
Citation: Lou, J.; Ding, R.; Wu, W.

HHPSO: A Heuristic Hybrid Particle

Swarm Optimization Path Planner

for Quadcopters. Drones 2024, 8, 221.

https://doi.org/10.3390/

drones8060221

Academic Editors: Jihong Zhu, Heng

Shi, Zheng Chen and Minchi Kuang

Received: 19 April 2024

Revised: 22 May 2024

Accepted: 22 May 2024

Published: 28 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

HHPSO: A Heuristic Hybrid Particle Swarm Optimization Path
Planner for Quadcopters
Jiabin Lou, Rong Ding * and Wenjun Wu

State Key Laboratory of Software Development Environment, School of Artificial Intelligence, Beihang University
(BUAA), Beijing 100191, China; loujiabin@buaa.edu.cn (J.L.); wwj09315@buaa.edu.cn (W.W.)
* Correspondence: dingr@buaa.edu.cn

Abstract: Path planning for quadcopters has been proven to be one kind of NP-hard problem with
huge search space and tiny feasible solution range. Metaheuristic algorithms are widely used in
such types of problems for their flexibility and effectiveness. Nevertheless, most of them cannot
meet the needs in terms of efficiency and suffer from the limitations of premature convergence
and local minima. This paper proposes a novel algorithm named Heuristic Hybrid Particle Swarm
Optimization (HHPSO) to address the path planning problem. On the heuristic side, we use the
control points of cubic b-splines as variables instead of waypoints and establish some heuristic rules
during algorithm initialization to generate higher-quality particles. On the hybrid side, we introduce
an iteration-varying penalty term to shrink the search range gradually, a Cauchy mutation operator
to improve the exploration ability, and an injection operator to prevent population homogenization.
Numerical simulations, physical model-based simulations, and a real-world experiment demonstrate
the proposed algorithm’s superiority, effectiveness and robustness.

Keywords: particle swarm optimization; path planning; motion capture; unmanned aerial vehicles
(UAVs); aerial systems; applications

1. Introduction

Path planning is the cornerstone of unmanned aerial systems, enabling Unmanned
Aerial Vehicles (UAVs) to handle complex scenarios [1]. For any given scenario, there are
generally three elements: task, individual, and environment, which together comprise
the path planning optimization problem. The planned path should be optimal within
specific criteria associated with the task. For example, in time-sensitive tasks such as air
delivery and military transport, the core principle is to minimize the distance between the
drone access locations, thereby reducing the time and fuel cost [2]. However, for search
and rescue, patrol, and other search-related tasks, the performance metric is usually to
maximize the area coverage within a fixed amount of time [3]. Meanwhile, the planned
path should be able to safely address environmental threats and smoothly respond to
individual maneuver properties. In general, solving this optimization problem is not a
complicated task. However, as a task becomes more urgent, the environment becomes
more complex, or the UAV becomes less manoeuvrable, it remains a challenge to calculate
feasible optimal paths to avoid all threats within an acceptable time [4].

Researchers have proposed a series of approaches to solve the UAV path planning
problem. Previously, the path planning problem was generally equivalent to the shortest
path problem, and deterministic search algorithms were widely adopted, for instance,
the Dijkstra algorithm [5], the Voronoi diagram method [6] and the A* algorithm [7,8].
However, as researchers began to consider the specific demands of different scenarios,
the optimal path has become associated with the average altitude, fuel consumption,
environmental threats and so on, making it clear that the problem has become increasingly
complex. We know that the path planning problem is an NP-hard problem, which is

Drones 2024, 8, 221. https://doi.org/10.3390/drones8060221 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8060221
https://doi.org/10.3390/drones8060221
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://doi.org/10.3390/drones8060221
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8060221?type=check_update&version=3

Drones 2024, 8, 221 2 of 18

difficult to solve with deterministic algorithms when the scale of the problem becomes
large. Therefore, researchers have slowly shifted from using deterministic to using non-
deterministic algorithms.

Metaheuristics are one kind of non-deterministic algorithm that can provide a suffi-
ciently good solution to an optimization problem with limited computation capacity. They
are nature-inspired, population-based, and generation-iterated, facilitating powerful global
searching and rapid convergence capability. In recent years, metaheuristic algorithms
have been increasingly favored for UAV path planning because of their ability to explore
low-dimensional manifolds in high-dimensional space [9]. For example, ref. [10] proposed
an initial population enhancement method in a Genetic Algorithm(GA), which speeds
up the convergence process. Ref. [11] proposed a spherical vector-based Particle Swarm
Optimization (PSO) to solve the problem within complicated environments subjected to
multiple threats. In addition, other meta-heuristic algorithms such as Differential Evolution
(DE) [12–14], Ant Colony Optimization (ACO) [15,16], and Wolf Pack Search (WPS) [17]
have been extensively studied in recent years.

Among these algorithms, PSO is much simpler to implement while maintaining excel-
lent efficiency, effectiveness and scalability, and thus has been successfully applied in many
drone fields. Ref. [18] presented a comprehensively improved Particle Swarm Optimization
(CIPSO) algorithm with the chaos-based logistic map initialization and mutation strategy
to solve this problem in war scenarios. Ref. [19] proposed a multiobjective particle swarm
optimization algorithm with multimode collaboration based on reinforcement learning
(MCMOPSO-RL) algorithm to find the optimal path and handle threats simultaneously.
Ref. [20] proposed the SHOPSO algorithm, which combines the Selfish Swarm Optimizer
(SHO) and the PSO, to accomplish a given combat mission at a meager cost. Nevertheless,
the scenarios used in these studies are relatively simple: the number of threats was small,
and the terrain was small-scale or flat, making these algorithms impractical for complex
real scenes. The main reason is that PSO, as a general optimizer, does not analyze the
built-in physics for specific problems. Although it inherently provides approaches for
automatically abstracting features from iterations, the iterations require sufficient time to
play a part. Therefore, with the limited execution time, PSO always suffers from premature
convergence limitations, hindering its promotion in complex, high-dimensional, and noisy
bounded scenarios.

Compared to other scenarios, the drone scenarios often require path planning algo-
rithms that can respond quickly and ensure safety [21]. On the one hand, the drone tasks
are often urgent, resulting in limited planning time for the algorithm. On the other hand, a
drone scenario has many threats and complex terrain, which makes the algorithm easily
to fall into local optimum. For the former problem, we established heuristic rules during
particle initialization to prevent invalid searching and inspire the powerful search efficiency
of the algorithm. For the latter problem, we hybridized a Cauchy mutation operator, an
injection operator and a penalty function to enhance the exploration capabilities of the algo-
rithm. The new algorithm, called Heuristic Hybrid Particle Swarm Optimization (HHPSO),
strikes a good balance between exploration and exploitation and significantly improves the
convergence, robustness and constraint-handling ability. Numerical simulations, Unreal
Engine 4 (UE4) [22] simulations and a real-drone experiment confirmed the results.

