
Citation: Lin, H.-Y.; Chang, K.-L.;

Huang, H.-Y. Development of

Unmanned Aerial Vehicle Navigation

and Warehouse Inventory System

Based on Reinforcement Learning.

Drones 2024, 8, 220. https://doi.org/

10.3390/drones8060220

Academic Editor: Bo Li

Received: 19 April 2024

Revised: 21 May 2024

Accepted: 27 May 2024

Published: 28 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Development of Unmanned Aerial Vehicle Navigation and
Warehouse Inventory System Based on Reinforcement Learning
Huei-Yung Lin 1,* , Kai-Lun Chang 2 and Hsin-Ying Huang 2

1 Department of Computer Science and Information Engineering, National Taipei University of Technology,
Taipei 106, Taiwan

2 Department of Electrical Engineering, National Chung Cheng University, Chiayi 621, Taiwan
* Correspondence: lin@ntut.edu.tw

Abstract: In this paper, we present the exploration of indoor positioning technologies for UAVs, as
well as navigation techniques for path planning and obstacle avoidance. The objective was to perform
warehouse inventory tasks, using a drone to search for barcodes or markers to identify objects. For the
indoor positioning techniques, we employed visual-inertial odometry (VIO), ultra-wideband (UWB),
AprilTag fiducial markers, and simultaneous localization and mapping (SLAM). These algorithms
included global positioning, local positioning, and pre-mapping positioning, comparing the merits
and drawbacks of various techniques and trajectories. For UAV navigation, we combined the SLAM-
based RTAB-map indoor mapping and navigation path planning of the ROS for indoor environments.
This system enabled precise drone positioning indoors and utilized global and local path planners to
generate flight paths that avoided dynamic, static, unknown, and known obstacles, demonstrating
high practicality and feasibility. To achieve warehouse inventory inspection, a reinforcement learning
approach was proposed, recognizing markers by adjusting the UAV’s viewpoint. We addressed
several of the main problems in inventory management, including efficiently planning of paths, while
ensuring a certain detection rate. Two reinforcement learning techniques, AC (actor–critic) and PPO
(proximal policy optimization), were implemented based on AprilTag identification. Testing was
performed in both simulated and real-world environments, and the effectiveness of the proposed
method was validated.

Keywords: UAV; indoor positioning; path planning; warehouse inventory inspection; reinforcement
learning

1. Introduction

In recent years, drone-related technologies have attracted widespread attention across
various fields. Drones are known for their light weight, flexibility, low cost, and effi-
ciency, which allows them to perform diverse tasks, without the requirement of hu-
man intervention. The rapid development and potential applications of these technolo-
gies have received close interest from academia and industry alike. The various ap-
plications of drones include disaster monitoring, environmental surveillance, agricul-
ture, logistics, security monitoring, etc. With the continuous development of drone tech-
nologies, they have immense potential for applications in many fields. However, it is
worth noting that most current applications are outdoor-based, predominantly due to
the limited availability of indoor positioning techniques. As demand for indoor usage
of drones increases, precise positioning and stable flight control become crucial for pro-
moting indoor drone applications. Thus, in this paper, we study and explore indoor
drone positioning and path planning technologies, to enhance flight accuracy and con-
trol capabilities in indoor environments. This enables more diverse indoor drone appli-
cations, to meet demands across different domains. Moreover, an inventory manage-
ment system based on the development of UAVs with reinforcement learning techniques

Drones 2024, 8, 220. https://doi.org/10.3390/drones8060220 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8060220
https://doi.org/10.3390/drones8060220
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-6476-6625
https://doi.org/10.3390/drones8060220
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8060220?type=check_update&version=2


Drones 2024, 8, 220 2 of 26

was developed (Codes are available at https://github.com/kellen080/Navigation and
https://github.com/kellen080/Indoor_Positioning (accessed on 26 May 2024)).

Indoor positioning refers to technology that achieves precise location tracking of a
mobile device (such as a drone or a smartphone) or people within buildings or other
enclosed spaces. Compared to outdoor positioning technology (such as GNSS), indoor
positioning techniques face greater challenges, due to complex indoor environments, in-
cluding signal interference and the inability to rely on satellite-based positioning. Typically,
a combination of techniques such as visual features, inertial measurement units, and si-
multaneous localization and mapping (SLAM) are used to achieve redundant and accurate
indoor positioning. Current popular approaches include the use of wireless signals, fiducial
markers, inertial measurement units, and simultaneous localization and mapping from
environmental perception.

Path planning is generally used in robotics and autonomous navigation, to derive a
path from a starting point to a destination, while considering the obstacles and possible
constraints in the environment. The goal is to determine the optimal trajectory or path that is
safe, efficient, and satisfies specific conditions. Path planning is applied in various domains,
such as robotics, autonomous navigation, and unmanned aerial vehicles (drones) [1].

Reinforcement learning has been investigated for decades, and it has proven its
effectiveness in playing many video games [2]. Since its operations and strategy are similar
to the applications of UAVs, it has gradually become adopted for flight control, to perform
specific tasks. For the use in warehouse inventory, it is possible to let the UAVs learn
how to move with a certain viewing angle and recognize items of interested [3]. With
the deployment of UAVs, a warehouse inventory system can then access dangerous or
hard-to-reach places. On the other hand, reinforcement learning is a method based on the
interaction with environments to obtain feedback. The advantage of this machine learning
approach is that the input data do not need to be labeled. Despite the requirement of a
long training time, it has been successfully used in many real-world scenarios. Among
reinforcement learning strategies, this paper adopts AC (actor–critic) [4] and PPO (proximal
policy optimization) [5] to construct environmental conditions, action generation, scoring
methods, etc. for training. In our application, the design of the environmental conditions
involves feature extraction of images. Based on the current situation, two types of action
are generated: moving, or changing the camera angle. In addition to performing the basic
task of tag identification, scoring also includes other auxiliary methods, such as considering
the operation cost.

2. Related Works
2.1. Indoor Localization and Path Planning

Commonly adopted techniques utilizing wireless signals to measure the position and
orientation of an object in indoor environments include UWB (ultra-wideband) [6], BLE
(Bluetooth low energy) [7], and Wi-Fi [8]. Usually, these approaches measure signal-based
parameters such as the time of arrival (TOA), time difference of arrival (TDOA), two-way
ranging (TWR), or angle of arrival (AOA). Based on the principles of triangulation, signal
propagation models, or fingerprint data, the location of objects can be calculated. The
advantages of these methods include low power consumption, cost-effectiveness, and easy
deployment and maintenance. They have effectively addressed issues related to multi-path
effects [9] and signal penetration through obstacles, providing high accuracy and reliability
in positioning. These technologies find applications in various fields, including navigation,
tracking, security, and smart homes.

Fiducial markers are small and distinctive patterns or symbols used as reference points
in computer vision systems. They are placed in an environment to assist the system in
determining the position and orientation of objects when the system has difficulty solely
relying on the appearance of the objects for localization. Fiducial markers find numerous
applications in fields such as robotics, augmented reality, and computer vision, including
indoor positioning, robot navigation, and architectural measurements, etc. In general,

https://github.com/kellen080/Navigation
https://github.com/kellen080/Indoor_Positioning


Drones 2024, 8, 220 3 of 26

fiducial markers possess characteristics such as fixed positions, prominent features, and
uniqueness. Fiducial markers can present various forms, including 2D or 3D patterns,
or simple colored dots. Among them, the most common types of fiducial markers are
2D barcode-like patterns, such as AprilTag [10], ArUco [11], and ARToolKit [12]. The
markers can be scanned or recognized by sensors like cameras and radars, and their known
geometric structures and sizes are used to determine their positions and orientations within
the scene.

Visual-inertial odometry (VIO) is a positioning technology utilizing both cameras
and inertial measurement units (IMU). A camera provides a series of image data, while
the IMU measures the acceleration and angular velocity of the device. The key to VIO
techniques lies in fusing the data from camera and IMU to eliminate the drift issues com-
monly encountered when using visual odometry (VO) alone. Specifically, VIO fuses the
visual information from a camera with the acceleration and gyroscope data from an IMU
to obtain a more accurate camera trajectory, enabling precise and robust tracking of the
device’s motion over time. VIO technology offers advantages such as high accuracy and
real-time performance, allowing it to operate in real time in various environments. Conse-
quently, VIO has widespread applications in many fields, such as computer vision, robotics,
and autonomous navigation. Commonly adopted VIO techniques include OKVIS [13],
MSCKF [14], and ROVIO [15].

