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Abstract: This paper presents a novel system for the automated monitoring and maintenance of
gravel runways in remote airports, particularly in Northern Canada, using Unmanned Aerial Vehicles
(UAVs) and computer vision technologies. Due to the geographic isolation and harsh weather
conditions, these airports face unique challenges in runway maintenance. Our approach integrates
advanced deep learning algorithms and UAV technology to provide a cost-effective, efficient, and
accurate means of detecting runway defects, such as water pooling, vegetation encroachment, and
surface irregularities. We developed a hybrid approach combining the vision transformer model with
image filtering and thresholding algorithms, applied on high-resolution UAV imagery. This system
not only identifies various types of defects but also evaluates runway smoothness, contributing
significantly to the safety and reliability of air transport in these areas. Our experiments, conducted
across multiple remote airports, demonstrate the effectiveness of our approach in real-world scenarios,
offering significant improvements over traditional manual inspection methods.

Keywords: UAV; remote airports; computer vision

1. Introduction

In Northern Canada’s vast, remote landscapes, air transportation serves as a lifeline,
connecting isolated communities and facilitating essential services. Gravel runways at
remote airports are fundamental to this transportation network, with 94 out of Canada’s
117 remote airports relying on gravel runways as their primary landing strips [1]. Ensuring
the safety and integrity of these runways is vital to the reliability of air transportation in
the region.

Monitoring and maintaining the condition of gravel runways present unique chal-
lenges due to their remote locations and harsh environmental conditions. Traditionally,
gravel runways are inspected and maintained through manual, periodic inspections [2].
Yet, these inspections are often infrequent and labor-intensive, requiring specialized teams
to travel to remote locations at significant expense. Furthermore, manual inspections are
constrained by weather conditions and accessibility, hindering runway defects’ timely
detection and repair. However, with the introduction of systems like DJI Dock 2, these
inspections can now be conducted remotely, even during brief operational windows, en-
hancing our ability to respond promptly.

Several studies have explored ways to automate the process to address the difficulties
in monitoring runways manually. Different ways of gathering and handling datasets
have been used to develop systems that can assist in the automated monitoring of asphalt
and concrete runways. For example, Zhai et al. proposed an automatic segmentation
and enhancement method for airport pavements based on 3D images [3]. Ambalam et al.
developed an automated object detection framework by harnessing the capabilities of
YOLOv5: the integration of Unmanned Aerial Vehicles (UAVs) into surveillance operations
for the precise identification of Foreign Object Debris (FOD) on airport runways [4].
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The automation and integration of AI-assisted UAV operation is a new trend [5].
However, to the best of our knowledge, there has not been any work to automate the identi-
fication of issues with gravel runways at remote airports, primarily due to the harsh climate
conditions and the expense of collecting data. We design and implement an automated
system using Unmanned Aerial Vehicles (UAVs) imagery and computer vision methods to
overcome these challenges and enhance runway maintenance efficiency for remote airports’
gravel runways. UAVs have significant advantages in periodically collecting image data of
remote airports, including accessing inaccessible areas, being resilient to harsh conditions,
and cost effectiveness. The project begins by collecting baseline datasets from remote air-
ports using drones with advanced sensor payloads. These drones capture high-resolution
imagery, ensuring precision and depth in data acquisition.

On the other hand, deep learning algorithms in computer vision have recently made
significant advancements. They are ideal tools to replace manual inspection processes [6–9].
The vision transformer algorithm has been trained on image data to analyze UAV images and
detect potential runway defects thoroughly, such as surface water pooling and vegetation close
to the runway [10]. Throughout this process, it was observed that detecting specific defects
on the runway, such as loss of material, segregation, and rutting, poses significant challenges
due to the complexity of categorization. While deep learning methods are powerful, they
often require a substantial labeled training dataset for model development. However, in the
context of operational airports, it is nearly impossible to obtain many images showing
runways with various evident defects and label them in bulk.To address this limitation,
our approach involves evaluating the smoothness of airport runways using image filtering
and thresholding algorithms with high-resolution UAV imagery.

The following are the main contributions of this paper.