The remainder of this paper is organized as follows: Section 2 proposes the problem
scenarios and optimization model. The heuristic rules and hybrid operators are introduced
in Section 3. The experimental results are provided in Section 4. Section 5 concludes
this article.

2. Problem Statement

The quadcopters path planning problem can be treated as a multi-objective constrained
optimization problem. In this section, scenario representation and the optimization model
are discussed.

Drones 2024, 8, 221 3 of 18

2.1. Scenario Representation

In a drone scenario, two elements must be considered for the path planning task. One
the terrain, which imposes physical constraints on drones. The other is threats, which
constitute dangers that drones may encounter in their missions.

2.1.1. Terrain

The terrain of the drone scenario is totally open, implying that we can discretize the
broad planning space into a surface. On this basis, the terrain can be generated using
several perlin noises layers [23] with diverse frequencies and amplitudes. This terrain
ensures that the height zij is unique and continuous over the entire plane (xi, yj). To save
computing resources, we sample the entire plane at specific intervals to obtain a point cloud
map of the terrain, as shown in Figure 1a. However, such a discretized representation of
terrain cannot constrain all points on the plane, so we used triangle interpolation among
every three nearest points, thus confirming the unique mapping of (xi, yj), denoted as
zij = Map(xi, yj), as shown in Figure 1b.

(a) (b)

Figure 1. Terrain representation. (a) Terrain representation with a point cloud. (b) Terrain representa-
tion with triangle interpolation.

2.1.2. Threats

In general, quadcopters should remain concealed and secure when performing tasks
in a drone scenario. We assume that the enemy will use radar and missiles to detect and
attack drones. In addition, there are some No-fly Zones (NFZs) in the scene that drones
cannot approach.

The probability of radar and missile affecting flight safety can be calculated by
(1) and (2) [24].

PR =

{ 1
1+ζ2(d4/RCS)

ζ1
if d ≤ RR

0 otherwise
(1)

PM =

{
R4

M/
(

R4
M + d4), if d ≤ RM

0, otherwise.
(2)

where RR and RM denote the maximum influence distance of the radar and missile, respec-
tively, d is the distance between the drone’s position and the missile and radar deployment
center, and ζ1 and ζ2 depend on the radar used. RCS denotes the radar cross-section, which
can be calculated according to the drone’s position and velocity [25].

For the NFZs, we need to determine whether the waypoints are within their range, so
we defined the following equation:

InNFZs(wi) =

{
1, if wi falls in any NFZs
0, otherwise

(3)

where wi(i = 1, 2, ..., n) are waypoints.

Drones 2024, 8, 221 4 of 18

2.2. Optimization Model

Mathematically, the path planning problem can be modeled as a Multi-Objective Con-
straint Satisfaction Problem, which comprises three components, i.e., variables, objectives,
and constraints.

2.2.1. Variables

Typically, a path planning problem uses waypoints as planning variables. Suppose
we start from start point S : (xS, yS, zS)

T , and go to target point T : (xT , yT , zT)
T . The path

planning problem can be depicted as finding a series of waypoints W = {w1, w2, ..., wn−1}
through which the UAV can reach its destination successfully. However, the outputs
obtained in the three-dimensional configuration space cannot guarantee differential flat
control. For example, these paths may contain sharp turns that challenge the kinematics
and dynamics of the drone.

Several methods have been proposed to generate a smoothing path from the control
points P = {p0, p1, ..., pm}. In some previous research, the Dubins curve was used to
smooth the path [26]. A Dubins curve uses a series of arcs and straight line segments to
form the motion path of the drone, as shown in the Figure 2a. This method is unsuitable
for parameterization, because it may generate many arcs without curvature continuity.
Another method used in recent research is the Rauch-Tung-Striebel (RTS) smoother, which
consists of two stages, Kalman forward filtering and RTS backward smoothing [27], as
depicted in Figure 2b. At a higher computational cost, RTS smoother achieves relatively
low tracking errors between generated paths and control points. However, it is unnecessary
in the proposed algorithm because the UAV does not require flying directly through the
control points. A Bezier curve [28] and b-spline curve [29] are two of the most well-
known path smoothing methods, as shown in Figure 2c,d. Of these two curves, the latter
evolves from the former and inherits all the advantages, including geometrical invariance,
convexity-preserving, and affine invariance. Compared to the Bezier curve, the b-spline
curve overcomes the disadvantage that moving one control point affects the entire curve
and does not increase the degree of the polynomial no matter how many control points are
added [30].

The b-spline function used in this paper can be defined as:

wi =
m

∑
j=0

pjBj,k

(
i

n + 1

)
(4)

where wi(i = 1, 2, ..., n) are waypoints, pj(j = 0, 1, ..., m) denote control points, Bj,k() are the
k-order normalized b-spline basic functions defined by the de Boor–Cox recursion formula
as follows:

Bj,0(t) =

{
1, if uj ≤ t ≤ uj+1

0, otherwise

Bj,k(t) =
t−uj

uj+k−uj
Bj,k−1(t) +

uj+k+1−t
uj+k+1−uj+1

Bj+1,k−1(t)

define 0/0 = 0

(5)

where t ∈ [0, 1] and U={u0, u1, · · · , uk+m} is a non-decreasing sequence of parameters
called the knot vector.

B-spline enjoys Ck−1 continuous property and the derivative of a b-spline is still a
b-spline curve with order k− 1. Therefore, we choose the cubic b-spline curve with C2

continuity (this guarantees that the quadcopters will not be commanded to change their
propeller speed sharply) to convert the control points P into waypoints W. Concretely, we
fixed the p0 at the starting point S, the pm at the target point T and defined all remaining
intervening control points as decision variables:

ξ = {p1, p2, ..., pm−1} (6)

Drones 2024, 8, 221 5 of 18

(a) (b)

(c) (d)

Figure 2. Smooth methods. (a) Tangent circle curve. (b) RTS Smoother. (c) Six-order Bezier Curve.
(d) Cubic b-spline Curve

2.2.2. Objectives

In order to obtain a short, safe and smooth trajectory, five objectives, i.e., length cost,
flight altitude, radar detection, missile attack and turning angle are considered. Generally,
these objectives are somewhat contradictory so we treat them into a weighted function (7).

F = ω1 f1 + ω2 f2 + ω3 f3 + ω4 f4 + ω5 f5 (7)

where ω1, ω2, ω3, ω4, ω5 are weights that sum to 1, and f1, f2, f3, f4, f5 denote different
objectives.

(1) Length Cost

Traditionally, the goal of a planner is to find the shortest path conforming to constraints,
and the normalized approximate length of a path is defined as (8).

f1 =
∑n

i=1

√
‖wi − wi−1‖√
‖wn − w0‖

(8)

where wi = [xi, yi, zi] denotes the coordinate of the ith waypoint.