Simultaneous localization and mapping (SLAM) is a computational technique used
in robotics and computer vision. The objective is to construct an environment map and
simultaneously estimate a robot’s or sensor’s position in the unknown environment using
information sensed by the moving robot or sensors (such as stereo cameras, radars, and
LiDARs). In an unknown space, SLAM techniques enable a robot to detect its own pose in
real time, while simultaneously creating a detailed map during the process. Over the years,
SLAM has garnered widespread attention and research. Some popular SLAM techniques
include RTAB-Map [16], VINS-Mono [17], and ORB-SLAM2 [18]. Implementing a SLAM
system is complex and requires consideration of various factors, such as sensor accuracy
and environmental uncertainty. Nevertheless, SLAM is crucial for achieving autonomous
navigation in mobile robotics and has significant applications in unmanned aerial vehicles
(drones), autonomous vehicles, and robotic systems [19].

Global path planning typically involves generating maps or representations of the
environment. It utilizes search algorithms to find an optimal path in a robot’s configuration
space, while avoiding obstacles and adhering to environmental constraints as much as
possible. Real-time environmental influences and the robot’s actual motion state are not
taken into account in general. Global path planning is an offline process. It requires
path planning and map building before the robot is set in motion. This allows the robot to
quickly obtain path planning results during task execution, to avoid encountering unknown
obstacles that may lead to mission failure. In global path planning, the structure and layout
of the environment are typically considered as a whole, including the starting and ending
positions, map information, constraint conditions, cost functions, and other information. A
few commonly used approaches include graph-based methods [20], genetic-algorithm-based
methods [21], and deep-learning-based methods [22]. The output is usually a high-level path
or trajectory, followed by a low-level controller or motion planner to execute the planned path.

Local path planning refers to the process of calculating the next action the robot will
take based on its current position, orientation, and information about the surrounding
environment during its movement. It is used to determine the optimal path or trajectory for
a moving object in a small region of the environment, usually around the object’s current
position, to enable a robot to reach the target point, while ensuring flight safety. In practice,
global path planning and local path planning are often combined. Global path planning
determines the general direction for the movement, while local path planning continuously
adjusts the robot’s motion trajectory in real time during its movement. Some well-known
local path planning techniques include the dynamic window approach (DWA) [23], artificial
potential field [24], and methods based on virtual constraints [25].



Drones 2024, 8, 220 4 of 26

2.2. Warehouse Inventory Inspection

Currently, the logistics industry is extremely developed, and a number of solutions
have been investigated for warehouse management. Among them, warehouse inventory is
considered a specifically important part of warehouse management. The main task is to
confirm the correct quantity and types of cargoes. To ensure the correctness and traceability
of quantity, it is necessary to have a timely update of the records of cargo. In conventional
methods, stocktaking is generally carried out manually, which is a time-consuming, labor-
intensive, and error-prone task. Nevertheless, automated solutions have been introduced
for warehousing systems in the process of industrial automation, to improve efficiency and
reduce costs. Techniques for reducing inventory time include the use of new scanning and
sensing technologies, and robot guidance planning, etc.

In [26], Kalinov et al. presented an autonomous heterogeneous robot system for
warehouse inventory [26]. The tasks of UGRs (unmanned ground robot) and UAVs include
global positioning, navigation, and barcode scanning. In addition to regular cameras,
an UAV is equipped with a laser scanner for barcode scanning. It flies above the UGR
for power supply and data transmission. For real-time barcode detection and reading,
convolutional neural networks (CNNs) are commonly adopted [27]. Once the barcode
location with respect to the UAV is known, it can be used to generate a barcode map and
optimize the path for inventory investigation [28]. In most applications, the motion path of
the UAV can be derived using the traveling salesman problem, and unconfirmed barcodes
can be used for future path planning [29]. Once new barcodes have been detected, they will
be verified and included to the database, followed by positional updating and trajectory
optimization of the UAV.

Cristiani et al. presented an inventory management system using mini-drones [30].
Their proposed architecture consists of four parts: an intelligent warehouse, one or more
drones, a ground control station (GCS), and a ground charging station (GRS). The intelligent
warehouse contained shelves, aisles, and cargo with unique labels. A ground control station
was used to control the flight path, as well as transmit the inventory data over WiFi. When
performing the scanning task, the UAV moves vertically in a zigzag shape to detect the
labels on all shelf units. Yoon et al. presented a technique to scan products and estimate
the 3D position of a drone [31]. Barcodes were detected with a trained segmentation
model. They reported good success rates on localization of QR codes. More recently,
Rhiat et al. presented the idea of a “smart shelf”, to optimize inventory management [32].
They employed a mobile robot with gripper for navigation and manipulation. iBeacon and
RFID were used to identify the items on the shelf.

The application scenario of the proposed inventory management system contained
storage boxes placed on a double-layer shelf. Unlike most developments for warehouse
inventory [33,34], our target items are placed randomly with AprilTags [35] attached for
detection and recognition. Due to the motion path of the UAV, the AprilTags might be
blocked from certain camera viewpoints. In this paper, we propose a path planning method
based on partially observable markers, with identification via orientation estimation of a
camera. The ROIs (regions of interest) are first identified using an object detection network,
with consideration of various factors including occlusion, image blur, visible size, and 3D
pose. In addition, K-means clustering is adopted to group the feature points and predict
the location of the AprilTag. With an implementation based on AprilTag 2 [36], we are able
to perform detection at a high frame rate for far range markers.

3. Localization and Navigation

The proposed method includes two components: indoor mapping and localization,
and path planning with obstacle avoidance. For indoor mapping and localization, various
global and local indoor positioning techniques, including UWB, QVIO, AprilTag, and
RTAB-Map SLAM, are used for multi-sensor fusion. The system architecture is shown in
Figure 1, with the indoor positioning module on the left. We also demonstrated indoor
localization trajectories, and compared the performance of each sensor. For path planning



Drones 2024, 8, 220 5 of 26

and obstacle avoidance, the ROS (robot operating system) Navigation Stack’s global path
planner is utilized to find the optimal path, while the local path planner is used to avoid
unknown obstacles, as illustrated in the center of Figure 1. The integration of RTAB-
Map [16], a visual feature-based indoor localization technique, was carried out, reducing
costs by using a low-cost camera. Finally, this was integrated with MAVROS, PX4 Autopilot,
and QGroundControl, enabling the unmanned aerial vehicle (UAV) to fly autonomously.
As shown on the right of Figure 1, the system achieves indoor mapping, localization, path
planning, and obstacle avoidance capabilities.

Indoor Positioning

UWB

QVIO

AprilTag

RTAB-Map
Mapping Mode

RTAB-Map
Localization Mode

Navigation

ROS
Navigation Stack

Experiment

Virtual
Environment

Real-World
Environment

Navigation

Navigation

Indoor
Positioning

DWA
Local Planner

Dijkstra
Global Planner

RTAB-Map
Localization Mode

Figure 1. The system architecture of our localization and navigation technique for UAVs. It consists
of two components, indoor mapping and localization, and path planning with obstacle avoidance. In
indoor mapping and localization, various global and local indoor positioning techniques, including
UWB, QVIO, AprilTag, and RTAB-Map SLAM, are used for multi-sensor fusion.

3.1. Indoor Mapping and Positioning

The experiments of this work were conducted in a laboratory environment with
dimensions of 8 m in length, 7 m in width, and 2.5 m in height. The environment setup
included using items with rich visual features, obstacles used for drone obstacle avoidance
testing, placing UWB anchors around the perimeter of the environment, and having
AprilTag positioning markers mounted on the ceiling. These settings were used to test
and validate the indoor positioning and navigation algorithms. For indoor mapping and
localization, many positioning methods were compared, as depicted in Figure 2. After
the environment had been set up, the different positioning techniques were activated, and
the pose obtained from each sensor was converted into a path. Finally, the paths were
displayed on RViz for visualization.

We used the mvVISLAM (machine vision Visual-Inertial SLAM) algorithm, QVIO (Qual-
comm VIO), provided by Qualcomm machine vision SDK (mvSDK) as our local positioning
method. QVIO employs an extended Kalman filter (EKF) to fuse data from the IMU and cam-
era tracking, which results in 6 DOF pose estimation with real-world coordinates. Utilizing a
fish-eye tracking camera mounted at a 45-degree downward angle on the front of the drone,
visual feature extraction was performed on the captured images. In the experiments, it was
observed that even though the images could include the drone’s landing gear, the stability of
the QVIO (visual-inertial odometry) system was not significantly affected, as long as there
were sufficient feature points in the images. On the contrary, when lacking feature points,
QVIO became more susceptible to losing odometry, due to the momentary acceleration of
the drone.



Drones 2024, 8, 220 6 of 26

UWB

QVIO

AprilTag

RTAB-Map
Mapping Mode

RTAB-Map
Localization Mode

Pose to Path ROS
Visualization Tool

Figure 2. System flowchart of the proposed technique for indoor mapping and localization. After
setting up the environment, the different positioning techniques were activated, and the pose ob-
tained from each sensor was converted into a path. The paths were finally shown with the ROS
visualization tool.