• Approach: We have developed a hybrid approach combining the vision transformer
model, image filtering, and thresholding algorithms with high-resolution UAV im-
agery to accurately evaluate gravel runways’ conditions. Our system can effectively
detect and segment areas with defects such as surface water pooling and vegeta-
tion, generating comprehensive evaluation reports that include numerical data and
visual representations.

• Experimentation: To facilitate our experimentation, we collect diverse high-resolution
aerial images of airport gravel runways from multiple airports, utilizing drones as our
primary data acquisition tool. This dataset is a crucial asset, forming the backbone of
our model’s training and testing phases. With this extensive dataset at our disposal,
we can thoroughly evaluate and validate the performance of our model across a wide
range of real-world airport environments, ensuring its robustness and effectiveness.

• Evaluation: Our approach’s overall model performance involves assessing its ef-
fectiveness in detecting airport gravel runway defects and evaluating the runway’s
smoothness. Here are some key details about the overall model performance:

– Accuracy in defect detection: this involves evaluating the model’s ability to
identify and classify these defects correctly.

– Intersection over Union (IoU) metrics: we use IoU metrics to measure the overlap
between the model’s predicted and ground truth defect regions.

– Precision and recall: we assess the precision and recall of the model to evaluate
its ability to minimize false positives and false negatives, respectively, and also to
determine the overall efficiency of the model.

The paper is structured as follows: Section 2 explores the existing literature. Section 3
describes the core problem to be solved and breaks it down into four key subproblems.
Section 4 mentions that we will use the sliding window technique to run the detection
model directly on orthogonal images. Sections 5 and 6 discuss the detection and the
smoothness evaluation algorithms used in our research process. We finish by analyzing
and summarizing our experimental results in Sections 7 and 8.
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2. Related Works on Airport Runway Defects Detection

We conducted a literature review to provide an in-depth discussion of the progress
achieved in airport runway defect detection, particularly in the context of the growing
applications of UAV technology and image segmentation algorithms.

2.1. Ground-Based Imagery

Deep learning offers essential techniques for detecting runway defects, including
convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep belief
networks (DBNs). Guo et al. proposed an Airport Road Surface Intelligent Inspection
System. Employing computer vision and deep learning, the system utilizes MobileNet-SSD
and Mask R-CNN for target detection and semantic segmentation of airport pavement
anomalies [11]. Nhat-Duc et al. developed an intelligent model combining image processing
and machine learning algorithms to automatically detect and classify asphalt pavement
cracks [12]. The model utilizes multiclass support vector machines and artificial bee colony
optimization to classify pavement cracks, with features derived from image projective
integral analysis, enhancing prediction performance, with classification accuracy exceeding
96%.

Li et al. contributed to the field with an algorithm designed for the crack segmenta-
tion of airport runway pavement [13]. Their deep learning-based approach employs an
encoder–decoder network structure, integrating VGG19 for feature extraction. The model
introduces spatial pyramid pooling and multiloss supervision, enhancing crack segmenta-
tion capabilities, particularly on complex background airport pavements.

In exploring airport pavement damage detection, Zhang et al. proposed an automatic
segmentation algorithm, AM-Mask R-CNN. Addressing challenges in small target areas and
low light conditions, the algorithm integrates attention mechanisms [14]. The experimental
results highlight the model’s effectiveness, with a high average F1-score of 0.9489, a mean
intersection over the union of 0.9388, and an average segmentation speed of 11.8 FPS.

The datasets used in these studies are collected from ground-based devices or sensors,
such as vehicle-mounted cameras, laser sensors, or cameras carried by pavement inspec-
tion robots, rather than aerial imagery obtained from Unmanned Aerial Vehicles (UAVs)
or satellites.

2.2. UAVs Integrated Computer Vision Methods for Pavement Inspection

In recent years, there has been a surge in studies focused on the automation of pave-
ment crack detection and evaluation, driven by the need for efficient road maintenance
and safety improvement. Much of this research is dedicated to utilizing Unmanned Aerial
Vehicles (UAVs) and advanced image segmentation algorithms. The introduction of UAV
technology has revolutionized the field of runway defect detection, providing a more
comprehensive and timely approach to assessing road conditions [15].

The integration of Unmanned Aerial Vehicles (UAVs) and deep learning networks has
emerged as a potent approach in the domain of highway crack detection [16]. UAVs with
deep learning models, such as YOLOv4 and YOLOv5, have demonstrated their potential to
automate this critical task. These systems utilize various image preprocessing techniques
to enhance dataset quality, ultimately improving deep learning algorithms’ detection
performance and generalization ability.

