details of the proposed UAV exploration
algorithm; the simulation-based comparison of the proposed LAEA with existing state-
of-the-art algorithms, as well as the real-world verification experiments, are presented in
Section 4; and finally, the contributions of this study are summarized in Section 5.

2. Related Works

Researchers have proposed numerous exploration algorithms for different optimiza-
tion objectives, and autonomous exploration algorithms for robots can be classified into
three categories depending on the method of candidate target generation: random sampling-
based, frontier-based and reinforcement learning-based. This paper mainly focuses on the
first two categories, which are widely used.
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2.1. Sampling-Based Methods

Sampling-based methods randomly sample the known space using rapidly exploring
random tree (RRT) to obtain candidate targets with probabilistic completeness. The classical
method NBVP (next-best-view planning) [5] uses RRT to explore the 3D space and selects
the branch with the highest information gain as the next UAV target. NBVP is prone to
falling into local regions due to the lack of global consideration; to solve this problem,
Umari et al. [10] proposed an exploration strategy based on multiple RRTs, which quickly
and comprehensively detects the frontier region using a local and a global RRT tree. MBP
(motion primitives-based path planning) [6], on the other hand, maintains the UAV’s
rapid exploration process by sampling the motion fundamentals. Considering the high
computational cost of blind random sampling in global maps, Zhu et al. [11] sampled
near both the robot’s current position and the frontier region according to a certain ratio to
quickly construct an RRT tree with more exploration gains. Meanwhile, Xu et al. [12,13]
obtained dynamic information on the environment in real time based on a probabilistic
roadmap to overcome dynamic obstacles during UAV exploration.

2.2. Frontier-Based Methods

Frontier-based approaches focus on finding all frontier regions between known and
unknown spaces and selecting one of them as the next target. It was first proposed
by Yamauchi [14] that the algorithm guides the robot to the nearest reachable frontier
region from the current position. On this basis, Kulich et al. [15], referring to the TSP,
determined the optimal order of accessing each frontier region from the current location,
which was more global in selecting the target and effectively improved the exploration
efficiency of the algorithm. Further, Kamalova et al. [16] demonstrated the effectiveness
and applicability of bionic optimization algorithms in mobile robots using the gray wolf,
whale and particle swarm optimization algorithms to determine the next target from the
extracted boundary points.

Unlike work that only focuses on determining the next target, in [7], the authors
designed FUEL (Fast UAV Exploration), an incremental frontier information structure that
can quickly detect and extract frontier regions on a map, and generated B-spline trajectories
to satisfy the kinematic and dynamic constraints of UAVs using FUEL’s hierarchical planner.
Based on this, FAEP (Fast Autonomous Exploration Planner) [8] considers the map bound-
ary and small frontier region constraints in the process of selecting the next target, and the
UAV’s exploration efficiency is further improved. Meanwhile, ECHO (Efficient Heuristic
Viewpoint) [17] uses a 2D Gaussian distribution sampler to quickly sample viewpoints and
considers constraints such as boundaries, the distance of viewpoints from obstacles, etc.
Also based on FUEL, SEER (Safe Efficient Exploration) [9] uses OPNet to predict 3D maps
of frontier regions in order to compute an information gain value closer to that in the real
environment and simultaneously detect frontier regions that may enable preferential access.

However, for large or complex environments, the small area constraints proposed
by FAEP, which are based on the limited FOV camera, can easily fail, and SEER, which
relies on pre-trained network models, also struggles to accurately compute information
gain. Moreover, the boundary constraints considered by FAEP and ECHO tend to guide
UAVs to the map boundaries, thus making it easy to miss frontier areas, which may lead
to back-and-forth motion. As shown in Figure 1, pure depth camera-based exploration
methods have difficulties in obtaining accurate information about environmental contours
during the exploration process, which makes it easy to miss unexplored closed regions
(isolated frontier clusters) and regions with low potential for information gain (small
frontier clusters). Timely detection and coverage of these special frontier areas could
significantly improve the overall exploration efficiency of UAVs.
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Figure 1. Special frontier clusters are frequently missed as they do not pay attention to environmental
contour information, which can cause back-and-forth movements in the future. Subgraph (a) is
the map to be explored. Subgraph (b) is the map built using the state-of-the-art method [8] during
the exploration process in the simulation. Subgraph (c) is an abstracted map of (b) that enables a
better understanding.