The principles of UWB global positioning technology are similar as for a GPS satellite.
By deploying a number of known-coordinate positioning anchor points (UWB Anchors)
indoors and placing a positioning tag (UWB Tag) on the object to be located, the tag
continuously emits pulses at a certain frequency that are used to measure the distance to
each anchor. Finally, through an algorithm, the current position of the tag is determined.

In this work, we used AprilTag fiducial markers of the Tag36h11 category for precise
global indoor positioning. These AprilTags were placed on the indoor ceiling. ROS
wrapper:apriltag_ros provided the AprilTag fiducial marker detection algorithm, allowing
us to detect the marker ID and its current pose with respective to the camera. It was then
published on the ROS platform for further use. We also implemented functions for tag
bundle detection and tag bundle calibration, enabling the detection of multiple tags in a
single or consecutive images.

rtabmap_ros is a ROS wrapper for RTAB-Map, which is a RGB-D SLAM method based
on real-time constraints and loop closure detection. It is capable of generating 3D point
cloud maps and creating 2D occupancy grid maps for navigation. RTAB-Map can be used
to build a map of the environment by fusing data from RGB-D sensors, and it employs loop
closure detection to optimize the map and improve localization accuracy.

3.2. Path Planning with Obstacle Avoidance

For indoor path planning and obstacle avoidance for UAVs, we first constructed 2D
occupancy grid maps and 3D point cloud maps of the indoor environment using RTAB-
Map before the flight. During the flight, the UAV localized itself in the absence of GPS
signals indoors by performing visual odometry based on the current visual input and
simultaneously matching this with the 3D point cloud map. This process involved loop
closure detection, which helped to eliminate the errors accumulated in the visual odometry
over time, as shown on the left of Figure 3.

For path planning and obstacle avoidance for UAVs, we used ROS Navigation Stack
as a framework for the overall navigation system. The global path planner derives an
optimal path from the current position to the specified destination, by taking into account
the known obstacles shown in the 2D occupancy grid map. This helps avoid dead ends
that might be local optimal solutions. In addition, the local path planner, with the use of a
depth camera, enables the UAV to avoid unknown dynamic and static obstacles that are



Drones 2024, 8, 220 7 of 26

not marked on the 2D occupancy grid map while flying along the path previously obtained
from the global path planner.

Set Goal

Global
Path Planning

Local
Path Planning

Yes

No

Encounter
Unknown Obstacle?

Yes

No

Next Goal?

SLAM
Localization Mode

Calibration
Positioning

Take Off

Yes

NoReach Goal?

UAV Control

2D Occupancy
Grid Map

No

YesLoop-Closure
Detected?

RGBD Camera

3D Point Cloud
Map

Visual Odometry
Positioning

Landing

Figure 3. The flowchart of our proposed navigation system. It also consists of loop closure detection,
which helps to eliminate the errors accumulated in visual odometry over time.

Navigation stack is conceptually straightforward. It takes current pose and external
environmental information from odometry and sensors, respectively, and outputs velocity
commands to drive the robot. However, it is not possible to apply Navigation Stack to a
robot without some prerequisites. Before using Navigation Stack, the robot must be set up
on the ROS platform, with a correctly configured tf transform tree, and to publish sensor
data using the appropriate ROS message types. Moreover, Navigation Stack requires that the
configuration is tailored to the shape and dynamics of the robot to fully leverage its capabilities.

In global_planner, we utilized the algorithm based on navfn (navigation function)
developed in [37]. navfn provides a fast interpolation navigation function that can be used
to plan global paths for a robot. The grid-based global path planner assumes a robot
operating on a 2D occupancy grid map and uses the Dijkstra algorithm [38] to find the
lowest-cost global path from the starting point to the destination within the grid. On the
other hand, for local_planner, we employed the algorithm based on dwa_local_planner,
developed in [23]. It provides an implementation of the dynamic window approach
(DWA) technique for local path planning in robot navigation. Given a 2D cost map and a
global path to follow, the local planner generates velocity and angular velocity commands
and sends them to the robot. The DWA algorithm takes the robot’s dynamics and the
surrounding environment into account, to dynamically adjust the robot’s velocity and
avoid obstacles when following the global path.



Drones 2024, 8, 220 8 of 26

4. Warehouse Inventory Inspection

The system architecture of the proposed inventory management technique is illus-
trated in Figure 4. First, the UAV acquires images from the environment at discrete sampling
points, with various camera positions and orientations. We collected images of both virtual
and real-scene environments as the inputs for training and testing. The virtual environment
was built with shelves and aisles for UAV navigation, where all sampling angles were
captured by a simulated drone. The camera was mounted on the drone, which flew at a
fixed height (4.5 m) and recorded images at a downward angle of 35°. In the real environ-
ment, images were taken from fixed positions within a area, using a camera mounted on a
mobile platform, with no downward perspective. The testing process was similar to the
training process, with the distinction that all parameters were fixed, and each step’s images
were saved.

UAV

Warehouse Inventory
Img State

Next StateNow State
RL Train/Test

Img State

ActionImg 

Reward

Table Of Result

10 Times Testing

Figure 4. The architecture of the proposed warehouse inventory management system. The images
acquired in the setup environment were used as inputs for training and testing. The data collection
was divided into virtual and real scene cases. In the virtual environment, a simulated drone acquired
images from various sampling angles of the shelves. In the real environment, images were taken from
fixed points within the setup area using a camera mounted on a mobile platform. The testing process
was identical to training, with the difference being that all parameters were fixed, and each step’s
images were saved. Testing was conducted ten times, and the results are summarized in Table 4.

4.1. Proposed Reinforcement Learning Framework

Reinforcement learning is a learning method based on interacting with the environment
to receive feedback. One advantage of this type of machine learning is that the input data do
not need to be labeled, but it typically requires a longer training time. The used algorithms
can generally be divided into two types: on-policy, and off-policy. In on-policy methods,
the actor interacts with the environment and performs learning and updates using the same
policy throughout the process. Examples include A3C [39] and DQN [40]. Off-policy methods
have separate policies for interacting with the environment and learning. PPO [5] is an
example of an off-policy method. In this work, we used both frameworsk to construct our
own environmental conditions, action generation, and scoring methods for training and
testing. The environmental conditions were designed for feature extraction from images, and



Drones 2024, 8, 220 9 of 26

the actions were generated based on the current situation, involving movement or changes in
camera viewpoints.

AC (actor–critic) is an on-policy method, and its basic framework is shown in Figure 5a.
The agent observes the current environment and obtains a set of current information
(observation). Then, the agent generates an action to modify the environment and produce
the next set of states (next state). At the same time, the environment provides feedback
(reward) to the agent based on the actions given by the agent for the next set of states. This
feedback is then returned to the agent as the basis for adjusting internal values. The internal
structure of the actor is shown in Figure 5b. After the current state input, it is divided into
two parts for processing. First, the current state is processed through the policy network, to
output a probability distribution for action selection. The current state is then processed
through the value network to output an evaluation value (critic). Here, the evaluation value
represents the expected cumulative reward in this state. It takes the action provided by the
agent as input and outputs the next state. The feedback (reward) for choosing this action
depends on the current state and whether the data collection for this round has completed
after internal processing.

Agent

Environment

Action
at

Observation
ot

State → Next State
St→St+1

Reward
rt

(a) Schematic diagram of AC framework.

Action choice
distribution

Value

Policy

State

Critic

(b) Internal structure of AC framework.

Figure 5. A schematic diagram and internal structure of AC (actor–critic) framework. AC (actor-critic)
is an on-policy method, and the basic framework is shown in (a). The internal structure of the actor is
illustrated in (b).

Figure 6 illustrates the framework of PPO (proximal policy optimization). It is divided
into two parts: the actor (top) and critic (bottom). In the actor, there are two policies with
the same structure but used for different purposes. One is responsible for interacting with
the environment, and the other is responsible for learning and updating. They are separated
because one parameter is trained based on the data collected by another parameter. This
allows the reuse of the collected data to update the parameter multiple times, thereby
improving the training efficiency. PPO does not calculate the KL divergence in its update
but instead restricts its range. In linking action selection with the learning strategy, PPO
uses importance sampling to transform between the two distributions. This method enables
the data collected after executing a set of action selections to be used for multiple training
sessions. In the internal structure of the critic, the loss function is the difference between
the true and estimated values. The true value is obtained with the next state and feedback
as input, while the estimated value is obtained with the current state as input.



Drones 2024, 8, 220 10 of 26

policy_action

State

policy_learn

Actor_loss

dist_action
pi_action(at,st)

dist_learn
pi_learn(at,st)

update formula:

reward

Critic_netState

Critic_net

Critic_loss

Q_estimated value

Q_true value

Q_true value - Q_estimated value
State_next

Figure 6. The framework for PPO (proximal policy optimization). It consists of two parts: an actor
(top) and critic (bottom). There are two policies with the same structure but used for different
purposes, one for interacting with the environment and the other for learning and updating.