In the quest for timely and effective road crack detection, a pixel-level approach based
on ARD-Unet has been proposed, combining U-Net with innovative techniques [17]. This
method achieves impressive results using UAV remote sensing images, with a 76.41% mean
Intersection over Union (mIoU) and a 74.24% F1-Score on a self-made dataset. Moreover,
ARD-Unet is integrated with UAV technology to create a road crack detection UAV Internet of
Things (IoT) system, which has demonstrated excellent performance in practical applications.

Conventional methods for monitoring pavement health have been criticized for their
inefficiency, time-consuming nature, and destructive impact on pavements. Recent research
suggests that deep learning network models offer a potential solution [18]. Low-altitude
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UAVs, equipped with high-resolution multispectral imaging capabilities, have been em-
ployed to collect detailed pavement data. These UAV-captured images are processed to
extract and classify pavement defects using a combination of convolutional neural networks
(CNNs) and support vector machine (SVM) classifiers. The findings indicate a significant
enhancement in the accuracy of asphalt pavement aging and damage detection, addressing
the limitations of conventional methods.

Another paper introduces a detailed airport pavement inspection approach, lever-
aging remote sensing UAV technology and AI to automate distress identification and
measurement [19]. It claims significant cost savings (88%) and a substantial increase in
data collection speed (1000 times faster) compared to traditional methods, with repro-
ducible results. However, further discussion on potential challenges, such as the initial
investment and operational expertise required for UAV usage, regulatory and safety con-
siderations, and potential limitations of AI-based distress detection, would enhance the
paper’s completeness and applicability in real-world airport management.

These studies collectively emphasize the growing significance of UAV technology
and the integration of advanced algorithms in automating the detection and evaluation of
pavement defects.

2.3. Gravel Pavement Surface Inspection

Given the distinct characteristics of our study areas in Northern Canada, where airport
runways are predominantly constructed with unsurfaced gravel material, it is essential to
understand the unique health conditions associated with gravel pavement surfaces. Unlike
asphalt and concrete surfaces, the definitions of gravel pavement surfaces’ health conditions
vary significantly. Numerous studies have discussed the conditions and potential defects
specific to gravel surfaces.

Unsurfaced gravel roads constitute a significant portion of road networks in Brazil and
other countries, necessitating substantial budget allocations for maintenance [20]. However,
despite these investments, construction and maintenance efforts often fall short due to a
lack of specialized technological knowledge among personnel. Contributing to improved
practices, the following paper analyzed distress mechanisms in unsurfaced gravel roads
based on soil mechanics. The comprehensive study encompasses laboratory tests, 30-month
performance monitoring, and surveys addressing distress evolution and road roughness.

Another study evaluated the performance of the runway and taxiway at Cambridge
Bay airport, highlighting the superior ride quality on the taxiway but recommending
corrective action for the runway based on International Roughness Index (IRI) and Riding
Comfort Index (RCI) values [2]. The lightweight deflectometer (LWD) test revealed stiffness
variations along the runway, suggesting potential design considerations for new surface
technologies. Condition inspections identified gravel quality issues impacting operational
and maintenance costs, emphasizing the need for standardized procedures. The study
recommended a hydraulic penetrometer and LWD for California Bearing Ratio (CBR)
testing in Arctic airports with financial constraints. These metrics have been used for
decades. They are manual measures, highly subjective, and limited to specific devices. We
will introduce a more comprehensive metric that is more accurate, adaptable to diverse
situations, and incorporates objective data for a reliable evaluation.

In managing vital gravel airstrips crucial for general aviation, emergency evacua-
tions, and forest fire-fighting, the Yukon Department of Highways and Public Works faces
unique challenges [21]. Despite existing systems for highways and major airports, a gap
exists concerning an inspection and rating system for these low-traffic airstrips. The paper
outlines the development of a rating system, focusing on distress monitoring and intro-
ducing a general condition index. Emphasizing the distinctive roles of these community
airports, the study underscores their specific needs, such as medical evacuations and forest
fire-fighting support, necessitating a tailored management approach.
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2.4. Research Gap

Our research goal aims to create a next-gen automated gravel runway inspection
system, especially for airports in remote areas. Existing studies on runway inspection
primarily focused on asphalt surfaces, with works such as [13,22–24]. The domain of gravel
runway inspection remains reliant mainly on manual methods [2].