3. Proposed Method
3.1. System Overview

The system framework of LAEA is illustrated in Figure 2. The proposed system
comprises three main modules, i.e., map construction, target selection and motion planning.
Given multi-sensor data, the map construction module (Section 3.2) obtains both high- and
low-resolution 3D occupancy maps. It also generates a 2D hybrid occupancy map that
is used to detect special frontier clusters. The target selection module (Section 3.3) first
obtains viewpoints for each frontier based on the high-resolution 3D occupancy map, and
then, uses the 2D hybrid map to calculate the LiDAR information gain and detect small
and isolated frontier clusters. Finally, the visiting order for all of the frontier cluster sets is
obtained by constructing a solution to the asymmetric traveling salesman problem (ATSP).
Then, the motion planning module (Section 3.4) performs special azimuthal trajectory
optimization using the EIG optimization strategy, which finally generates a safe trajectory
that helps the UAV to obtain more information.

3.2. Map Construction Module

The map building module uses a depth image to obtain a high-resolution 3D occupancy
grid map Vhigh for the detection of frontier clusters and navigation. Using LiDAR and part
of the depth image, a low-resolution 3D occupancy grid map Vlow is obtained for coarse
characterization of the environment. The experimental results show that a straightforward
3D construction using sparse 2D LiDAR data produces many clustered points on the map.
This has an impact on the detection of special frontier clusters. For this reason, a radius
filter and data for part of the depth image are incorporated to filter out the clustered points,
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which balances the cluster filtering and the real-time performance of the 3D occupancy
map Vlow.

Figure 2. Proposed system architecture.

The projection along the Z-axis direction of Vlow yields a UAV-centered 2D occupancy
map Mlow. Details of the construction process of Mlow are illustrated in Figure 3.

Figure 3. Details of the construction process of Mlow. Part A shows the process of generating Mlow,
and part B demonstrates the quality of Mlow generated under different conditions. In part B, black
represents occupied cells and gray represents known free cells.



Drones 2024, 8, 128 6 of 18

The cell states in Mlow are indicated by {−1, 0, 100}, which represent unknown, free
and occupied states, respectively. The data in Mlow are copied to the hybrid map Mhybrid,
except that the state of each cell in Mhybrid is updated in conjunction with Vhigh, as described
in Equation (1):

Si,Mhybird =


100 i f∃Si,Vhigh == 100

Si,Mlow i f∃Si,Vhigh == −1
80 else

(1)

where Si,Mlow and Si,Mhybird represent the i-th cell state in Mlow and Mhybrid, respectively,
and Si,Vhigh represents the cell state in Vhigh with the current UAV’s altitude range. Notably,
cells with a status value of 80 in Si,Mhybird denote an explored free space in Si,Vhigh with no
more exploration value, and are thus categorized as occupied cells for the subsequent
processing. As shown in Figure 4, the hybrid map can intuitively display information
about the environmental contours of the remaining unexplored areas, where unknown and
known free cells in the map have potential to be explored.

Figure 4. Construction of the hybrid map. (top) 2D maps generated using Vhigh (left) and Vlow (right).
(bottom) hybrid map generated using multi-sensor data.

3.3. Target Selection Module

This module involves frontier-based viewpoint generation, small and isolated frontier
cluster detection and solving the ATSP.

3.3.1. Frontier-Based Viewpoint Generation

As stated in the classical algorithm [14], a frontier is defined as a known free voxel
adjacent to an unknown voxel. Unlike the traditional method of detecting the frontier
directly from the whole map, the FUEL algorithm [7] described in this study is used to
establish frontier clusters in an incremental manner. A series of viewpoints is evenly
sampled around the average position of each frontier cluster. Then, the yaw angle of the
UAV is uniformly sampled around each viewpoint. Next, the viewpoints of all frontier
clusters are sorted in descending order of the coverage of yaw angles. For each frontier
cluster detected, extra frontier cluster information can be obtained (as shown in Table 1),
which helps in choosing a more reasonable target.
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Table 1. The content of extra frontier cluster information obtained in real time.