(2) Flight Altitude

A lower altitude is desired for the sake of using ground effect to avoid radars and
saving fuel. The mean flight altitude of a path is denoted by (9).

f2 =
n−1

∑
i=1

FAi with

FAi=

{
0, if zi≤Map(xi, yi)
(zi−Map(xi, yi))/n, otherwise

(9)

where Map(xi, yi) represent the terrain height at (xi, yi).

Drones 2024, 8, 221 6 of 18

(3) Radar Detection

The probability of the quadcopters being detected by radars can be calculated as follows:

f3 =
n−1

∑
i=1

R

∑
j=1

PRij (10)

where R denotes the number of radars in the scenario, PR can be obtained according to (1).

(4) Missile Attack

The probability of the quadcopters being attacked by missiles is expressed as follows:

f4 =
n−1

∑
i=1

M

∑
j=1

PMij (11)

where M denotes the number of missiles in the scenario, PM is calculated according to (2).

(5) Smoothness

This is designed to evaluate the smoothness of the planned path. Values closer to 0
indicate smoother paths, and 0 means a straight path [31].

f5 =
1

n− 1

n−1

∑
i=1

θi with

θi =arccos

(
(xi−xi−1, yi−yi−1)·(xi+1−xi, yi+1−yi)

T

‖(xi−xi−1, yi−yi−1)‖·‖(xi+1−xi, yi+1−yi)‖

) (12)

To ensure the single-valuedness and continuity of the arccos function, that is, to ensure
each value corresponds to a unique θi, we choose to restrict the function’s range to [0, π].

2.2.3. Constraints

It’s well accepted that quadcopters should meet the following constraints to ensure
safe and stable flight.

(1) Climbing/Gliding Angle

Since the maneuverability of quadcopters, the slope si should be restricted in the range
of maximum climbing angle αi and minimum gliding angle βi [20]. This forms the
constraint functions g1 and g2:

g1 = max(si − αi) ≤ 0 (13)
g2 = max(βi − si) ≤ 0 (14)

For i in 1, · · · , n− 1, where

αi = −1.5377× 10−10z2
i − 2.6997× 10−5zi + 0.4211 (15)

βi = 2.5063× 10−9z2
i − 6.3014× 10−6zi − 0.3257 (16)

si =
zi+1 − zi√

(xi+1 − xi)
2 + (yi+1 − yi)

2
(17)

(2) Turning angle constraint

The turning angle θi at waypoint wi can be calculated according to (12). Due to the
maneuverability constraints of the quadcopters, the turning angle should not be greater
than its upper bound, which can be written as

g3 = max(θi − θmax
i) ≤ 0 (18)

Drones 2024, 8, 221 7 of 18

(3) Minimum flight altitude

For safety reasons, quadcopters should be at a certain level with the ground, as
described in (19).

g3 = Hsafe −min(zi −Map(xi, yi)) ≤ 0 (19)

where Hsafe denotes the minimal safe flight height.

(4) Forbidden flying area

According to mission requirements, the quadcopters have to keep away from NFZs.
We describe this as a hard constraint as follows:

h1 =
n−1

∑
i=1

InNFZs(wi) = 0 (20)

3. Approach
3.1. Standard Particle Swarm Optimization

The standard PSO algorithm was developed by Kennedy and Eberhart in 1995 based
on social and cognitive behavior [32], and is widely used in engineering. It solves problems
by generating candidate solutions (particles) and moving those particles through a search
space based on their positions and velocities, as seen in (21) and (22).

Vk = wVk + c1 · r1 · (pbk − ξk) + c2 · r2 · (gb− ξk) (21)

ξk = ξk + Vk (22)

where the Equation (21) updates a new velocity for the k-th particle according to its previous
velocity Vk, its current position ξk, its best historical position pbk and the current global
best position gb. And w is the inertia weight that determines the particle to maintain
its original trend, r1 and r2 denote two random numbers, c1 and c2 are learning factors.
The Equation (22) updates each particle’s position based on its updated velocity from
the former.

To further improve the algorithm’s efficiency for solving path planning problems, we
introduce the heuristic rules to guide the search and hybrid some operators to speed up
the convergence.

3.2. Heuristic Rules

When a drone move from the start position to its goal, there are strong constraints
inside a path for respecting the kinematic and the dynamic limits. Embedding these
limits into initialization can provide informative priors, i.e., strong physics constraints and
inductive biases to guide the search.

Thanks to the convexity-preserving property, constraining the derivatives of the
control points is sufficient for constraining the entire b-spline [33]. Therefore we set up
heuristic rules for control points.

3.2.1. Rotated Coordinate System

Searching points within a 3-D Cartesian coordinate system has been widely used in
current studies. But it is usually inefficient since the heading direction is rarely consistent
with axes, so the inherent sequential relationships between waypoints or control points are
underutilized. In this paper, we use the rotated coordinate system OR-XRYRZ to initialize
the candidate solutions, as shown in Figure 3, where XR is the direction from S to T. The
transformation between the two coordinates can be obtained by the rotating matrix: x

y
z

=

 xR

yR

zR

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

+

 xS
yS
0

 (23)

Drones 2024, 8, 221 8 of 18

where θ is the angle from the X axis to the XR axis, xS and yS denote the x coordinate and
y coordinate of the start point S, and the superscript R represents the coordinates in the
rotating coordinate system.

Figure 3. Division of UAV mission space.

In OR-XRYRZ, we assume that the control points are monotonically increasing along
the XR axis, which means the quadcopters cannot move backwards. Actually, some other
scholars [12,34,35] have also utilized this benefit in the phase of path initialization and they
have proved that the solution set is almost never lost.

3.2.2. Physical Plausibility

Physically plausible paths should ensure the quadcopters keep motor speed changing
smoothly, implying that the distance moved in each time interval should not differ much.
According to this rule, we divided the ST by (n + 1) ∆l segments and defined each equilat-
eral point as the expected position of the control points. Considering that the distribution
of each point is different and correlated, we limited a control point’s xR value between the
expected position of its previous and next point in the initialization phase.

Similarly, the yR coordinate can be constrained. As shown in Figure 3, we define two
boundaries parallel to the velocity that constrain the velocity direction variation trend with
the metric ∆D. The value of ∆D is determined based on the maximum flight speed of the
drone. In this paper, We set ∆D equal to ∆l, so that the components of the path along the x
and y axes are of the same order of magnitude at initialization. Therefore, we can roughly
determine the xR and yR range of pj according the position of pj−1 (e.g., pm−2 is locked in
the gray area). This restrict is modeled as a Markov Chains, which require a considerable
computational cost to be handled, and also in order not to lose the possible solution, it’s
only used in the initialization phase.