Our research adopts a robust approach that combines drones and computer vision to
address the inspection challenges of gravel runways. We provide a comprehensive tool
for this purpose, which incorporates identifying critical elements like water pooling and
vegetation, which are potential runway defects. Additionally, the tool detects irregularities
on the runway surface using a bilateral image-filtering technique, a novel application of
image filtering in this field. Overall, our research represents the first of its kind, an end-to-
end automated system designed to inspect gravel runways.

3. Problem Description

Traditional manual inspections of gravel runways at remote airports in Northern
Canada are inadequate due to infrequency, high labor costs, and challenges posed by
the harsh environment. While automated monitoring approaches have been explored for
asphalt and concrete runways, limited work exists for gravel surfaces at remote sites.

We have learned from Advisory Circular 300-004 [10] issued by Transport Canada that
the following common types of defects are observed on gravel runways:

• Surface water pooling (as shown in the blue area of Figure 1a): there is a risk of water
intrusion into the runway due to poor drainage around the runway.

• Vegetation (as shown in the yellow area of Figure 1b): vegetation that grows uncontrol-
lably can gradually cover the surface or edges of a gravel runway, potentially caused
by inadequate drainage systems or the buildup of organic soils over time [10].

• Smoothness (as shown in the runway area in Figure 1c): in this category, we can
observe a lot of foreign body spots on the runway, such as large rocks and areas of
frost heave (as shown in Figure 1d), scattered across the surface.
The smoothness of the runway area depicted in Figure 1c reveals numerous foreign
objects, such as large rocks and areas of frost heave, scattered across the surface.

The primary objective of this research is to develop a comprehensive automated
system specifically designed for remote airports to monitor and detect irregularities and
defects in gravel runways, thereby enhancing safety measures and operational efficiency in
airport environments. We tested our approach using datasets based on Canadian remote
gravel airports.

(a) Example: water pooling. (b) Example: vegetation.

Figure 1. Cont.
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(c) Example: smoothness. (d) Example: icing around the runway.
Figure 1. Gravel runway defects example.

In conjunction with the existing literature concerning airport runway defect detection,
this study aspires to address four pivotal subproblems:

• Characterizing and Classifying Runway Issues: Establishing standardized criteria
for characterizing and classifying defects in airport runways to enable the systematic
assessment of surface smoothness and structural integrity.

• POI Detection Algorithms: Selecting and utilizing the most efficient deep learning
algorithms capable of accurately detecting and segmenting the potential defect areas
on the gravel runway.

• Smoothness Evaluation Algorithms: Integrating image filtering and image threshold-
ing technologies with a comprehensive metric to accurately assess the smoothness of
gravel runway surfaces.

• Automate Analysis System: Formulating an automated, streamlined approach with
the above airport runway inspection and maintenance methods. This system aims
to simplify the inspection process, visualize the inspection results, and improve the
accuracy and efficiency of airport condition analysis.

The complete methodology steps are illustrated in the flowchart below (see Figure 2).
In the methodology section, we will detail each subproblem, providing solutions and
insights derived from our research.

Figure 2. Methodology flowchart.

4. Sliding Window Technique

After collecting airport images using UAVs, a stitched large geotagged orthogonal
image will be generated using external software (this is not the focus of our study). To run
the detection model over the orthogonal image, we apply a sliding window technique,
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which enables us to load and read large images using computer vision models, perform
segmentation, and associate results with real geocoordinates. The process of the sliding
window technique is visualized in Figure 3.

We start by iterating through the large orthogonal image using a sliding window,
starting from the top left corner and then moving the window horizontally and vertically
according to the specified stride. As the window shifts to a new position, it captures a
portion of the image within its boundaries. We apply our POI detection and smoothness
evaluation methods for each sliced image. Afterward, we combine the results of processing
each subregion and assign specific labels and georeferences.

Figure 3. Sliding window technique.