Data Explanation

Glidar The extra information gain observed using LiDAR (m)
pextend Extension of average position of cluster by Glidar
Asmall Cluster with low Glidar

Aisolated Another cluster tends to cause back-and-forth motion

3.3.2. Small-Area Cluster Detection

Small frontier clusters are often ignored during exploration due to their low informa-
tion gain, which results in back-and-forth flights and the repeated visitation of explored
areas, as shown in Figure 1. Detecting small frontier clusters in advance and prioritizing
their visitation can effectively solve this problem. In a hybrid 2D map, the best viewpoint
of each frontier cluster with the highest LiDAR information gain Glidar can be obtained,
and the accurate detection of small frontier clusters can thus be performed. The size of the
potentially explorable area behind the frontier cells can be computed using a ray-casting
algorithm based on [18], as described in Algorithm 1.

Algorithm 1 Calculation of LiDAR information gain.

Input: Vhigh, Mhybrid, Ci, pi, Rmax
Output: Clidar, Nray, Rdir

1: Clidarstart = DownSample(Ci, Mhybrid.res())
2: Nray = Clidarstart .size()
3: for each ci in Clidarstart do
4: dir = (ci − pi).normalize()
5: dir_ = dir_ + dir
6: Clidarend

.pushback(ci + dir · Rmax)
7: end for
8: for each i in range(Clidarstart .size()) do
9: RayCastInit(Clidarstart(i), Clidarend

(i), Mhybrid)
10: while RayCastNext(state) do
11: if state == Occupied then
12: break
13: end if
14: Clidar ++
15: end while
16: end for
17: Rdir = dir_.normalize()

At first, a series of 2D start points for ray-casting can be generated by applying
DownSample() to sparse frontier cluster cells Ci at the current UAV height (Line 1–2).
Specifically, frontier cells that are less than one map resolution away from the current
height are first selected and projected onto the 2D plane; a set of 2D points that are more
than one map resolution away from each other are subsequently calculated. Then, the
end point of ray-casting is derived by combining the maximum effective sensing range
Rmax of the LiDAR with the direction of the viewpoint in relation to each sparsified cell
ci (Line 2–7). Next, the number of potentially explorable cells Clidar on the hybrid map is
counted along the direction of ray-casting until an occupied cell is detected (Line 7–15),
as shown in Figure 5. Finally, the average size Glidar of the explorable space behind the
frontier cluster can be calculated using Equation (2). The extended average position pextend
of each frontier cluster is also computed using Equation (3).

Glidar = Mhybrid.res() · Clidar
Nray

(2)

pextend = pavg + k1 · Glidar · Rdir (3)
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In the above equations, the resolution of the hybrid maps Mhybrid.res() acts as a
medium for translating potential information gains to a real scale, Nray is the size of
sparsified cells, pavg is the average position of the corresponding frontier cluster, k1 is
an adjustable extension factor and Rdir is the mean direction for ray-casting calculations.
Given the small region threshold thrsmall , frontier clusters with less LiDAR information
gain than thrsmall are labeled as small regions, i.e., Asmall = true.

To reduce or even avoid the repeated exploration caused by small frontier clusters,
an effective small area cost cs(k) for frontier clusters f trk is constructed by increasing the
visitation priority of small frontier clusters:

cs =

{
ks − f trk.Glidar f trk.Asmall ̸= 0

0 else
(4)

where ks is a constant value larger than thrsmall , and a smaller Glidar corresponds to higher
access rights. To avoid excessive focus on small frontier clusters leading to back-and-forth
movements, only those within the range of Rsmall from the current position are considered.

Figure 5. Computing LiDAR information gain based on hybrid map.