In addition, we defined a mission space. On the XR-axis, the xR coordinate is confined
between 0 and

∣∣ST
∣∣. And on the YR-axis, two lines in Figure 3 determine the upper and

lower bound, which are obtained by extending outward a constant distance ∆d of the

Drones 2024, 8, 221 9 of 18

points from the nearest safe areas around ST. Under the boundary, the yR coordinate is
restricted in [ymin, ymax], which are calculated as (24) and (25), respectively:

ymin = min
{

min
i

{
y∗threat,i − Ri

}
, 0
}
− ∆d (24)

ymax = max
{

max
i

{
y∗threat,i + Ri

}
, 0
}
+ ∆d (25)

where Ri is the radius or the circumradius of the ith threat, y∗threat,i is the vertical coordinate
of ith threat in the rotated coordinate frame OR.

3.2.3. Initialization

In practice, we introduce three criteria to the initialization process.
• xR coordinate

In the rotated coordinate system we established before, the xR value is monotonically
increasing. In addition, we assume xR

j obeying the normal distribution with mean (j∆l)
and standard deviation (∆l/3) so that its value will fall in the range we expected with
99.7% probability according to the pauta criterion [36].
• yR coordinate

For y coordinate, it’s highly dependent on the state of the previous point. So we
initialize the yR

i in the range of
(
−∆D+y′j, ∆D+y′j

)
under uniform distribution, where y′j

reflects the state of the previous point and is calculated by (26).

yj
′ =

 0 , j < 1
yR

j−1−yR
j−2

xR
j−1−xR

j−2

(
xR

j − xR
j−1

)
+ yR

j−1 , otherwise
(26)

• z coordinate
Heuristically, the drone’s path follows the ups and downs of the terrain. So we

initialize the z-value obeying the normal distribution with mean z′i and standard deviation
∆h, where ∆h is set roughly equal to ∆l/3 in this paper according to the maneuverability
of quadcopters.

zj
′ = zj−1 + Map(xj, yj)−Map(xj−1, yj−1) (27)

3.3. Hybrid Operators
3.3.1. Penalty Function

We use the penalty function as the constraint-handling method to evaluate the particles
better. This approach defines the particle’s fitness function as the sum of the objective
function and the penalty term due to constraint violation:

f it(ξk) = F(ξk) + ϕ
(

ξk, r(α)
)

(28)

where ϕ
(

ξk, r(α)
)

indicates the penalty term of the kth particle in αth generation and it can
be calculated as follows:

ϕ
(

ξk, r(α)
)
= r(α)

(
4

∑
i=1

(Max[0, gi(ξk)])
2 + h1(ξk)

)
(29)

where r(α) is the penalty factor, it changes with iteration to ensure that infeasible individuals
suffer from more selection pressure at the later stage of iteration:

0 < r(1) < r(2) < · · · < r(α−1) < lim
α→∞

r(α) = +∞ (30)

Drones 2024, 8, 221 10 of 18

In this paper, the penalty coefficient is designed as a quadratic function of α.

rα = 10× α2/I2
max (31)

where Imax denotes the maximum iteration algebra.

3.3.2. Cauchy Mutation

Like other variants of PSO, the heuristic PSO faces the problem of premature conver-
gence; that is, its particles converge to a local optimum in some scenarios. Intuitively, a
stochastic mechanism might help the premature particles escape from the current trapped
local optimum, thus avoiding premature convergence. Genetic algorithms have a similar
mechanism called mutation to help the individual escape from local optima [37]. Suppose
we apply the mutation operator to the premature particles, and then use the fitness function
to evaluate the results. A good mutation means that the mutated particle has a better
fitness value than the original one. Following this criterion, we design a mutation operator
for PSO.

Since the Cauchy distribution has a small peak value at the origin but a long distri-
bution at both ends, it can generate a larger disturbance near the individual to jump out
of the local optimum, thus we choose Cauchy distribution to generate trail variable. The
operator process is shown below:

Firstly, we sorted all particles according to their fitness and took out the inferior half
of the particles as the target of the mutation operator.

Secondly, for each selected particle, the trail variable is generated from its current
position in the following way:

ξ ′k = ξk + C(0, γ) (32)

where ξk denote the position of the kth particle and C(0, γ) represents a Cauchy random
vector of the same dimension as ξk with a location parameter 0 and a scale parameter γ.

Finally, replace the origin particle with the trail variable if the mutated particle has
better fitness value.

3.3.3. Injection

Besides, there is an approach commonly used in the meta-heuristic algorithm to
increase the randomness of the population, namely injection [38]. Due to the role of
heuristic rules, the initial particles of our algorithm are of high quality. Therefore, if
the inferior particle can be initialized with a higher fitness value; it is beneficial for the
population to escape from the current trapped local optimum. Similar to the rules of
mutation, the injection operator operates on the sorted particles at the following scale:

λ(α+1) = ζλ(α) (33)

where λ(α) indicates the number of injected particles in α-th generation, ζ is the
decay factor.

Since the substantial irregularity of the injected particles, the new particle swarm
is sorted to ensure the effectiveness of the injection, and the λα particles at the bottom
are eliminated.

3.4. Algorithm Presentation

To summarize, we use the standard PSO as the prototype, initialize particles with
heuristic rules, hybrid Penalty function operator, Cauchy mutation operator, and Injection
operator to improve the search capability and propose the Heuristic Hybrid Particle Swarm
Algorithm (HHPSO). The pseudo-code of HHPSO is given in Algorithm 1. It’s worth noting
that the fitness f it(ξ) in (28) converts the control points [p0, ξ, pm] to waypoints using a
cubic b-spline curve.

Drones 2024, 8, 221 11 of 18

Algorithm 1: HHPSO

1 Initialize: N particles with velocity 0 following the heuristic rules in Section 3.2;
2 Assign the best historical position pb of each particle to its position ξ;
3 for α = 1 to Imax do
4 gb← argmin[f it(ξk, rα)], for k = 1 to N;
5 for k = 1 to N do . standard PSO
6 Update ξk and Vk using Equations (21) and (22);
7 end
8 for k = 1 to N/2 do . Mutation
9 Generate trail vector ξ ′k according to Equation (32);

10 Replace ξk with ξ ′k and reset its velocity to 0 if f it(ξ ′k) < f it(ξ);
11 end
12 Generate λα particles and inject them into the swarm; . Injection
13 Delete λα inferior particles according to their fitness;
14 Calculate λα+1 and rα+1 according to the Equations (31) and (33) ;
15 end
16 return gb

4. Experimental Results

To verify the effectiveness of the proposed algorithm, numerical simulations, physical
model-based simulations and a real-drone experiment are designed. In the numerical simu-
lation, we deploy the HHPSO to handle various scenarios with increasing obstacles and
different terrains and set up several respective algorithms to draw comparisons. However,
sim-to-real translation has been known to be a long-standing problem in robotics. But it was
difficult for us to set up an accurate test site with the terrain and various constrained areas.
As a compromise, we built similar scenarios on UE4 as physical model-based simulations.
And for the real-drone experiment, we choose NOKOV motion caputrue system as the
global location system and use Bitcraze Crazyflie 2.1 nano-quadrotors [39] as the flying
platform for its characteristics of small volume (9cm rotor-to-rotor), lightweight (34 g),
and suitable for indoor flying. All experiments were conducted on a desktop computer
featuring an Intel Core i9-9900K CPU, 32 GB of DDR4 RAM, a 1 TB NVMe SSD, and an
NVIDIA GeForce RTX 3070Ti GPU.