5. Point of Interest (POI) Detection Algorithms

To ensure the accurate detection of potential defects on the runway, we have explored
a wide range of object detection algorithms, including R-CNN [25] and YOLO [26]. How-
ever, as object detection is limited to detecting a fuzzy range using bounding boxes, we
incorporated image segmentation algorithms to identify the targets’ outlines, yielding
much better results.

We conducted tests and comparisons on three distinct segmentation algorithms: Mask
R-CNN [27], PointRend [28], and Mask2Former [29]. Among these, Mask2Former demon-
strated superior performance, outperforming the other two algorithms as discussed later in
the paper.

5.1. Mask R-CNN

Mask-RCNN is a computer vision algorithm well known for its excellent image
segmentation performance. Developed by the Facebook AI Research team, Mask-RCNN
expands upon the Faster R-CNN architecture to detect objects and generate segmentation
masks for each instance simultaneously [27].

This is achieved by adding a mask branch (as shown in Figure 4) to each Region
of Interest (RoI), which predicts segmentation masks alongside the existing branches
for classification and bounding box regression. The mask branch utilizes a small Fully
Convolutional Network (FCN) applied to each RoI to predict segmentation masks on
a pixel-by-pixel basis. Mask-RCNN is straightforward to implement and train within
the Faster R-CNN framework, allowing for flexible architecture designs. Additionally,
the computational overhead of the mask branch is minimal, running at 5 fps, resulting in
fast system performance and rapid experimentation.
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Figure 4. MASK R-CNN framework for instance segmentation.

5.2. PointRend

The PointRend algorithm [28] performs point-based segmentation predictions at adap-
tively selected locations using an iterative subdivision algorithm. At its core, PointRend
intelligently selects a subset of points within an initial coarse segmentation map based
on the uncertainty of predictions at those locations, often at or near object edges. These
points are chosen through an adaptive subdivision process that zeroes in on areas with high
prediction entropy. For each selected point, PointRend extracts high-resolution features
from multiple layers of the CNN, providing a rich, detailed context for making predictions.
These features are then processed by a specialized, lightweight neural network module
known as the Point Head, which makes final class predictions for each point. This process
may be iterated several times, with each cycle further refining the segmentation by focusing
on areas of uncertainty. The outcome is a segmentation map that significantly improves
upon the initial output, offering sharper and more accurate object boundaries without a
proportional increase in computational demand. PointRend achieves this by efficiently
directing computational resources to where they are most needed as shown in Figure 5,
optimizing the trade-off between detail enhancement and overall computational efficiency.

Figure 5. PointRend architecture.

5.3. Mask2Former

Mask2Former is a unified vision transformer architecture created by the Google Re-
search Team for universal image segmentation tasks like panoptic, instance, and seman-
tic segmentation.

As Figure 6 illustrates, its key innovation is the masked attention mechanism that
extracts localized features by constraining cross-attention within predicted mask regions.
Unlike previously specialized architectures for each task, Mask2Former reduces research
effort by at least three times while outperforming state-of-the-art methods across popular
datasets [29]. Our project necessitates high accuracy in segmentation tasks due to the
critical nature of airport maintenance. Mask2Former, leveraging the latest vision trans-
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former model and masked attention mechanism, would be a strong candidate for our POI
detection task.

Figure 6. Mask2Former architecture.

6. Smoothness Evaluation Algorithm

The smoothness of a runway is determined by quantifying the irregularities on the
runway surface. This involves detecting these irregularities while distinguishing them
from the runway’s normal texture. For this purpose, we chose to use the bilateral filter
algorithm. This approach allowed us to identify irregularities by highlighting the differ-
ences from the original image while preserving the edges. To refine the results, we used the
Ramer–Douglas–Peucker algorithm and morphological operations, which helped retain
only the relevant irregularities. In the end, we provided a rating for the runway condition
using a sigmoid function on a scale from 1 to 5, where a higher rating indicates a greater
need for maintenance. We will discuss the details of each step in the following subsections.

6.1. Bilateral Filter

Bilateral filtering algorithm [30] smooths images while preserving edges using a
nonlinear combination of nearby image values. This method considers spatial proximity
and photometric similarity and prefers near values to distant values in both domain and
range. It does this by adjusting each pixel’s value based on a weighted average of its
neighbors, where the weights are determined by the spatial distance and the intensity
difference between the center pixel and its surrounding pixels. The key idea of the bilateral
filter is that a pixel’s impact on another is determined by its spatial closeness as well as its
value similarity.