3.3.3. Isolated-Area Cluster Detection

Like small frontier clusters, isolated frontier clusters also lead to back-and-forth move-
ments. Using a hybrid 2D map, isolated frontier clusters can be detected quickly. Firstly, the
cell states of the hybrid 2D map are classified into two categories {0, 1} to obtain a binarized
image, where the occupied or explored cells are recorded as 1 and known free or unknown
cells are recorded as 0. Secondly, a connected component in the innermost layer with a
state of 0 and area sizes that meet the setting range are detected. The smallest rectangle that
encompasses the connected regions can then be illustrated and its four vertices recorded.
Next, the isolated frontier clusters are detected by determining whether the corresponding
pextend is within the four recorded vertices. To determine the special frontier priority, the
isolated area cost ciso(k) for frontier cluster f trk is computed using Equation (5).

ciso =

{
kiso f trk.Aisolated ̸= 0
0 else

(5)
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where kiso is an empirical weight used to emphasize preferential access to isolated regions.
As shown in Figure 6, there often exist multiple isolated frontier clusters within a

connected region. Therefore, determining the cost difference of these isolated frontier
clusters helps to plan a smoother coverage path. For this reason, unlike small frontier
clusters, all isolated frontier clusters have the same weight coefficient. Once isolated areas
are detected, higher access rights drive the drones to prioritize their coverage in order to
avoid inefficient exploration due to return flights.

Figure 6. Combining connected region and average position expansion to detect isolated frontier clusters.

3.3.4. Solving the ATSP

As mentioned above, the appropriate selection of the next target is crucial for optimiz-
ing overall exploration efficiency. Given N frontier clusters as candidate targets, this study
constructs a cost matrix M(N+1)(N+1) to solve the ATSP and obtain the order of access.
Since the order of returning to the current position is irrelevant, the cost of returning from
the candidate targets to the current position is set to 0. In addition, we mainly consider the
cost of traveling between frontier clusters for the path time constraint, which is calculated
as below:

Mtsp(i, j) = Mtsp(j, i) = tlb(Vi, Vj), i, j ∈ {1, 2, . . . , n} (6)

tlb(Vi, Vj) = max{
length(pi, pj)

vmax
,

min(|θi − θj|, 2π − |θi − θj|)
θ̇max

} (7)

where Vi denotes the best viewpoint of the frontier cluster f tri, pi is the corresponding
position at the viewpoint, θi is the corresponding yaw angle, and vmax and θ̇max are the
maximum linear and angular velocity constraints of the UAV, respectively.

The cost of traveling from the current position p0 to each candidate target is calculated
as follows considering path time, motion continuity, boundary, and small and isolated
area constraints:

Mtsp(0, k) = tlb(V0, Vk) + wc · cc(Vk) + wb · cb(k)− ws · cs(k)− wiso · ciso(k) (8)

cc(Vk) = cos−1 (pk − p0) · v0

||pk − p0||||v0||
(9)

where wc is the motion continuity penalty factor, wb is the boundary cost penalty factor,
and ws and wiso are the reward weight coefficients for small and isolated frontier clusters,
respectively. cc(Vk) penalizes frontier clusters that have a large change in the direction of
the current motion. The boundary cost cb(k) is the minimum distance from the average
position pk of the candidate viewpoint to the map boundary, and is used to provide a travel
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direction guidance constraint for the UAV. Given the aforementioned cost matrix, we use
the TSP solver LKH [19] to obtain an access sequence that enables the UAV to visit each
frontier cluster in turn, starting from the current position.

3.4. Motion Planning Module

Regarding the global access order obtained by the TSP solver, a segment is taken, and
local refinement is applied using FUEL [7] to obtain the next target. After the next target
is determined, FUEL carries out direct trajectory planning from the current location to
the next target. FAEP [8], on the other hand, selects an intermediate yaw and carries out
two-stage yaw planning if the yawing motion meets the position trajectory time constraints,
which is significantly more efficient compared to FUEL.

However, the constructed maps are not always accurate due to sensor noise and
localization drift, thus setting the yaw at the next target, as the target planning yaw could
threaten UAV safety. As depicted in Figure 7, because of the large difference between the
motion direction and the FOV camera orientation, the UAV is unable to effectively perceive
the environmental information (e.g., the presence or absence of obstacles on the path) in
the direction of movement, which makes it highly susceptible to collision and leads to
failure of the exploration mission. Moreover, even if the pre-constructed maps are intact,
the planning strategy is not effective in sensing and avoiding sudden obstacles.

Figure 7. Direct path planning to the target yaw is ineffective at avoiding obstacles in the movement
direction. Subgraph (a) is the map to be explored. Subgraph (b) is the map built during the exploration
process in the simulation. Subgraph (c) is an abstracted map of (b) that enables a better understanding.