Figure 7 depicts a system flowchart of our reinforcement learning training framework.
During the training stage, a set of random coordinates, angles, and images are used as input
of the initial state. If the amount of data is sufficient, learning and parameter updating
will be carried out; otherwise, the data collection process continues. The images are first
standardized in size, followed by feature extraction using ResNet34 [41]. Using the features
to learn the policy and critic, a predicted evaluation value and the probability distribution
of actions are obtained, respectively. We check the action range and output the next state
and reward value according to the action selection If the task is complete, network training
is performed based on the structure of the different methods; otherwise, more data are
collected continuously. Finally, after completing all rounds, the training results are observed
according to the rewards accumulated in different rounds.

Figure 7. System flowchart of our reinforcement learning training framework. A set of random
coordinates, angles, and images are taken as initial input. The system checks if sufficient data have
been collected. If not, data collection continues. If enough data are collected, the learning process
begins, and parameters are updated upon completion. Before feature extraction in the input training



Drones 2024, 8, 220 11 of 26

framework, images are normalized in size. The feature extraction network, ResNet34, is used, and
its output is divided into two parts: policy and critic. The latter predicts an evaluation value, while
the former outputs a probability distribution of actions. Action range checking is performed next,
followed by selection of the next state and reward output according to the action selection rules. The
system then checks if the task is complete, i.e., if all targets in the scene have been found. If not, a
series of continuous state collections continues. Finally, the training results are observed based on the
accumulated rewards from each round.

Figure 8 illustrates a flowchart of our reinforcement learning architecture. After
training is completed, the trained parameters are stored and imported, using test data as
input to test the same structure. Since the input of reinforcement learning does not have
label characteristics, there is no standard basis. However, according to our objective, the
evaluation method was set here as the detection rate of the quantity of cargo and the time
(number of steps) used.

RL training

Training
dataset

x, y, angle, Image

RL testing

parameter

Tag cover rate Finish time

Testing dataset

x, y, angle, Image

Figure 8. The flowchart of our reinforcement learning architecture for testing. After training is
completed, the trained parameters are saved and imported for testing. The testing was conducted
using a test dataset as input and followed the same framework. Evaluation was based on the detection
rate of objects and the number of steps used.

4.2. Action Selection

As shown in Figure 9, an action requires a certain level of continuity, so the choice
of the next move contains ‘up’, ‘down’, ‘left’, ‘right’, ‘upper-right’, ‘upper-left’, ’down-
right’, and ‘down-left’ options, with 1 m displacement from the current position. Note that
the UAV normally flies at a constant height, and these actions are performed locally for
barcode inspection. For the actions for the change in camera orientation, we set the range
in the horizontal direction from −40° to 40°, with an interval of 10°. Moreover, to imitate
how humans conduct the inspection task, we included several additional mechanisms in
the action selection framework. First, the default action was set as move, until no new
identifiable AprilTag appeared in the images. The action was then adjusted to the change in
camera orientation. If no AprilTags were found in the newly acquired images, the actions
changed back to move.



Drones 2024, 8, 220 12 of 26

1

02

45

7 63

(a) The action movement in translation.

0

40-40
-20 20

(b) The action movement in rotation.

Figure 9. The action movement in translation ((a), in front view) and rotation ((b), in top view). The
choice of the next move included ‘up’, ‘down’, ‘left’, ‘right’, ‘upper-right’, ‘upper-left’, ’down-right’,
and ‘down-left’. The camera orientation ranged from −40° to 40°, with an interval of 10°.

In Table 1, we tabulate the relationships between the action direction and action
number. In terms of handling boundary conditions for action selection, a greater degree of
exploration is usually preferred. Thus, to increase the randomness of action selection, more
complex settings were implemented. As illustrated in Table 2, we assumed the field range
was n × n. If the UAV’s current position is on the boundary in the x-direction (say, x = n)
and the action of increasing x is selected, we first check if it is also located on the boundary
in the y-direction. If not, an action is randomly selected from 1, 2, 3, 5, and 7. However, if
the position is on the boundary in the y-direction (say y = n), then only actions 2, 3, or 7
can be selected. Nevertheless, the orientation changes are simpler compared to the moving
action. All selections are legitimate apart from the current angle.

Table 1. The relationships between action direction and action number. A greater degree of explo-
ration is usually preferred, to handle boundary conditions for action selection.

Action Number 0 1 2 3 4 5 6 7

Action Direction +x +y −x −y +x,+y −x,+y +x,−y −x,−y

Table 2. Handling the boundary condition for action selection. The field range was set as n × n for
movement.

State Unavailable Actions Available Actions

x = n 0, 4, 6 1, 2, 3, 5, 7

x = 0 2, 5, 7 0, 1, 3, 4, 6

y = n 1, 4, 5 0, 2, 3, 6, 7

y = 0 3, 6, 7 0, 1, 2, 4, 5

4.3. Reward Function

For our reinforcement learning framework, we designed various scoring methods.
Depending on our objectives and the impact on evaluating the situation of action selection
before and after, we assigned different weight distributions for each calculation. The
number for tag detection refers to the number of new AprilTags recognized by the AprilTag
detector in a single frame. If a tag appeared and was detected in the previous image, it
is not counted again in the current frame. That is, a tag can only be scored once for the



Drones 2024, 8, 220 13 of 26

reward. Since the tag detection rate is one of scoring criteria, it is desirable to see as many
recognizable AprilTags as possible in each frame. Thus, it carries the majority of the weight.

In the scoring criteria, completing the search was one of our goals. Therefore, extra
points were awarded if the search for all tags in the scene was completed. In addition,
even if the predetermined data collection amount was not reached after completing the
search, data collection was forcibly exited. Afterward, all action selection and interactions
with the environment stopped, and learning started. The environment was also reset,
initiating a new round of data collection. For the initialization and reset, an empty array
was set up to remember the labels seen before. This was cleared every time it was reset.
Additionally, a random set of coordinates and angles was generated, representing the initial
position. The content of the next state included new coordinates, angles, images, a flag
indicating completion status, selected actions, feedback scores after selecting actions, and a
flag indicating the selected rotation angle.

For the entire framework, in addition to aiming to recognizing tags, one of our objec-
tives was to perform the detection as quickly as possible. Thus, in the scoring method, both
the number of movements and rotations were taken into account as costs. We expected to
find new tags in each step. After each action, it was checked if new tags had appeared. If
there were new tags detected after an action, the action selection counter was reset to zero;
otherwise, it was incremented by 1. At this point, the score was deducted based on the
counter’s value using

Total_Deduction =
n

∑
k=1

k
step

(1)

where n is the value of the action selection counter, and step is a predefined total number
of steps that can be taken.

In order to identify areas of interest before the detector recognizes the targets, we
proposed a directional guidance mechanism. It combines YOLOv5 with the tag detection
results, followed by locating the centers using K-means clustering to guide the next action
selection. First, we obtained all potential tag locations using a pretrained YOLOv5 model.
This was compared with the detection derived from AprilTag detector. The overlap was
removed, since it was confirmed to be a tag, and the remaining results were regions of
interest for exploration. Prior to K-means clustering, an outlier removal process was carried
out to derive the representative cluster center. A score was calculated based on the cluster’s
center distance to the left-right of the frame. This was then used to direct the UAV’s change
in heading to the left or right for the next action. This also prevented getting stuck in a
certain place, since it always provided a direction where tags were most concentrated.

4.4. Network

In the first half of the network, images are used as input and processed through the
Resnet34 network for feature extraction. The output features are then used as input for
the subsequent policy network. This consists of fully connected layers. The basic network
configuration is as described previously, but there are slight modifications depending on
the method used.

4.4.1. PPO (Proximal Policy Optimization)

For PPO, there are two policy networks, both with the same architecture but different
functions [42,43]. The features obtained from Resnet34 are taken as input. It outputs a
standard deviation and a mean value, forming the probability distribution of actions. The
next action is generated from the distribution and then undergoes a final check in the
action selection. After a new action is obtained, it is fed back as a input to update the
probability distribution.

4.4.2. AC (Actor–Critic)

The features obtained by the previous Resnet34 network are used as input, and the
output features are also used as input for the policy network. However, unlike the PPO



Drones 2024, 8, 220 14 of 26

method, the output here is an action probability curve. The next action is randomly
generated from this distribution. Finally, the action selection is checked and the action
curve is updated. The critic structure for both methods is the same. This part is relatively
straightforward, taking the features obtained from the current state as input. The features
are then fed into a critic network composed of fully connected layers. The output of the
network provides an estimated value. We compare the estimate with the actual value
obtained using the features from the next state in the same critic network to calculate
the loss.