The bilateral filter equation [31], denoted by BF, is defined as:

BF[I]p =
1

Wp
∑
q∈S

Gσs(∥p − q∥)Gσr (|Ip − Iq|)Iq. (1)

where the normalization factor Wp ensures pixel weights sum to 1.0:

Wp = ∑
q∈S

Gσs(∥p − q∥)Gσr (|Ip − Iq|) (2)

The parameters σs and σr determine the extent of filtering applied to image I.
Equation (1) defines a normalized weighted average, where Gσs represents a spatial Gaus-
sian weight that diminishes the impact of pixels based on their spatial distance, and Gσr
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is a range Gaussian that reduces the influence of pixel q when its intensity significantly
deviates from that of Ip. Figure 7 shows the original runway image and its transformed
version after applying the bilateral filter.

Figure 7. Original and bilateral filtered image.

6.2. Morphological Operations

Morphological operations is a technique used to modify the shape and structure of
objects within an image. The structuring element acts as a probe that interacts with the
input image, and the resulting output depends on the relationship between the structuring
element and the local pixel configurations in the image. For our research, we utilized
erosion and dilation.

Erosion is a morphological operation that shrinks or thins objects in an image. It
combines the input image with a structuring element (kernel), and it sets the output pixel
value to the minimum value in the neighborhood defined by the structuring element.
Figure 8b demonstrates erosion’s effect on a runway’s gray image.

Dilation is a morphological operation that expands or thickens objects in an image. It
combines the input image with a structuring element (kernel). The output pixel value is set
to the maximum value in the neighborhood defined by the structuring element. Figure 8c
demonstrates the effect of dilation on a gray image of a runway.

(a) Bilateral filtered (b) Erosion (c) Dilation (d) Contour approximation
Figure 8. Morphological operations and contour approximation applied to a gray image of a runway.

6.3. Ramer–Douglas–Peucker Algorithm

Ramer–Douglas–Peucker [32] is an algorithm that decimates a curve composed of line
segments to a similar curve with fewer points. The algorithm simplifies an original line
by identifying specific points, named critical points, which are then used to construct a
simplified version of the line. This process begins by setting a predefined tolerance value
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(T) greater than zero, which measures units of length to help determine the points to be
retained. A segment is drawn from the original line’s starting point A to the ending point Z
(as seen in Figure 9). The distances of all other points on the line to this segment A − Z are
then measured. If no distance exceeds the tolerance T, the process ends, and the generalized
line will be composed of points A − Z.

Conversely, if vertex B is more distant from AZ (dimax = dB), it will be selected and B
will be marked as a critical point. Following this, the line is divided into two new segments,
A − B and B − Z, and the process of measuring distances and selecting critical points is
repeated for these new segments. This recursive procedure continues, splitting the line
and evaluating points until no further divisions are possible. The result is a simplified line
composed of the selected critical points, effectively reducing the points of the original line.
This simplified line is generated as shown in Figure 9.

Contour approximation, which uses the Ramer–Douglas–Peucker algorithm, aims to
simplify a curve by reducing its vertices. We can see a demo of contour approximation in
Figure 8d using a gray image of a runway following a morphological operation.

Figure 9. Visualization of the Ramer–Douglas–Peucker algorithm from Point A to Z.

6.4. Sigmoid Function

The sigmoid function is a mathematical function that maps any real-valued input to a
value between 0 and 1. The sigmoid function is denoted by the Greek letter (σ(x)) and is
defined as:

σ(x) =
1

1 + e−x

where (x) is the input to the function, and (e) is Euler’s number. In evaluating the runway’s
smoothness, we modified the sigmoid function, which maps outputs to a range from 1 to 5.
The modified sigmoid function is defined as:

σ(r) =
(

8
1 + e−αx

)
− 3 (3)



Drones 2023, 8, 225 12 of 19

where (x) represents the normalized thresholded differences obtained after applying a
bilateral filter to the original image, and (α) is a constant that controls the steepness of the
sigmoid curve.