To ensure safety and efficiency during exploration, an EIG optimization strategy is
performed to increase the amount of environmental information the UAV can obtain during
its flight to the next target. A temporary target yaw θtemp is selected only if the angle
between the planned movement direction and the direction of the target yaw θnext is less
than a preset threshold, where collision risk increases due to the lack of information on
the surroundings. To ensure that the UAV can observe environmental information in
the direction of movement, the threshold angle can be set to half of the horizontal FOV
angle of the onboard depth camera. Unless the UAV is within a predefined safe range of
distances to the next target, once the condition is triggered, the orientation of the temporary
target yaw is selected as the planned direction of motion and is set to θnext = θtemp. In
addition, a suitable intermediate yaw angle, preferentially selected from the adjacent small
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and isolated frontier clusters, is selected to generate information-rich trajectories with
prior consideration of time constraints. The selected intermediate yaw aims to make the
UAV mimic the human behavior of looking around to obtain more information about
the environment.

The path information gain optimization strategy for subsequent yaw planning is
illustrated in Algorithm 2. The total motion time Tdesire and corresponding time allocation
ratio Rdesire for two consecutive instances of yaw trajectory planning are initialized to zero
(Line 1). The local refined viewpoint Vlocal within the radius Rnear of the current pose pnow
is then filtered into Vnear (Line 2), and the path time constraint Tlb is also calculated (Line 3),
where pathLength() uses the A* algorithm to search for the shortest collision-free path
from the current path to the next path, klb is an adjustable weighting factor, and v0 is the
current speed of the drone. Then, the middle yaw that satisfies the time constraints Tlb and
facilitates larger yawing movements is selected to increase coverage of the surrounding
unknown environment (Lines 4–10). Finally, the appropriate time constraints are used to
plan the yaw trajectory accordingly (Lines 11–18).

Algorithm 2 Path information gain optimization strategy.

Input: Vlocal , θcur, θnext, pnow, pnext, v0, Rnear, klb
Output: yaw Trajectory Y

Tdesire = 0, Rdesire = 0, θmiddle = 0
Vnear = SelectNearVP(pnow, Vlocal , Rnear)

Tlb = klb ·
PathLength(pnow ,pnext)

v0.norm()

for each VP in Vnear do
T1, T2 = EstMinYawT(θcur, θvp, θnext)
Tmin = klb · (T1 + T2), ratio = T1/Tmin
if Tmin ≤ Tlb&&Tmin > Tdesire&&ratio ̸= 0&&ratio ̸= klb then

Tdesire = Tmin, Rdesire = ratio, θmiddle = θvp
end if

end for
if Tdesire ̸= 0 then

Y1 = YawPlanning(θcur, θmiddle, Tdesire · Rdesire)
Y2 = YawPlanning(θmiddle, θnext, Tdesire · (1 − Rdesire))
return Y(Y1, Y2)

else
Traw = EstMinYawT(θcur, θnext)
return YawPlanning(θcur, θnext, Traw)

end if

After utilizing the above EIG optimization strategy, the path from the current position
to the next target is planned. If the intermediate yaw angle is successfully selected, Tdesire
calculated by Algorithm 2 is used as the time constraint for position trajectory planning;
otherwise, Traw is used. If the trajectory from the current position to the next target is too
long, an intermediate target point can be selected for the subsequent trajectory optimization.
Eventually, the method in [20] is used to generate B-spline trajectories for the UAV that
satisfy smooth, safe and dynamics constraints.

4. Experiments
4.1. Simulations

To investigate the effectiveness of the proposed algorithm, three simulation environ-
ments were established using the Gazebo simulator. The UAV model used in the simulation
had a 500 mm diameter between two diagonal motor shafts, and was equipped with 2D
LiDAR and a depth camera. Details of its configuration are presented in Table 2. The
geometric controller [21] was implemented to track the generated trajectory. Fiesta [22]
was used to construct Vhigh for exploration completeness, and Octomap [23] was used to
construct Vlow for low memory occupation. The following parameters were used for special
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frontier detection and solving the ATSP: thrsmall = 2.2 m, k1 = 0.5, kiso = 15, klb = 1.35,
wc = 0.05, wb = 1.0, ws = 1.0, wiso = 1.2. Adjustments to these parameters can be made
with reference to the practical implications described earlier.