4.5. Dataset

Common methods for object detection data collection include sampling using planar
and spherical points. As shown Figure 10, let p represent the sampling point, r is the radius,
θ is the azimuth angle, and ϕ is the elevation angle. The point p can be obtained from
the representative variables. In this work, we considered the application for a warehouse
environment. Items in a warehouse are typically placed on shelves, so a planar represen-
tation was chosen for data collection. We also considered occlusion caused by irregularly
arranged goods, and the perspective in rotation was included. The UE4 (Unreal Engine 4)
with the Airsim plugin to simulate drones was adopted to create the environment for data
collection. The drone’s physics engine was turned off during image capture to ensure the
stability and generality of the training results.

Figure 10. The sampling points were derived from the viewpoints using polar coordinates (r, θ, ϕ), where
p is the sampling point, and r, θ, ϕ represent the radius, azimuth angle, and elevation angle, respectively.

The dataset was generated using original AprilTag36h11 images, divided into virtual
and real scenes. In the virtual scenes, sampling of consecutive images was conducted using
a spherical viewpoint setup in UE4. We included non-box objects in the scene, and the
AprilTags came in different sizes, with a total of 340 images. For the real scenes, video
recording was performed using an Intel Realsense D455, segmented into images to create
the dataset. The dataset included 16 randomly placed boxes with AprilTags and some
areas with square objects made of plastic pieces. There were 100 annotated images in the
dataset. For the validation set, images of shelf scenes from the virtual environment were
used, with 300 annotated images. The YOLO format was chosen with AprilTags annotated
by enclosing them in rectangular bounding boxes.

5. Experiments

The architecture of the proposed navigation system is shown in Figure 11. It contained
an UAV equipped with an Intel RealSense D435 depth camera and an UP-Board embedded
computer. In addition, there was a WLAN router facilitating information exchange between
the various devices, and a host computer that was responsible for running the navigation
and obstacle avoidance algorithms. We adopted an ModalAI M500 for our experiments.
This is a development quadcopter drone featuring the Qualcomm Snapdragon 821 pro-
cessor. The flight control system of the M500 is based on the PX4 Autopilot flight control
system, supporting autonomous flight, remote control, and mission automation. It also



Drones 2024, 8, 220 15 of 26

offers advanced flight modes, such as an Altitude Mode for altitude hold, Position Mode
for position hold, and Offboard Mode for programmable control.

Wireless Router Workstation

D435

UP-SquareM500

RGBD

RGBD

NavigationNavigation

RGBD

Wired

WirelessFlight Unit

Figure 11. The navigation system architecture. It contained an UAV equipped with an Intel RealSense
D435 depth camera and an UP-Board embedded computer.

To conduct navigation experiments, we configured the hardware by mounting an
Intel RealSense D435 depth camera and an UP-Squared embedded computer on the M500.
This setup enabled the drone to transmit real-time RGB-D images captured by the D435
camera back to the computer via a wireless local area network (WLAN) using UP-Squared.
Because of the inabilities of UP-Squared to successfully run certain navigation algorithms,
we also opted for a notebook computer equipped with an Intel i5-8250U 1.6 GHz CPU and
8 GB RAM. Moreover, a desktop computer with the hardware configuration of an Intel
i7-8700 3.2 GHz CPU, NVIDIA RTX 2070 8GB GPU, and 16 GB RAM was used to perform
computationally intensive tasks.

The architecture of our positioning system is illustrated in Figure 12. A mobile platform
was used to carry the UAV along with the UWB Tag and the D455 depth camera. This
setup allowed for multiple positioning methods, including AprilTag, QVIO, SLAM, and
UWB. The hardware configuration of the mobile platform consisted of various components.
At the front, there was a VOXL tracking camera placed at a 45-degree downward angle,
responsible for QVIO positioning. In addition, a D435 depth camera was mounted on the
front for RTAB-Map mapping and positioning. In the rear, there was a D455 camera used
for AprilTag detection.

UWB

UWB Tag
D435

UP-SquareM500

RGBD

Flight Unit

Laptop

AprilTag

D455

QVIO

RTAB-Map SLAM

Wired

Wireless

Figure 12. The positioning system architecture. A mobile platform was used to carry the UAV along
with the UWB Tag and the D455 depth camera.

5.1. Indoor Mapping and Positioning

After setting up four anchors, we used the control window to observe the relative
positions and coordinates of the anchors. The anchors were placed around the experimental
environment, forming a rectangular space within which the tag moved. This setup enabled
a global indoor positioning technique similar to GPS, allowing for accurate localization
within the designated area. Using the mobile platform with the UWB tag mounted on
it, indoor positioning experiments were conducted while keeping the height (Z-axis) at
a constant. In these experiments, it was observed that although the UWB positioning
exhibited larger variations in the Z-axis, the overall X and Y-axis horizontal positioning



Drones 2024, 8, 220 16 of 26

trajectories did not exhibit drift or divergence over time. Since UWB positioning does
not rely on visual cues, it remains accurate, even in environments lacking distinctive
features (e.g., white-walled rooms) or areas with low lighting conditions. Nevertheless, it
was important to be cautious of obstacles, as they could impact the accuracy of the UWB
positioning, depending on their distance and size relative to the anchors and the UWB tag.

Using the QVIO tracking camera positioned at a 45-degree downward angle on the front
of the UAV, an area-based indoor positioning technique was employed. Compared to global
positioning techniques, the advantage of the area-based positioning lies in achieving more
precise localization in a defined space, often resulting in smoother trajectories. However, if
global markers are not available, it is not easy to correct for accumulated positioning errors,
which might worsen over time due to small inaccuracies. Visual localization heavily relies on
extracting feature points from a rich texture scene, which is critical for overall positioning ro-
bustness. To address this issue, we placed numerous objects in the experimental environment
around the surroundings, to cover the plain white walls. This enhanced the availability of
visual features for QVIO and improved the stability of the visual-based localization.

For the virtual environments, we utilized Gazebo [44] to simulate the UAV, RGB-
D camera, and indoor space for mapping. This simulation was essential for validating
the algorithms before the implementation in real-world scenarios. The mapping process
included the generation of a 3D point cloud for visual feature loop closure detection, a 2D
occupancy grid for global path planning and obstacle avoidance, and a 2D map showing
the safe flying zone for the UAV, as illustrated in Figure 13. We conducted RTAB-map
localization in real environments with four scenarios. These scenarios included loop closure
detection, loop closure not detected, loop closure rejected, and odometry lost.

(a) Real environment. (b) 3D point cloud map.

(c) 2D occupancy grid map. (d) 2D inflation map.

Figure 13. RTAB-Map—Real environment mapping. The mapping process included the generation
of a 3D point cloud for visual feature loop closure detection, a 2D occupancy grid for global path
planning and obstacle avoidance, and a 2D map showing the safe flying zone for the UAV.

• Scenario 1: When the drone images detects a loop closure in the previously constructed
map, it corrects the accumulated drift error of the visual odometry, achieving global
indoor localization.

• Scenario 2: When the loop closure is undetected, the drone relies solely on visual
odometry and extracts visual features for local indoor localization.



Drones 2024, 8, 220 17 of 26

• Scenario 3: When loop closure is rejected, this indicates that loop closure is detected
but does not exceed the pre-set threshold for acceptance. This typically occurs when
the drone’s position is correct, but there is some slight deviation in the orientation.

• Scenario 4: When odometry is lost, this means the drone’s visual odometry is unable
to maintain continuity with the previous frame, due to significant and rapid image
motion in a short period. This often happens if the drone rotates in place, resulting in
an instantaneous angular velocity.

Utilizing the upward-facing D455 depth camera mounted on top of the mobile plat-
form, we carried out AprilTag detection on the captured RGB images. After a series of
tests, we found that continuously detecting AprilTags in the scene could prevent issues
such as incorrect path connections and non-smooth trajectories, as depicted in Figure 14.
The red arrows represent the odometry, and the green path illustrates the motion trajectory.
Moreover, when multiple AprilTags (two or more) were detected simultaneously within the
same image frame, this resulted in a more accurate and stable pose estimation compared to
detecting only a single AprilTag. This multi-detection capability enhanced the robustness
of the AprilTag-based localization process.

(a) Sparse detection. (b) Continuous detection.

Figure 14. Comparison of the paths created with or without continuous AprilTag detection.

Figure 15 shows the indoor localization trajectories obtained using the RTAB-Map
SLAM mapping mode and localization mode. The blue, green, and red paths represent
the trajectories obtained when the initial mapping mode, localization mode, and the
mapping mode were reactivated during the second localization mode. From the SLAM
trajectory comparison graph, we can observe that the latter two trajectories (from the
localization mode and the mapping mode, i.e., green and red paths) were very similar,
and the advantages of pre-constructed maps for the localization mode were not evident.
Therefore, the benefits of loop closure detection for correction become more prominent in
spacious environments where the visual odometry might diverge.