4.1. Numerical Simulation

In this paper, the proposed algorithm was run in four scenarios with different terrains
and increasing obstacles, and some other recently proposed metaheuristic planners, i.e.,
GA [10], CIPSO [18], CIPDE [13], JADE [12], mWPS [17], were selected as the compared
algorithms, the hyperparameters of these algorithms are shown in the Supplementary
Materials (Tables S1–S6). Besides, the heuristic-PSO and the hybrid-PSO are also put as
comparative algorithms to further discuss the influence of the two operators proposed in
this paper.

For comparisons, all algorithms are shared with the same basic parameters: the
population size of 30, the maximum iteration algebra of 25 and the waypoints num-
ber of 35. In addition, the main control parameters of the mentioned algorithms are
shown in Table 1, the definitions of these parameters can be found from their original
papers. The heuristic-PSO and the hybrid-PSO share the same control parameters as
HHPSO. Since the high security requirements of the scenarios, we have set the weights
([ω1 = 0.2, ω2 = 0.1, ω3 = 0.3, ω4 = 0.3, ω5 = 0.1]) among the five objective functions.

Drones 2024, 8, 221 12 of 18

Table 1. Main Control Parameters of Used Algorithms.

Algorithm GA CIPSO JADE

parameter α β f r w c µ a uCR uF
value 0.5 0.5 10 [0.4, 0.9] [0.5, 3.5] 4 2 0.5 0.5

Algorithm CIPDE mWPS HHPSO

parameter µF µCR c Eliminated-Qty Safari-Wolves-Qty w c1 c2 γ ζ
value 0.7 0.5 0.1 5 5 1 1.5 1.5 2 0.9

In order to test the performance of algorithms under different threat density and ter-
rain, we designed four scenarios. Scenarios 1–3 are on the same flat terrain with increasing
threats, and scenario 4 is extremely challenging with rugged terrain and crowded threats.
The threats are randomly generated with the numbers 1, 4, 10, and 20 for each type, the
radar and missile influence area is a sphere of a radius of 10, the RCS is set to −23.8 [40],
and the no-fly zone randomly covers an area of 10–30.

All algorithms are implemented in scenarios 1–4, and the numerical experiment results
are shown in Figure 4. To better analyze the fitness of the path that satisfies the constraint,
which is critical in the drone scenario, we truncate the portion with a fitness value greater
than 5.

From the 2D view of planning results, all the algorithms can complete the task in
simple scenarios (Scenarios 1 and 2). But in the complex scenarios (scenarios 3 and 4),
our algorithm can always find a relatively good location to avoid the threat and reach
the destination, while the rest paths frequently enter the radar areas, missile areas and
NFZs. More clearly seen from the fitness figure, as the scenario gets more complicated,
the performance gaps between the proposed algorithm and others become more and more
apparent. As the penalty coefficient rα increases, all algorithm except HHPSO can’t handle
constraints well. For example, in scenario 3, there are two algorithms that complete the
task, i.e., heuristic-PSO and HHPSO, while the path generated by heuristic-PSO is clearly
stuck in a local optimum. But in scenario 4, only HHPSO is left. Further, we look at
constraint functions. In all scenarios, HHPSO starts with a low constraint value and ends
up satisfying the constraints well. This is mainly because the method fully considers the
problem-dependent heuristics during initialization and the introduction of penalty term
results in higher selection pressure along with iteration. And the heuristic-PSO, which also
benefits from the heuristic initialization, has the same property of low starting constraint
value. Moreover, it shows that the mixture of Cauchy mutation and injection operators
makes our method less prone to falling into local optima and prematurity. Without these
operators, the algorithms easily fall into local minimum, like the heuristic-PSO. But without
the heuristical initialization, the algorithm doesn’t even converge; the hybrid-PSO provides
a good example. And other algorithms perform fine in simple scenarios but miserably in
complex ones. Therefore, it can be inferred that the heuristic rules and the hybrid operators
are of great help to planners, especially in complex scenarios.

To compare these algorithms more rigorously, we ran each algorithm 100 times in
each scenario and adopted several metrics to measure the algorithm performance, i.e.,
Successful Rate (SR), Average Fitness (AF), Average Constraints value(AC) and Average
Time (AT). Here we define the path that satisfies most conditions (at least 3), and the
constraint value does not exceed 0.1 as a successful plan. The results are recorded in
Table 2. Among all algorithms, HHPSO achieves the best fitness with a success rate of over
90% in all scenarios. The worst performer is CIPSO, probably because its original paper
environment has no dense threats and thus weaker constraint control. Some other planners
like GA, JADE, CIPDE and mWPS may get a tolerable AF in simple scenarios but perform
poorly in scenarios 3 and 4. In addition, the two variants of HHPSO, i.e., heuristic-PSO and
hybrid-PSO, performed reasonably well. Heuristic-PSO shows strong constraint handling
ability and requires less running time than HHPSO. But its average fitness value is weaker

Drones 2024, 8, 221 13 of 18

than HHPSO, meaning it often falls into the local minimum. Hybrid-PSO also requires less
running time than HHPSO, but due to its weaker constraint handling capability, it does not
perform as well as the other two.

(a)

(b)

(c)

(d)

Figure 4. The comparative results among different algorithms. (a) Scenario 1. (b) Scenario 2.
(c) Scenario 3. (d) Scenario 4.

From the above discussions, it can be seen that the proposed planner is more effective
and efficient than the compared algorithms. In terms of effectiveness, HHPSO achieves
the highest SR and the best AF in all scenarios, which is crucial in drone scenarios. And in
terms of efficiency, HHPSO runs in less than 0.4 s and can be implemented for urgent tasks.

Drones 2024, 8, 221 14 of 18

Table 2. Statistical Results for Different Algorithms.