The updated sigmoid function categorizes runway conditions into five levels based
on their smoothness. The details of the rating are defined as follows:

• Super Smooth: The surface is exceptionally smooth, indicating optimal conditions.
• Smooth: Indicates a well-maintained surface with minimal irregularities.
• Moderately Smooth: The surface is generally smooth but with some noticeable variations.
• Rough: Shows signs of a significant presence of irregularities, requiring attention.
• Very Rough: This signifies a deteriorated surface.

Figure 10 showcases examples corresponding to each of these ratings, illustrating the
range of conditions from Super Smooth to Very Rough.

(a) Rating: 1—Super Smooth (b) Rating: 2—Smooth (c) Rating: 3—Moderately
Smooth

(d) Rating: 4—Rough (e) Rating: 5—Very Rough

Figure 10. Smoothness rating on runway images.

7. Methodology

The initial dataset for our model consists of images obtained from six remote airports
in Northern Canada, gathered using UAVs. These airports include Port McNeill Airport
(YMP) on Vancouver Island, as well as Kashechewan Airport (ZKE), Moosonee Airport
(YMO), Round Lake Airport (ZRJ), Keewaywin Airport (KEW), and North Spirit Lake
Airport (YNO) in Ontario. The images were captured in 4k resolution using RGB cameras
at an altitude ranging from 40 to 70 m above ground level. Preprocessing of the images
was performed using RoboFlow, and key features of interest were labeled accordingly.
Following preprocessing, the model was trained using the Northeastern Discovery Cluster.
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7.1. Annotation and Preprocessing

In order to train our algorithm for identifying specific defects within airport runway
imagery, we conducted a detailed annotation process. This process aimed to label and clas-
sify various points of interest in our collected high-resolution aerial images. The following
points of interest were carefully identified and annotated:

• Surface Water Pooling or Icing: We carefully examined each image to identify and
annotate any water bodies or signs of icing in the images as shown in the blue area
of the previous Figure 1a. In addition to standing water on the runway, puddles at
the runway’s edge pose a potential material loss hazard. We annotated such areas to
enable the algorithm to detect these risks.

• Vegetation: Another important aspect of our annotation process was identifying any
vegetation growing along the edges of the runway, as shown in the yellow area of the
previous Figure 1b. Vegetation within a specified distance from the runway edge was
annotated to help the algorithm recognize it.

• Edges of Runway: Each image was thoroughly reviewed to determine the edges of
runway as shown in the purple area of the previous Figure 1a,b, which is essential for
assessing the smoothness of the gravel runway. In cases where runway boundaries
were unclear due to snow or ice, we used runway lights to identify the prepared
runway edge accurately.

Following annotation, we preprocessed the dataset to enhance accuracy. This prepro-
cessing involved two main steps:

• Resize: All images were resized to 1024 × 1024 pixels to ensure the model could
capture small details, such as defects on the runway, without loss.

• Augmentation: We augmented the training samples by flipping them horizontally and
vertically and adjusting saturation (between −25% and +25%) and exposure (between
−10% and +10%) randomly to improve model robustness.

7.2. Metrics

The metrics we use for POI detection algorithms include Intersection over Union
(IoU), accuracy, F-score, precision, and recall. These are commonly used metrics for image
segmentation tasks, collectively evaluating the algorithm’s ability to accurately identify
POI within images.

1. Intersection over Union (IoU):

IoU =
Area of Overlap
Area of Union

where the area of overlap is the intersection between the predicted and ground truth
regions, and the area of union is their combined area.

2. Accuracy:

Accuracy =
Number of Correct Predictions

Total Number of Predictions

3. F-score:

F − score =
2 × Precision × Recall

Precision + Recall

4. Precision:

Precision =
True Positives

True Positives + False Positives

5. Recall:

Recall =
True Positives

True Positives + False Negatives
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8. Results

We selected three image segmentation models to achieve the best results: Mask R-CNN,
PointRend, and Mask2Former. We trained these models using the same hyperparameters
and dataset. At the early stage of our project without the UAVs dataset, we trained and
tested these models with LARD (Landing Approach Runway Detection), a dataset of
aerial front view images of runways taken during the aircraft landing phase [33]. In total,
1500 samples were selected, resized and split into an 8:2 train–validate ratio. With batch
size 2 and 100 epoch, we obtained the results shown in Table 1 for segmenting runway
and background.