Figure 15. Indoor localization trajectories obtained from the RTAB-Map SLAM mapping and local-
ization modes. The blue, green, and red paths represent the trajectories obtained when the initial
mapping mode, localization mode, and the mapping mode were reactivated during the second
localization mode.



Drones 2024, 8, 220 18 of 26

Figure 16 illustrates the characteristics of the different localization techniques. The yellow,
cyan, red, and blue curves represent ground truth, UWB, QVIO, and AprilTag localization
trajectories, respectively. In addition, the magenta path corresponds to the SLAM (simultaneous
localization and mapping) mapping mode trajectory, and the green path represents the localiza-
tion mode trajectory. Despite some noticeable fluctuations in altitude, the UWB trajectory did
not diverge significantly due to severe shaking. The performance of QVIO remained in a state of
shrinkage and deviated from the true path, mainly because of the lack of ground features. The
AprilTag trajectory showed excellent stability and closely followed the ground truth trajectory.
The SLAM localization trajectory was very similar to the mapping trajectory.

Figure 16. The characteristics of the different localization techniques. The yellow, cyan, red, and blue
curves represent the ground truth, UWB, QVIO, and AprilTag localization trajectories, respectively.

5.2. Path Planning with Obstacle Avoidance

The feasibility of navigation and obstacle avoidance algorithms was tested in both
virtual and real environments. These consisted of the construction of 2D occupancy grid
maps with static known and unknown obstacles that were not present during mapping.
In addition, we tested the algorithm’s robustness with dynamic unknown obstacles, to
validate the performance. For virtual environments, Figure 17 illustrates the integration
of Gazebo and RViz. Gazebo showed the simulation environment, while the RViz display
window showed various elements, including the global path, local path, dynamic obstacles,
static obstacles, unknown obstacles, and known obstacles. The red arrow represents the
destination that the drone was heading towards in RViz, the green path is the global path
generated by the navfn global planner, and the yellow path is the local path generated
by the DWA (dynamic window approach) local planner. The light gray, dark gray, black,
and red grids represent the flyable area, unknown area, known obstacles, and obstacles
detected by the sensors, respectively. The light blue grid represents the map based on the
drone’s radius, and the dark blue grid represents the map with an additional safety margin
applied after testing.

For real environments, Figure 18 illustrates the integration of the RTAB-Map (Figure 18a)
and RViz (Figure 18b). This setup allowed testing the effectiveness of the global path
planner using static known obstacles. The performance of the local path planner was
evaluated using a puzzle made of foam blocks as static unknown obstacles. In addition, the
local path planner’s real-time responsiveness was tested by having a floor robot carrying
the foam blocks as dynamic unknown obstacles.



Drones 2024, 8, 220 19 of 26

(a) First trajectory.

(b) Second trajectory.

Figure 17. Path planning for dynamic obstacle avoidance—virtual environment. The red arrow
represents the destination that the drone was heading in towards in RViz, the green path is the global
path generated by the navfn global planner, and the yellow path is the local path generated by the
local planner.

(a) First trajectory. (b) Second trajectory.

Figure 18. Path planning for dynamic obstacle avoidance—real-world environment. The performance
of the local path planner was evaluated using a puzzle made of foam blocks as static unknown obstacles.

5.3. Inventory Inspection

The proposed inventory inspection techniques were tested in simulations and real-
scene environments. In the virtual environment, in UE4, boxes were created with four
different sizes, 1 × 1.33 × 1 m, 2 × 1.33 × 1 m, 2 × 1.33 × 1.5 m, and 2 × 1.33 × 1 m. The
size of AprilTags was 0.21 × 0.271 m2. As illustrated in Figure 19, the boxes were placed
on a shelf, and the drone equipped with a camera flew at a fixed height (4.5 m). The
camera’s viewing angle was downward at 35◦. We divided the aisle into three sampling
point tracks parallel to the shelf. Each track consisted of 35 positions, so there were a total of
105 sampling viewpoints. The boxes on the shelf were placed randomly, including different
orientations and occlusions. In this paper, we adopted the PPO and AC methods. Both of
them used Resnet34 for image feature extraction and the same dataset for training. Their
architectures were written in PyTorch. A summary of the reinforcement learning training
parameters is shown in Table 3. PPO ran on Ubuntu 18.04 with a Nvidia GeForce RTX
3070Ti, and AC ran on Ubuntu 20.04 with a Nvidia GeForce RTX 4090.

Table 3. Summary of reinforcement learning training parameters for PPO and AC, including maxi-
mum movement, episode update, learning rate, and ϵ.

Max Movement Episode Update Learning Rate ϵ

PPO 50 20 0.02 0.2

AC 100 24 0.0002 0.2



Drones 2024, 8, 220 20 of 26

camera direction

Figure 19. The boxes were placed on a shelf, and the drone equipped with a camera flew at a fixed
height. There were three tracks in front of the shelf, each track had 35 sampling points, and the plane
had a total of 35 × 3 sampling angle points.

After multiple rounds of parameter adjustment experiments, we set the maximum
number of movements to 50. Both the actor and critic had learning rates of 0.02, and the
update frequency for each episode was 20. We set ϵ to 0.2, and the optimizer adopted was
Adam, which used a stochastic gradient descent based on adaptive estimation of 1st-order
and 2nd-order moments. Figure 20a shows the training results of PPO, where episode
represents how many paths were taken, indicating the number of times the environment
was reset. In AC training, we set the maximum number of movements to 100. Both the
actor and critic had a learning rate of 0.0002, with gamma set to 0.9. The update frequency
for each episode was 24, and there was a learning rate decay of 0.7. The optimizer used
was Adam. Figure 20b illustrates the training results of AC, where episode represents how
many paths were taken, indicating the number of times the environment was reset.

R
ew

ar
d

Episode

Average Episode Reward

(a) PPO training result.

R
ew

ar
d

Episode

Average Episode Reward

(b) AC training result.

Figure 20. The reinforcement learning training results for PPO and AC.

The testing experiments were conducted using trained parameters to estimate the
number of steps taken and the detection rate of boxes. Figure 21 shows the testing results
using PPO in a virtual environment with a step set to 50. These include steps 1 to 4 and 47
to 50 in the left and right columns, respectively. The blue circles represent the tags newly
detected in the frame. Since the previously scanned tags were not marked again, their
scores were not included in the new calculation. The text in the upper-left corner shows the
cumulative number of tags, with a total of 25 found in this test. Ten simulation tests with
26 boxes were performed in the experiment. The number of detected boxes was either 24
or 25, and the average detection rate was reported as 94.62%. Figure 22 shows the testing
results using AC in a virtual scene with step set to 80. These include steps 1 to 4 and 77 to



Drones 2024, 8, 220 21 of 26

80 in left and right columns, respectively. The same as for PPO testing, there were 26 boxes
to identify in the scene. With 10 simulation tests, the number of detected boxes ranged
from 20 to 24, with an average detection rate of 90.38%.

(a) View 1. (b) View 2.

(c) View 3. (d) View 4.

Figure 21. The testing results using PPO in a virtual environment with step set to 50. The images on
the right are zoomed-in to better illustrate the blue circles.

(a) View 1. (b) View 2.

(c) View 3. (d) View 4.

Figure 22. The testing results using AC in a virtual scene with step set to 80.



Drones 2024, 8, 220 22 of 26

For the real scene experiments, 16 cardboard boxes were placed on a two-tier elevated
table. Each box had a unique AprilTag with ID numbers ranging from 0 to 15. Two different
box types were used: one was 25× 26× 35 cm (Type A), and the other was 18× 38× 40 cm
(Type B). There were a total of 10 Type A boxes and 6 Type B boxes. The dimensions of
the AprilTags were 6.7× 6.7 cm, and the length of the aisle in the scene was approximately
3.6 m. We utilized a Realsense D455 camera to capture images at a fixed height and adopted a
digital compass to record the orientation. Similar to the virtual environment, the images were
sampled every 30 cm. The aisle was divided into three parallel tracks, so there were a total of
3× 12 sampling locations. Together with nine viewpoints for each position, this resulted in
324 images for each experiment.

Figure 23 presents the real-world testing results of PPO training (steps 1–4 and 10–13
in the left and right columns, respectively). In this scene, there were a total of 16 boxes to
search for, and the maximum number of steps for each movement was set to 50. Table 4
(left) shows statistics from 10 real-world scenario tests, recording the final number of boxes
found, detection rates, and the total number of steps (time) used. It can be seen from the
table that in nearly every instance, all the boxes in the scene were found in approximately
20 steps or less. The average number of boxes detected was 15.9, with a detection rate of
99.38%. There were a total of 16 boxes to search for in the AC training, and the maximum
number of steps for each movement was also set to 50. Table 4 (right) provides statistics
from 10 real-world tests, recording the number of boxes found, detection rates, and the
total number of steps (time) used. It can be observed from the table that in nearly every
instance, all boxes in the scene were found. The average number of items detected was 15.7,
with a detection rate of 98.13%. However, in terms of the number of steps required, AC
needed twice as many steps to complete the task compared to PPO. The average number of
steps required was 36.4 steps.