GA CIPSO JADE CIPDE mWPS HHPSO Heuristic-PSO Hybrid-PSO

Scenario 1
SR(%) 87.00± 2.61 82.00± 2.46 96.00± 3.12 92.00± 2.76 95.00± 2.85 100.00± 0.00 99.00± 2.97 97.00± 2.91

AF 1.73± 0.03 18.20± 0.91 1.75± 0.04 1.28± 0.03 1.45± 0.04 0.65± 0.03 0.85± 0.02 0.97± 0.02
AC 0.07± 0.00 1.78± 0.04 0.09± 0.00 0.08± 0.00 0.05± 0.00 0.00± 0.00 0.00± 0.00 0.07± 0.00

AT(s) 0.39± 0.01 0.54± 0.01 0.62± 0.02 0.60± 0.02 0.89± 0.02 0.23± 0.01 0.19± 0.02 0.21± 0.01

Scenario 2
SR (%) 86.00± 2.58 81.00± 2.43 75.00± 2.25 84.00± 2.52 89.00± 2.67 98.00± 0.13 96.00± 2.88 89.00± 2.67

AF 1.76± 0.04 14.85± 0.74 18.26± 0.91 1.83± 0.04 1.55± 0.04 0.49± 0.01 0.51± 0.01 0.85± 0.02
AC 0.13± 0.00 1.41± 0.03 1.75± 0.04 0.12± 0.00 0.09± 0.00 0.00± 0.00 0.01± 0.00 0.05± 0.00

AT(s) 0.33± 0.01 0.45± 0.01 0.45± 0.01 0.47± 0.01 0.77± 0.02 0.22± 0.00 0.15± 0.05 0.19± 0.00

Scenario 3
SR(%) 26.00± 0.78 12.00± 0.36 20.00± 0.60 48.00± 1.44 27.00± 0.81 94.00± 1.35 68.00± 2.04 25.00± 0.75

AF 79.27± 2.38 208.20± 4.16 228.90± 5.73 45.50± 1.37 295.50± 8.87 1.16± 0.02 3.75± 0.11 10.85± 0.33
AC 7.73± 0.2 20.54± 0.62 22.75± 0.68 4.48± 0.13 29.45± 0.88 0.02± 0.00 0.32± 0.01 0.97± 0.03

AT(s) 0.41± 0.01 0.58± 0.02 0.58± 0.02 0.61± 0.02 0.92± 0.03 0.34± 0.00 0.27± 0.05 0.32± 0.00

Scenario 4
SR(%) 15.00± 0.45 6.00± 0.18 11.00± 0.33 25.00± 0.75 2.00± 0.06 92.00± 2.32 52.00± 1.56 15.00± 0.45

AF 15.41± 0.46 516.30± 15.49 472.80± 14.18 22.27± 0.67 81.80± 2.45 1.35± 0.31 10.50± 0.32 13.50± 0.41
AC 13.20± 0.40 51.50± 1.55 47.20± 1.42 2.18± 0.07 8.05± 0.24 0.05± 0.01 0.92± 0.03 1.27± 0.04

AT(s) 0.44± 0.01 0.68± 0.02 0.68± 0.02 0.73± 0.02 1.23± 0.04 0.38± 0.00 0.27± 0.03 0.29± 0.00

4.2. Physical-Based Simulation

We built a suitable terrain in the realistic physics engine Unreal Engine 4 (UE4) and
deployed AirSim [41] as the dynamics model of the quadcopters. The terrain is shown
in Figure 5a and the drone model used in the AirSim is the Ar Drone, which is shown in
Figure 5b.

(a) (b)

Figure 5. Basic components of the physical simulation. (a) The terrain in UE4. (b) Basic components
of the physical simulation.

The terrain is augmented with different threats to generate two experimental scenarios;
scenario 1 has [10, 10, 10] radars, missiles and NFZs and scenario 2 with [30, 30, 30].
The radar and missile detection radius is 20 for scenario 1 and 10 for scenario 2. Those
threats, together with the interpolation point clouds for terrain scanning and the target
point are used as the inputs of HHPSO to generate waypoints. The results are shown in
Figure 6, the demonstration videos are available at https://youtu.be/9-ZV-A0M3b4 and
https://youtu.be/VLxXbAZJzQQ, (accessed on 7 January 2024). It turns out that drones
can follow planned paths to complete missions, and our algorithms can address diverse
scenarios, such as larger threat zones and numerous and fragmented threats.

https://youtu.be/9-ZV-A0M3b4
https://youtu.be/VLxXbAZJzQQ

Drones 2024, 8, 221 15 of 18

(a) (b)

Figure 6. The planned paths of HHPSO in UE4. (a) Sparse environment. (b) Dense environment.

4.3. Real-Drone Experiment

Although UE4 simulates physical conditions, it is still just a simulation. We have car-
ried out am in-door experiment to verify the validity of the proposed algorithm. Concretely,
we use a 3 × 1 m test site indoors to map to the simulation system at a ratio of 1 to 10. For
such a small venue, we chose Bitcraze CrazyFlie 2.1 [39], the world’s smallest quadcopter,
as the executor of the algorithm. As shown in Figure 7, we used some boxes to simulate the
NFZs and set the safe height as 5 m (0.5 m in the real world).

Figure 7. Real-world experimental environment

To verify the real-time performance of the algorithm, we set up a series of checkpoints
for the quadcopters to pass through (point A to D in Figure 8). The mission of the planner
is to plan and execute a path to the next checkpoint when the quadcopters approaches a
checkpoint. Although the quadcopters can move in any direction, we force the drone to
keep its heading consistent with the direction of moving during the experiment. Besides,
we add the last three points of the previous plan to the next plan, and calculate the turning
angle according to (12). In this way, the quadcopters can do continuous planning without
hovering over an intermediate point.

The path recorded from a motion capture system is shown in Figure 8, and the video is
available at https://youtu.be/Fis1Fm25z04, (accessed on 7 January 2024). We can see that
the first path of the quadcopters from point A to B is not consistent with the subsequent
planning, this is because that they arrive at point A from different directions, resulting
in different initial states. Moreover, due to the limited space of the physical room, we
introduced a 10x zoom, resulting in some sharp turns in the flight of the quadcopters. But

https://youtu.be/Fis1Fm25z04

Drones 2024, 8, 221 16 of 18

the actual planning result (Figure 8) is very smooth. This experiment demonstrates that our
algorithm is efficient enough to be deployed for real-time path planning of quadcopters.

Figure 8. Trajectory of the Crazyflie

5. Conclusions and Discussions

Path planning plays a crucial role in autonomous unmanned systems. This paper
presents an effective and efficient PSO-based path planning algorithm that allows the
quadcopters to complete navigation tasks in complex scenarios. Concretely, we set up a
series of heuristic rules during population initialization to generate high-quality particles
to avoid invalid searches. But the heuristic-PSO is easy to fall into the local optimum, so
we hybrid the penalty function, Cauchy mutation operator and Injection operator further
to improve the global search ability of the algorithm. The proposed algorithm is named
HHPSO; comparative numerical simulations of four scenarios with increasing obstacles
show that HHPSO outperforms other state-of-the-art meta-heuristic algorithms. Further-
more, the physical-based simulations in UE4 show that our method can be successfully
deployed in simulation models to perform complex missions on the battlefield. Finally,
a real-world experiment demonstrates that the proposed method is efficient and can be
used for continuous real-time path planning for quadcopters. Although the performance of
HHPSO is remarkable, it has not yet been able to handle confrontational scenarios, which
means enemy aircraft will also be deployed to scout and defend. We will focus on such type
of scenario in the future and we have built a simulation environment in UE4. Finally, we
hope this work could facilitate the applications of intelligent algorithms in path planning.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/drones8060221/s1. Table S1: Binary encoding of all algorithms; Table S2:
11-bits genes for Initialization; Table S3: 13-bits genes for sorting and selection; Table S4: 12-bits genes
for exploitation and exploration; Table S5: 13-bits genes for Ending Criterion; Table S6: 15-bits genes
for other operators.