The state-of-the-art frontier-based algorithms FUEL [7] and FAEP [8], which currently
offer the best autonomous UAV exploration performance, were chosen for comparison.
Meanwhile, additional ablation experiments were performed in scenario 1 (Indoor1), where
OURSEIG and OURSLiDAR only used EIG strategies and LiDAR data, respectively. To
avoid random superiority in a single run, simulations were repeated 10 times in each
simulation environment for all three algorithms, with the same settings. The resolutions for
Vhigh and Vlow were set to 0.12 m and 0.15 m, respectively. The initial size of the local map
Mhybird was 12 × 12 m2, and it was adaptively cropped according to the map boundaries to
save resources.

Table 2. The parameters used for the simulation.

Camera FOV [80,60] deg Camera range 4.5 m
LiDAR FOV 360 deg LiDAR range 12 m
Max velocity 1.0 m/s Max accelerate 1.0 m/s2

Max yaw rate 1.0 rad/s ROS version Melodic
Hardware configuration Intel Core i5-12500H@3.10 GHz, 16 GB memory

(1) Office Rooms: Two typical office rooms were used to investigate the effectiveness
of the exploration algorithm. The volume of the Indoor1 scene was 40 × 20 × 3 m3, and that
of the Indoor2 scene was 35 × 28 × 3 m3. The simulation results are shown in Table 3 and
Figure 8. During exploration, FUEL often missed more frontier clusters, which resulted
in obvious repeated exploration motions later, leading to low exploration efficiency. In
comparison, based on the depth camera data, FAEP could detect some of the small frontier
clusters and reduce their omission. Meanwhile, the boundary constraints of FAEP guided
the UAV to explore the map boundary, which also reduced the rate of repeat visits to
the explored area to some extent. However, such constraints also caused the omission
of isolated frontier clusters that are far from the map boundary, leading to unnecessary
repeated exploration, as shown by the trajectory in Figure 8b. In addition, constrained
by the limited FOV of the depth camera, many small frontier clusters were not detected
properly by FAEP.

Table 3. Exploration statistics for the three different environments. Bold indicates the best experimen-
tal data for the same scenario.

Scene Method Exploration Times (s) Flight Distance (m)
Avg Std Min Avg Std Min

Indoor1

FUEL [7] 255.0 7.0 245.8 248.5 10.4 235.3
FAEP [8] 218.2 5.0 209.3 234.0 4.4 227.3

OURS 193.8 5.1 179.9 211.1 5.1 200.9
OURSEIG 206.7 4.5 199.4 232.2 5.6 224.6

OURSLiDAR 204.6 7.1 189.9 228.9 5.1 218.2

Indoor2
FUEL [7] 280.1 7.1 265.0 279.6 7.5 266.8
FAEP [8] 257.9 11.0 236.7 274.0 14.6 242.6

OURS 200.7 5.6 192.4 219.4 5.0 211.9

Forest
FUEL [7] 282.3 6.3 268.1 276.4 5.7 264.2
FAEP [8] 262.1 10.7 244.9 262.1 12.0 243.9

OURS 227.6 5.3 221.2 231.7 5.8 224.3
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Figure 8. Experimental results in different scenarios. (a–c) correspond to the Indoor1, Indoor2 and
forest scenarios, respectively (the red, purple and yellow trajectories in the figure correspond to
OURS, FUEL and FAEP, respectively). (d–f) illustrate the coverage performance in the three different
scenarios. (g–i), respectively, show the specific distribution of flight time and flight distance of the
three methods in the different scenarios (presented in Table 3). Videos of the experiments can be found
at https://youtu.be/_a1Vl518Ra8 (accessed on 3 March 2024), and the code and other supplementary
materials are available at https://github.com/Poaos/LAEA (accessed on 3 March 2024).

Because of the need to cover special frontier clusters with a high risk of repeated
exploration, the coverage curves of the proposed LAEA occasionally stagnated briefly, and
then, resumed rapid growth, as shown in Figure 8d,e. Comparatively, both FUEL and FAEP
also inevitably experienced significant stagnation in the later stages of exploration. Owing
to the LiDAR-assisted special frontier cluster detection and EIG optimization strategy, the
proposed algorithm can balance exploration gain with the repeated-exploration risk, and
its overall exploration efficiency is higher in all three scenes. Compared to FUEL and FAEP,
the proposed LAEA reduces the exploration time by 24–28% and 11–22%, respectively, and
the path length by 15–21% and 10–20%.