(a) View 1. (b) View 2.

(c) View 3. (d) View 4.

Figure 23. The real-world testing results for PPO training. The steps are from 1 to 4 and 10 to 13 in
the left and right columns, respectively.



Drones 2024, 8, 220 23 of 26

Table 4. The statistics from 10 real-world scenario tests, recording the final number of boxes found,
detection rates, and the total number of steps (time) used. In the left table for the PPO real scene
experimental results, all the targets could be identified in 20 steps almost every time. The average
number of cargo detected was 15.9, the cargo detection rate was 99.38%, and the average number of
steps required was 16.2 steps. In the right table for the AC real scene experiment, the results show
that almost all the targets could be detected every time. The average amount of cargo detected was
15.7, the cargo detection rate was 98.13%, the average number of steps required was 36.4 steps. In
terms of the number of steps, the PPO method required about 2-times longer to complete the task.

Exp. No. Step Coverage Exp. No. Step Coverage
1 16 19 100% 1 14 50 87.5%
2 16 11 100% 2 16 40 100%
3 15 50 92.31% 3 16 19 100%
4 16 17 100% 4 16 37 100%
5 16 13 100% 5 16 44 100%
6 16 15 100% 6 15 50 93.75%
7 16 10 100% 7 16 31 100%
8 16 13 100% 8 16 28 100%
9 16 14 100% 9 16 19 100%
10 16 16 100% 10 16 38 100%

Average 15.9 16.2 99.38% Average 15.7 36.4 98.13%

6. Conclusions and Future Work

This research first integrated multiple indoor localization techniques, including visual-
inertial odometry, SLAM, UWB, and AprilTag. It compared their stability and accuracy. We
also utilized ROS Navigation Stack, combining PX4 Autopilot, MAVROS, and QGround-
Control for drone navigation, and validating both global path planning and local path
planning algorithms. Moreover, RTAB-Map was used for map construction to achieve
indoor localization with visual odometry. We replaced expensive radar with cost-effective
depth cameras, and conducted verification in virtual and real environments, considering
various application scenarios, such as known obstacles, unknown obstacles, and dynamic
unknown obstacles. Extensive testing and parameter tuning were conducted to validate the
algorithm’s robustness, stability, and real-time performance. For the warehouse manage-
ment system using an UAV, we implemented a reinforcement-learning-based path planning
technique using AprilTags. The training results in virtual environments were applied to
simulations, as well as real-world testing. In the simulated environment, the PPO method
achieved an average detection rate of 94.62%, while AC achieved an average detection
rate of 90.38%. In the real-world environment, PPO almost consistently found all targets
in about 20 steps, with an average detection rate of 99.38%. AC also found all boxes in
most cases, with an average detection rate of 98.13%. The results demonstrate that the
effectiveness of our approach was validated with real-world scenes. Differently from recent
publications more focused on the applications of warehouse management [45], this paper
presented an UAV navigation system for inventory inspection. The operation was per-
formed by an UAV alone, without the assistance of a ground vehicle, as in [46]. Compared
to the autonomous warehouse inventory application in [47], our approach integrated
reinforcement learning for barcode scanning and provided better inspection results.

The method used in this paper was based on ROS Navigation Stack, which currently
enables navigation in a two-dimensional space, where the altitude remains fixed. To fully
leverage an unmanned aerial vehicle’s capabilities for free movement in three-dimensional
space in future work, it is essential to extend navigation to the Z-axis. This extension
involves incorporating path planning for altitude adjustment and obstacle avoidance,
enabling the UAV to achieve free movement in three-dimensional space. In addition, this
study was conducted in a controlled environment, and practical real-world applications are
undoubtedly more complex and unpredictable. Therefore, enhancing robustness is a critical
issue. This includes optimizing both global and local path planning trajectories to make



Drones 2024, 8, 220 24 of 26

the unmanned aerial vehicle more efficient and energy-saving. Strengthening collision
avoidance mechanisms and protective strategies in both the UAV’s software and hardware
is vital to ensure the safety of personnel in the environment. Moreover, developing reliable
human recognition systems could further enhance safety measures for the UAV’s operation.

Author Contributions: Conceptualization, H.-Y.L.; Methodology, H.-Y.H.; Software, H.-Y.L., K.-L.C.
and H.-Y.H.; Validation, K.-L.C. and H.-Y.H.; Formal analysis, H.-Y.L., K.-L.C. and H.-Y.H.; Investiga-
tion, K.-L.C.; Resources, H.-Y.L.; Data curation, H.-Y.H.; Writing—original draft, H.-Y.L., K.-L.C. and
H.-Y.H.; Writing—review & editing, H.-Y.L.; Visualization, H.-Y.H.; Supervision, H.-Y.L.; Project ad-
ministration, H.-Y.L.; Funding acquisition, H.-Y.L. All authors have read and agreed to the published
version of the manuscript.

Funding: The support of this work in part by the Ministry of Science and Technology of Taiwan
under Grant MOST 106-2221-E-194-004 is gratefully acknowledged.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lin, H.Y.; Peng, X.Z. Autonomous quadrotor navigation with vision based obstacle avoidance and path planning. IEEE Access

2021, 9, 102450–102459. [CrossRef]
2. de Jesus, J.C.; Kich, V.A.; Kolling, A.H.; Grando, R.B.; Guerra, R.S.; Drews, P.L.J. Depth-CUPRL: Depth-Imaged Contrastive

Unsupervised Prioritized Representations in Reinforcement Learning for Mapless Navigation of Unmanned Aerial Vehicles. In
Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October
2022; pp. 10579–10586. [CrossRef]

3. Moura, A.; Antunes, J.; Dias, A.; Martins, A.; Almeida, J. Graph-SLAM Approach for Indoor UAV Localization in Warehouse Lo-
gistics Applications. In Proceedings of the 2021 IEEE International Conference on Autonomous Robot Systems and Competitions
(ICARSC), Santa Maria da Feira, Portugal, 28–29 April 2021; pp. 4–11. [CrossRef]

4. Awate, Y.P. Policy-Gradient Based Actor-Critic Algorithms. In Proceedings of the 2009 WRI Global Congress on Intelligent
Systems, Xiamen, China, 19–21 May 2009; Volume 3, pp. 505–509. [CrossRef]

5. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347.
6. Xia, J.; Li, S.; Wang, Y.; Jiang, B. Research on uwb/ble-based fusion indoor positioning algorithm and system application. In

Proceedings of the 2021 International Symposium on Computer Technology and Information Science (ISCTIS), Guilin, China,
4–6 June 2021; pp. 50–54.

7. Xia, J.; Wu, Y.; Du, X. Indoor Positioning Technology Based on the Fusion of UWB and BLE. In Proceedings of the Security,
Privacy, and Anonymity in Computation, Communication, and Storage: SpaCCS 2020 International Workshops, Nanjing, China,
18–20 December 2020; Springer: Cham, Switzerland, 2021; pp. 209–221.

8. Shang, S.; Wang, L. Overview of WiFi fingerprinting-based indoor positioning. IET Commun. 2022, 16, 725–733. [CrossRef]
9. Deng, W.; Li, J.; Tang, Y.; Zhang, X. Low-Complexity Joint Angle of Arrival and Time of Arrival Estimation of Multipath Signal in

UWB System. Sensors 2023, 23, 6363. [CrossRef] [PubMed]
10. Krogius, M.; Haggenmiller, A.; Olson, E. Flexible layouts for fiducial tags. In Proceedings of the 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019; pp. 1898–1903.
11. Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F.J.; Marín-Jiménez, M.J. Automatic generation and detection of highly

reliable fiducial markers under occlusion. Pattern Recognit. 2014, 47, 2280–2292. [CrossRef]
12. Kato, H.; Billinghurst, M. Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In

Proceedings of the 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR’99), San Francisco, CA, USA,
20–21 October 1999; pp. 85–94.

13. Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; Furgale, P. Keyframe-based visual–inertial odometry using nonlinear
optimization. Int. J. Robot. Res. 2015, 34, 314–334. [CrossRef]

14. Mourikis, A.I.; Roumeliotis, S.I. A multi-state constraint Kalman filter for vision-aided inertial navigation. In Proceedings of the
2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 3565–3572.

15. Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct EKF-based approach. In
Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany,
28 September–2 October 2015; pp. 298–304.