Author Contributions: Conceptualization, J.L. and R.D.; methodology, J.L.; software, J.L.; validation,
J.L., R.D. and W.W.; formal analysis, J.L.; investigation, R.D.; resources, J.L.; data curation, R.D.;
writing—original draft preparation, J.L.; writing—review and editing, R.D.; visualization, R.D.;
supervision, W.W.; project administration, W.W.; funding acquisition, W.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (No. 2022ZD0116401)
and the State Key Laboratory of Software Development Environment (Funding No. SKLSDE-2023ZX-20).

Data Availability Statement: The datasets generated during the current study are not publicly available
due to confidential agreement but are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.mdpi.com/article/10.3390/drones8060221/s1
https://www.mdpi.com/article/10.3390/drones8060221/s1

Drones 2024, 8, 221 17 of 18

References
1. Huang, H.; Savkin, A.V.; Ni, W. Decentralized Navigation of a UAV Team for Collaborative Covert Eavesdropping on a Group of

Mobile Ground Nodes. IEEE Trans. Autom. Sci. Eng. 2022, 19, 3932–3941. [CrossRef]
2. Brunner, G.; Szebedy, B.; Tanner, S.; Wattenhofer, R. The Urban Last Mile Problem: Autonomous Drone Delivery to Your Balcony.

In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019;
pp. 1005–1012.

3. Dissanayaka, D.; Wanasinghe, T.R.; Silva, O.D.; Jayasiri, A.; Mann, G.K.I. Review of Navigation Methods for UAV-Based Parcel
Delivery. IEEE Trans. Autom. Sci. Eng. 2022, 21, 1068–1082. [CrossRef]

4. He, W.; Qi, X.; Liu, L. A novel hybrid particle swarm optimization for multi-UAV cooperate path planning. Appl. Intell. 2021,
51, 7350–7364. [CrossRef]

5. Julius Fusic, S.; Ramkumar, P.; Hariharan, K. Path planning of robot using modified dijkstra Algorithm. In Proceedings of the
2018 National Power Engineering Conference (NPEC), Madurai, India, 9–10 March 2018; pp. 1–5.

6. Pehlivanoglu, Y.V. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV.
Aerosp. Sci. Technol. 2012, 16, 47–55. [CrossRef]

7. Meng, B. UAV Path Planning Based on Bidirectional Sparse A* Search Algorithm. In Proceedings of the 2010 International
Conference on Intelligent Computation Technology and Automation, Changsha, China, 11–12 May 2010; Volume 3, pp. 1106–1109.

8. Li, J.; Deng, G.; Luo, C.; Lin, Q.; Yan, Q.; Ming, Z. A Hybrid Path Planning Method in Unmanned Air/Ground Vehicle
(UAV/UGV) Cooperative Systems. IEEE Trans. Veh. Technol. 2016, 65, 9585–9596. [CrossRef]

9. Hangxuan, H.; Haibin, D. A multi-strategy pigeon-inspired optimization approach to active disturbance rejection control
parameters tuning for vertical take-off and landing fixed-wing UAV. Chin. J. Aeronaut. 2022, 35, 19–30.

10. Pehlivanoglu, Y.V.; Pehlivanoglu, P. An enhanced genetic algorithm for path planning of autonomous UAV in target coverage
problems. Appl. Soft Comput. 2021, 112, 107796. [CrossRef]

11. Phung, M.D.; Ha, Q.P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Appl. Soft
Comput. 2021, 107, 107376. [CrossRef]

12. Yang, P.; Tang, K.; Lozano, J.A.; Cao, X. Path Planning for Single Unmanned Aerial Vehicle by Separately Evolving Waypoints.
IEEE Trans. Robot. 2015, 31, 1130–1146. [CrossRef]

13. Pan, J.S.; Liu, N.; Chu, S.C. A Hybrid Differential Evolution Algorithm and Its Application in Unmanned Combat Aerial Vehicle
Path Planning. IEEE Access 2020, 8, 17691–17712. [CrossRef]

14. Yu, X.; Li, C.; Zhou, J.F. A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios.
Knowl.-Based Syst. 2020, 204, 106209. [CrossRef]

15. Li, D.; Wang, L.; Cai, J.; Ma, K.; Tan, T. Research on Terminal Distance Index-Based Multi-Step Ant Colony Optimization for
Mobile Robot Path Planning. IEEE Trans. Autom. Sci. Eng. 2022, 20, 2321–2337. [CrossRef]

16. Yu, X.; Chen, W.N.; Gu, T.; Yuan, H.; Zhang, H.; Zhang, J. ACO-A*: Ant Colony Optimization Plus A* for 3-D Traveling in
Environments With Dense Obstacles. IEEE Trans. Evol. Comput. 2019, 23, 617–631. [CrossRef]

17. YongBo, C.; YueSong, M.; JianQiao, Y.; XiaoLong, S.; Nuo, X. Three-dimensional unmanned aerial vehicle path planning using
modified wolf pack search algorithm. Neurocomputing 2017, 266, 445–457. [CrossRef]

18. Shao, S.; Peng, Y.; He, C.; Du, Y. Efficient path planning for UAV formation via comprehensively improved particle swarm
optimization. ISA Trans. 2020, 97, 415–430. [CrossRef] [PubMed]

19. Zhang, X.; Xia, S.; Li, X.; Zhang, T. Multi-objective particle swarm optimization with multi-mode collaboration based on
reinforcement learning for path planning of unmanned air vehicles. Knowl.-Based Syst. 2022, 250, 109075. [CrossRef]

20. Zhao, R.; Wang, Y.; Xiao, G.; Liu, C.; Hu, P.; Li, H. A method of path planning for unmanned aerial vehicle based on the hybrid of
selfish herd optimizer and particle swarm optimizer. Appl. Intell. 2022, 52, 16775–16798. [CrossRef]

21. Shin, J.J.; Bang, H. UAV path planning under dynamic threats using an improved PSO algorithm. Int. J. Aerosp. Eng. 2020, 2020.
[CrossRef]

22. Sanders, A. An Introduction to Unreal Engine 4; CRC Press: Boca Raton, FL, USA, 2016.
23. Perlin, K. An Image Synthesizer. SIGGRAPH Comput. Graph. 1985, 19, 287–296. [CrossRef]
24. Besada-Portas, E.; de la Torre, L.; Jesus, M.; de Andrés-Toro, B. Evolutionary trajectory planner for multiple UAVs in realistic

scenarios. IEEE Trans. Robot. 2010, 26, 619–634. [CrossRef]
25. Patel, J.S.; Fioranelli, F.; Anderson, D. Review of radar classification and RCS characterisation techniques for small UAVs or

drones. IET Radar Sonar Navig. 2018, 2, 911–919. [CrossRef]
26. Anderson, E.; Beard, R.; McLain, T. Real-time dynamic trajectory smoothing for unmanned air vehicles. IEEE Trans. Control. Syst.