(2) Pillar Forest: Simulations in a forest measuring 48 × 25 × 3 m3 with surrounding
walls and uniformly distributed obstacles were also conducted to investigate the stability
and efficiency of the proposed algorithm. The results are shown in Table 3 and Figure 8,
and demonstrate that the proposed algorithm reduced exploration time by 19% and 13%
compared to FUEL and FAEP, respectively. In complex forest environments, because of the
lack of boundary guidance, the efficiency of FUEL remains poor, while both FAEP and the
proposed LAEA initially guide the UAV around the map boundary, and therefore, are more
effective. As depicted in Figure 8c,f, due to the EIG optimization strategy, the proposed
LAEA was able to observe more unexplored regions while exploring the boundary, which
corresponds to a coverage curve with a faster growth rate. Moreover, as shown in Figure 8c,

https://youtu.be/_a1Vl518Ra8
https://github.com/Poaos/LAEA
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the boundary constraints of FAEP still tend to miss the small and isolated frontier clusters,
leading to undesirable back-and-forth movements. In contrast, the proposed multi-sensor-
based hybrid map of LAEA can quickly detect these special frontiers and cover them, which
makes exploration more efficient.

(3) Further Evaluation: To more clearly demonstrate the contribution of the proposed
algorithm, a simple and effective comparison test was designed. As shown in Figure 9d,
FAEP missed a number of special frontier clusters and caused several unnecessary back-
and-forth motions during its exploration, which is mainly related to Parts 1–3. The details
of the special clusters missed by FAEP in Parts 1–3 are shown in Figure 9a–c, and these
omissions were partly limited by the restricted FOV of the depth camera. In particular,
since FAEP relies heavily on boundary constraints during exploration, this inevitably
leads to low access rights to frontier clusters far from the map boundary. In contrast, as
shown in Figure 9e–g, the proposed LAEA, with the help of LiDAR data information, can
efficiently acquire environmental contour information to quickly detect unexplored closed
regions (isolated frontier clusters) and regions with low potential for information gain
(small frontier clusters). From the detected special frontier clusters, either the next target or
the middle yaw angle of the EIG optimization strategy is then selected for fast coverage.

Figure 9. A simple maze is used to clearly illustrate the contribution of the proposed algorithm.
The yellow and red trajectories in (d) are the actual exploration trajectories of FAEP and OURS,
respectively. The red dashed circles represent critical areas that contribute to efficiency differences.
The dashed-line bounding box indicates the isolated frontier cluster during exploration, and the solid
line indicates the small frontier cluster. The special frontier clusters omitted by FAEP are marked in
purple in (a–c), and those detected by OURS are indicated in black in (e–g).
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(4) Ablation Study: The results of the ablation experiments are shown in Table 3 and
Figure 10. It is clear that both OURSEIG and OURSLiDAR are more effective than FAEP and
FUEL. As in Figure 10, thanks to the flexible yaw motion, OURSEIG can achieve additional
coverage of nearby frontier clusters as it travels to the next target, and can maintain high
coverage per unit time. However, due to the lack of environmental contour information at
the frontier clusters, many back-and-forth motions are still seen in the later stages of the
exploration flight to cover missed isolated and small frontier clusters; thus, the coverage
per unit time decays dramatically. Meanwhile, thanks to the prioritized access to the
detected isolated and small frontier clusters, OURSLiDAR has a relatively slow but steadily
increasing trend of coverage per unit time, outperforming FAEP and FUEL. In contrast,
the proposed LAEA, incorporating the advantages of both OURSEIG and OURSLiDAR,
achieves superior efficiency to FAEP and FUEL.

Figure 10. Coverage curves of different algorithms over time.