16. Labbé, M.; Michaud, F. RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for
large-scale and long-term online operation. J. Field Robot. 2019, 36, 416–446. [CrossRef]

17. Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. Robot. 2018,
34, 1004–1020. [CrossRef]

http://doi.org/10.1109/ACCESS.2021.3097945
http://dx.doi.org/10.1109/IROS47612.2022.9982161
http://dx.doi.org/10.1109/ICARSC52212.2021.9429791
http://dx.doi.org/10.1109/GCIS.2009.372
http://dx.doi.org/10.1049/cmu2.12386
http://dx.doi.org/10.3390/s23146363
http://www.ncbi.nlm.nih.gov/pubmed/37514657
http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://dx.doi.org/10.1177/0278364914554813
http://dx.doi.org/10.1002/rob.21831
http://dx.doi.org/10.1109/TRO.2018.2853729


Drones 2024, 8, 220 25 of 26

18. Mur-Artal, R.; Tardós, J.D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Trans. Robot.
2017, 33, 1255–1262. [CrossRef]

19. Lin, H.Y.; Tu, K.C.; Li, C.Y. Vaid: An aerial image dataset for vehicle detection and classification. IEEE Access 2020, 8,
212209–212219. [CrossRef]

20. Ghosh, S.K. Visibility Algorithms in the Plane; Cambridge University Press: Cambridge, UK, 2007.
21. Chaari, I.; Koubaa, A.; Bennaceur, H.; Ammar, A.; Alajlan, M.; Youssef, H. Design and performance analysis of global path

planning techniques for autonomous mobile robots in grid environments. Int. J. Adv. Robot. Syst. 2017, 14, 1729881416663663.
[CrossRef]

22. Tsardoulias, E.G.; Iliakopoulou, A.; Kargakos, A.; Petrou, L. A review of global path planning methods for occupancy grid maps
regardless of obstacle density. J. Intell. Robot. Syst. 2016, 84, 829–858. [CrossRef]

23. Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33.
[CrossRef]

24. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 1986, 5, 90–98. [CrossRef]
25. Kobayashi, M.; Motoi, N. Local path planning: Dynamic window approach with virtual manipulators considering dynamic

obstacles. IEEE Access 2022, 10, 17018–17029. [CrossRef]
26. Kalinov, I.; Petrovsky, A.; Ilin, V.; Pristanskiy, E.; Kurenkov, M.; Ramzhaev, V.; Idrisov, I.; Tsetserukou, D. WareVision: CNN

Barcode Detection-Based UAV Trajectory Optimization for Autonomous Warehouse Stocktaking. IEEE Robot. Autom. Lett. 2020,
5, 6647–6653. [CrossRef]

27. Yang, S.Y.; Jan, H.C.; Chen, C.Y.; Wang, M.S. CNN-Based QR Code Reading of Package for Unmanned Aerial Vehicle. Sensors
2023, 23, 4707. [CrossRef]

28. Babu, S.; Markose, S. IoT enabled Robots with QR Code based localization. In Proceedings of the 2018 International Conference
on Emerging Trends and Innovations In Engineering And Technological Research (ICETIETR), Ernakulam, India, 11–13 July 2018;
pp. 1–5.

29. Cho, H.; Kim, D.; Park, J.; Roh, K.; Hwang, W. 2D barcode detection using images for drone-assisted inventory management.
In Proceedings of the 2018 15th International Conference on Ubiquitous Robots (UR), Honolulu, HI, USA, 26–30 June 2018;
pp. 461–465.

30. Cristiani, D.; Bottonelli, F.; Trotta, A.; Di Felice, M. Inventory Management through Mini-Drones: Architecture and Proof-of-
Concept Implementation. In Proceedings of the 2020 IEEE 21st International Symposium on “A World of Wireless, Mobile and
Multimedia Networks” (WoWMoM), Cork, Ireland, 31 August–3 September 2020; pp. 317–322. [CrossRef]

31. Yoon, B.; Kim, H.; Youn, G.; Rhee, J. 3D position estimation of drone and object based on QR code segmentation model for
inventory management automation. In Proceedings of the 2021 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), New York, NY, USA, 25–27 October 2021; pp. 223–229.

32. Rhiat, A.; Chalal, L.; Saadane, A. A Smart Warehouse Using Robots and Drone to Optimize Inventory Management. In
Proceedings of the Future Technologies Conference (FTC), Virtual, 28–29 October 2021; Springer: Cham, Switzerland, 2022;
Volume 1, pp. 475–483.

33. Manjrekar, A.; Jha, D.S.; Jagtap, P.; Yadav, V. Warehouse inventory management with cycle counting using drones. In Proceedings
of the 4th International Conference on Advances in Science & Technology (ICAST2021), Bahir Dar, Ethiopia, 27–29 August 2021.

34. Vamsi, A.M.; Deepalakshmi, P.; Nagaraj, P.; Awasthi, A.; Raj, A. IOT based autonomous inventory management for warehouses.
In Proceedings of the EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing: BDCC,
Coimbatore, India, 13–15 December 2018; Springer: Cham, Switzerland, 2020; pp. 371–376.

35. Kalaitzakis, M.; Cain, B.; Carroll, S.; Ambrosi, A.; Whitehead, C.; Vitzilaios, N. Fiducial markers for pose estimation: Overview,
applications and experimental comparison of the artag, apriltag, aruco and stag markers. J. Intell. Robot. Syst. 2021, 101, 71.
[CrossRef]

36. Wang, J.; Olson, E. AprilTag 2: Efficient and robust fiducial detection. In Proceedings of the 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 4193–4198. [CrossRef]

37. Brock, O.; Khatib, O. High-speed navigation using the global dynamic window approach. In Proceedings of the 1999 IEEE
International Conference on Robotics and Automation (Cat. No. 99CH36288C), Detroit, MI, USA, 10–15 May 1999; Volume 1,
pp. 341–346.

38. Dijkstra, E.W. A note on two problems in connexion with graphs. In Edsger Wybe Dijkstra: His Life, Work, and Legacy; Association
for Computing Machinery: New York, NY, USA, 2022; pp. 287–290.

39. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for
deep reinforcement learning. In Proceedings of the International Conference on Machine Learning PMLR, New York, NY, USA,
20–22 June 2016; pp. 1928–1937.

40. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep
reinforcement learning. arXiv 2013, arXiv:1312.5602.

41. Koonce, B.; Koonce, B. ResNet 34. In Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset
Categorization; Apress: Berkeley, CA, USA, 2021; pp. 51–61.

http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1109/ACCESS.2020.3040290
http://dx.doi.org/10.1177/1729881416663663
http://dx.doi.org/10.1007/s10846-016-0362-z
http://dx.doi.org/10.1109/100.580977
http://dx.doi.org/10.1177/027836498600500106
http://dx.doi.org/10.1109/ACCESS.2022.3150036
http://dx.doi.org/10.1109/LRA.2020.3010733
http://dx.doi.org/10.3390/s23104707
http://dx.doi.org/10.1109/WoWMoM49955.2020.00060
http://dx.doi.org/10.1007/s10846-020-01307-9
http://dx.doi.org/10.1109/IROS.2016.7759617


Drones 2024, 8, 220 26 of 26

42. Shani, L.; Efroni, Y.; Mannor, S. Adaptive trust region policy optimization: Global convergence and faster rates for regularized
mdps. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 5668–5675.

43. Zhong, H.; Zhang, T. A theoretical analysis of optimistic proximal policy optimization in linear markov decision processes. Adv.
Neural Inf. Process. Syst. 2024, 36, 1–25.

44. Koenig, N.; Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator. In Proceedings of the
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), Sendai, Japan,
28 September–2 October 2004; Volume 3, pp. 2149–2154.

45. Malang, C.; Charoenkwan, P.; Wudhikarn, R. Implementation and critical factors of unmanned aerial vehicle (UAV) in warehouse
management: A systematic literature review. Drones 2023, 7, 80. [CrossRef]

46. Guérin, F.; Guinand, F.; Brethé, J.F.; Pelvillain, H. Towards an autonomous warehouse inventory scheme. In Proceedings of the
2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8.

47. Kwon, W.; Park, J.H.; Lee, M.; Her, J.; Kim, S.H.; Seo, J.W. Robust autonomous navigation of unmanned aerial vehicles (UAVs) for
warehouses’ inventory application. IEEE Robot. Autom. Lett. 2019, 5, 243–249. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/drones7020080
http://dx.doi.org/10.1109/LRA.2019.2955003

	Introduction
	Related Works
	Indoor Localization and Path Planning
	Warehouse Inventory Inspection

	Localization and Navigation
	Indoor Mapping and Positioning
	Path Planning with Obstacle Avoidance

	Warehouse Inventory Inspection
	Proposed Reinforcement Learning Framework
	Action Selection
	Reward Function
	Network
	PPO (Proximal Policy Optimization)
	AC (Actor–Critic)

	Dataset

	Experiments
	Indoor Mapping and Positioning
	Path Planning with Obstacle Avoidance
	Inventory Inspection

	Conclusions and Future Work
	References