Technol. 2005, 13, 471–477. [CrossRef]
27. Wu, X.; Bai, W.; Xie, Y.; Sun, X.; Deng, C.; Cui, H. A hybrid algorithm of particle swarm optimization, metropolis criterion and

RTS smoother for path planning of UAVs. Appl. Soft Comput. 2018, 73, 735–747. [CrossRef]
28. Elhoseny, M.; Tharwat, A.; Hassanien, A.E. Bezier curve based path planning in a dynamic field using modified genetic algorithm.

J. Comput. Sci. 2018, 25, 339–350. [CrossRef]
29. Zhou, X.; Zhu, J.; Zhou, H.; Xu, C.; Gao, F. EGO-Swarm: A Fully Autonomous and Decentralized Quadrotor Swarm System in

Cluttered Environments. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xian,
China, 30 May–5 June 2021; pp. 4101–4107.

http://doi.org/10.1109/TASE.2021.3139590
http://dx.doi.org/10.1109/TASE.2022.3232025
http://dx.doi.org/10.1007/s10489-020-02082-8
http://dx.doi.org/10.1016/j.ast.2011.02.006
http://dx.doi.org/10.1109/TVT.2016.2623666
http://dx.doi.org/10.1016/j.asoc.2021.107796
http://dx.doi.org/10.1016/j.asoc.2021.107376
http://dx.doi.org/10.1109/TRO.2015.2459812
http://dx.doi.org/10.1109/ACCESS.2020.2968119
http://dx.doi.org/10.1016/j.knosys.2020.106209
http://dx.doi.org/10.1109/TASE.2022.3212428
http://dx.doi.org/10.1109/TEVC.2018.2878221
http://dx.doi.org/10.1016/j.neucom.2017.05.059
http://dx.doi.org/10.1016/j.isatra.2019.08.018
http://www.ncbi.nlm.nih.gov/pubmed/31416619
http://dx.doi.org/10.1016/j.knosys.2022.109075
http://dx.doi.org/10.1007/s10489-021-02353-y
http://dx.doi.org/10.1155/2020/8820284
http://dx.doi.org/10.1145/325165.325247
http://dx.doi.org/10.1109/TRO.2010.2048610
http://dx.doi.org/10.1049/iet-rsn.2018.0020
http://dx.doi.org/10.1109/TCST.2004.839555
http://dx.doi.org/10.1016/j.asoc.2018.09.011
http://dx.doi.org/10.1016/j.jocs.2017.08.004

Drones 2024, 8, 221 18 of 18

30. Qu, C.; Gai, W.; Zhang, J.; Zhong, M. A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path
planning. Knowl.-Based Syst. 2020, 194, 105530. [CrossRef]

31. Xue, Y.; Sun, J.Q. Solving the path planning problem in mobile robotics with the multi-objective evolutionary algorithm. Appl.
Sci. 2018, 8. [CrossRef]

32. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

33. Zhou, X.; Wang, Z.; Ye, H.; Xu, C.; Gao, F. EGO-Planner: An ESDF-Free Gradient-Based Local Planner for Quadrotors. IEEE
Robot. Autom. Lett. 2021, 6, 478–485. [CrossRef]

34. Zhang, X.; Duan, H. An improved constrained differential evolution algorithm for unmanned aerial vehicle global route planning.
Appl. Soft Comput. J. 2015, 26, 270–284. [CrossRef]

35. Wang, J.; Chi, W.; Li, C.; Wang, C.; Meng, M.Q.H. Neural RRT*: Learning-Based Optimal Path Planning. IEEE Trans. Autom. Sci.
Eng. 2020, 17, 1748–1758. [CrossRef]

36. Zheng, L.; Zhang, P.; Tan, J.; Chen, M. The UAV Path Planning Method Based on Lidar. In Intelligent Robotics and Applications;
Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D., Eds.; Springer: Cham, Switzerland, 2019; pp. 303–314.

37. Tao, X.; Guo, W.; Li, Q.; Ren, C.; Liu, R. Multiple scale self-adaptive cooperation mutation strategy-based particle swarm
optimization. Appl. Soft Comput. 2020, 89, 106124. [CrossRef]

38. Salhi, S.; Petch, R.J. A GA Based Heuristic for the Vehicle Routing Problem with Multiple Trips. J. Math. Model. Algorithms 2007,
6, 591–613. [CrossRef]

39. Giernacki, W.; Skwierczyński, M.; Witwicki, W.; Wroński, P.; Kozierski, P. Crazyflie 2.0 quadrotor as a platform for research and
education in robotics and control engineering. In Proceedings of the 2017 22nd International Conference on Methods and Models
in Automation and Robotics (MMAR), Międzyzdroje, Poland, 28–31 August 2017; pp. 37–42.

40. Guay, R.; Drolet, G.; Bray, J.R. Measurement and modelling of the dynamic radar cross-section of an unmanned aerial vehicle.
IET Radar Sonar Navig. 2017, 11, 1155–1160. [CrossRef]

41. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In Field
and Service Robotics; Hutter, M., Siegwart, R., Eds.; Springer: Cham, Switzerland, 2018; pp. 621–635.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.knosys.2020.105530
http://dx.doi.org/10.3390/app8091425
http://dx.doi.org/10.1109/LRA.2020.3047728
http://dx.doi.org/10.1016/j.asoc.2014.09.046
http://dx.doi.org/10.1109/TASE.2020.2976560
http://dx.doi.org/10.1016/j.asoc.2020.106124
http://dx.doi.org/10.1007/s10852-007-9069-2
http://dx.doi.org/10.1049/iet-rsn.2016.0520

	Introduction
	Problem Statement
	Scenario Representation
	Terrain
	Threats

	Optimization Model
	Variables
	Objectives
	Constraints

	Approach
	Standard Particle Swarm Optimization
	Heuristic Rules
	Rotated Coordinate System
	Physical Plausibility
	Initialization

	Hybrid Operators
	Penalty Function
	Cauchy Mutation
	Injection

	Algorithm Presentation

	Experimental Results
	Numerical Simulation
	Physical-Based Simulation
	Real-Drone Experiment

	Conclusions and Discussions
	References