4.2. Real-World Experiments

Real-world experiments were also carried out in two different scenarios to investigate
the effectiveness of the proposed algorithm at reducing repeated exploration. As shown
in Figure 11, we used a customized quadrotor platform measuring 380 mm in diameter
between two diagonal motor shafts, which was equipped with an RGB-D camera (D435,
Intel, Santa Clara, CA, USA), 2D LiDAR (LD19, LdRobot, Nanshan District, Shenzhen,
China) and an Nvidia onboard computer (Xavier, Nvidia, Santa Clara, CA, USA). In
addition, an Intel T265 camera was used for UAV position estimation. The dynamic motion
limits were set to vmax = 0.75 m/s, amax = 0.75 m/s and θmax = 0.75 rad/s in the outdoor
scene, and vmax = 0.5 m/s and amax = 0.5 m/s in the indoor scene.

Experiments were first conducted in a courtyard with an exploration map size of
27 × 16 × 2.1 m3, and the results are shown in Figure 12a–c. Due to the branches and weeds
in the scene, the detection threshold thrsmall for small areas was set to 1.0 m. The exploration
time of the whole process was 190 s, and the total length of the flight path was 120 m. During
the exploration process, the multi-sensor-based hybrid map quickly detected and covered
the special frontier areas, which ensured steady growth of the coverage curve shown in
Figure 12c. Subsequently, experiments were also carried out in an indoor environment
with map dimensions of 22 × 10 × 1.8 m3, as illustrated in Figure 12d–f; the exploration
time was 100 s, and the flight path length was 42 m. The experimental results show that
the proposed algorithm was able to quickly cover the special frontier region of detection in
different scenarios, demonstrating efficient exploration of the unknown environment.
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Figure 11. The UAV experimental platform used in the experimental study.

Figure 12. The results of real-world experiments in two different environments. (a,d), (b,e) and
(c,f) represent schematic diagrams of the experimental scenarios, graphs of the exploration trajectories
and coverage curves during exploration, respectively. And the definition of colours in (b,e) can be
found in Figure 7.

It is worth noting that our preset minimum height for the exploration area was −0.1 m,
and due to the uneven topography of the courtyard and the presence of large low-lying
areas and visual localization drift, many visually blank areas (no point cloud) appeared
in Figure 12b,e. In contrast, the local hybrid map enables better visualization of whether
areas are covered or not, as shown in Figure 13. The hybrid map is moved according to the
current position of the UAV and is adaptively cropped according to the map boundaries.
More details of the experiment can be seen in the demonstration video provided in Figure 8.

4.3. Discussion of the Use of LiDAR

The effect of using 2D LiDAR in the proposed LAEA on the endurance of the UAV
is discussed here. The LdRobot LD19 2D LiDAR is a compact TOF (time of flight) sensor
with a weight of 42 g and 0.9 watts of power [24]. The total weight including the LiDAR
mounting parts and cables is approximately 80 g, whereas the UAV system without LiDAR
weighs 2.0 kg and has about 420 watts of hovering power. Equipped with a 4 s 5300 mha Li-
ion battery (Grepow, Longhua New District, Shenzhen, China), the endurance of the UAV
without LiDAR was found to be about 11.4 min using the quadrotor evaluation system
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proposed in [25]; meanwhile, with the LiDAR mounted, the UAV can still fly for about
10.8 min, indicating a 5.3% endurance loss. It is clear that despite the insignificant weight
and power consumption increases, our proposed LAEA offers a considerable improvement
in exploration efficiency using 2D LiDAR.

Figure 13. The local hybrid maps obtained during exploration, corresponding to Figure 12b. And the
definition of colours can be found in Figures 4 and 6.

5. Conclusions

This paper proposes a 2D LiDAR-assisted, RGB-D-dominated, autonomous explo-
ration algorithm for UAVs. The algorithm utilizes 2D LiDAR to quickly acquire contour
information from the environment and generates a hybrid map that characterizes the
exploration value of the surrounding environment using multi-sensor data. Based on the
hybrid map, small and isolated frontier clusters that can lead to repeated movements are
quickly detected, and their access in prioritized. At the same time, the environmental
information gain (EIG) strategy allows the UAV to balance the acquisition of additional
environmental information gain with flight safety while traveling to the next target. In our
simulations, the proposed LAEA, outperforms two state-of-the-art exploration algorithms
in both exploration time and flight distance. Validation on a robotic platform verifies the
practicability of LAEA in two different real-world scenarios.
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