Table 1. LARD dataset training result.

Model IoU (%) Accuracy (%) F-Score (%) Precision (%) Recall (%)

Mask R-CNN 84.86 91.33 91.27 94.82 93.66
PointRend 86.14 92.27 92.55 92.84 92.27
Mask2Former 90.95 97.12 95.26 93.47 97.12

After we obtained the UAV dataset of the six remote airports, we trained these three
models again to compare. The dataset contained a total of 6832 UAV images. With training
batch size 2 and 100 epoch, the training results are shown in Table 2.

Table 2. UAVs realistic dataset result.

Model Class IoU (%) Accuracy
(%)

F-Score
(%)

Precision
(%)

Recall
(%)

Mask R-CNN

bg 97.19 98.78 98.82 97.93 98.26
runway 89.33 92.57 96.93 92.87 95.46
vegetation 62.34 65.89 73.18 69.56 83.52
water 55.84 59.43 69.78 62.84 71.47

PointRend

bg 94.34 96.41 97.09 97.77 96.41
runway 90.56 91.45 95.63 93.27 94.63
vegetation 66.52 75.57 74.85 74.53 77.57
water 43.34 59.43 54.47 43.04 65.01

Mask2Former

bg 97.10 98.65 98.53 98.41 98.65
runway 92.41 95.29 96.06 96.84 95.29
vegetation 71.6 84.21 83.45 82.70 84.21
water 50.31 71.19 66.94 63.18 71.19

After comparing the results, Mask2Former outperformed the other two regarding
accuracy and IoU. A final training session was conducted for Mask2Former to ensure the
best fit before deployment.

Due to the lack of examples for the water pooling on the runway and low IoU on water,
we augment the dataset by manually adding water pools to the runway. Two hundred aug-
mented water pooling samples were added for the final training. With 7315 samples, batch
size 2, and 100 epochs, we obtained better IoU and accuracy for the overall performance.

8.1. Building Automate Pipeline and Visualizing Results

To streamline the analysis of runway images, we developed a robust automated
pipeline that integrates the essential stages of slicing, detecting, and merging. Initially,
the pipeline segments large orthorectified images into manageable pieces, which is crucial
for detailed analysis of specific areas without the computational burden of processing the
entire image simultaneously. Each sliced segment then undergoes a detailed detection
process using our trained Mask2Former model. This step identifies and classifies points of
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interest (POIs) such as surface irregularities, water pooling, and vegetation encroachment.
We also evaluated the smoothness of runways as discussed in previous sections.

Following these operations, the system merges the analyzed segments to reconstruct
the comprehensive view of the runway. This reconstructed image includes all detected
POIs as seen in Figure 11, each annotated with global georeference coordinates. The final
output is visualized through an intuitive graphical interface that displays the runway,
highlighting areas of concern. This visualization assists in rapid assessment and decision-
making and is a critical tool for ongoing airport maintenance planning. The automated
process ensures maintenance teams have accurate, up-to-date information about runway
conditions, enhancing safety and operational efficiency.

Figure 11. Visualized results overlaying a satellite map. The bright green contours highlight all
detected targets, including runways, vegetation, water, and rough surfaces. They are distinguished by
various filling colors, e.g., runway as purple, water as blue, vegetation as green, and rough surfaces
as red.
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8.2. Implications

Our research holds significant potential for improving aviation safety and operational
efficiency at remote airports with unpaved runways. The implications of our work extend
beyond the immediate scope of Northern Canada and offer several critical benefits globally.
Below, we address these implications in detail:

• Global Relevance of the Approach: Our methodology is not limited to Northern
Canada. Countries with vast, sparsely populated areas such as the United States,
Australia, and New Zealand also rely on gravel runways for connecting remote com-
munities. Additionally, developing nations with limited road and rail infrastructure,
like parts of Africa, Papua New Guinea, and Pacific Islands, could potentially benefit
from our automated runway inspection and maintenance system [34].

• Enhancement of Aviation Safety: The implementation of our automated system could
revolutionize the frequency and thoroughness of runway inspections, potentially
leading to improved aviation safety. Regular and detailed monitoring ensures that any
hazards such as surface irregularities, water pooling, or vegetation encroachment are
promptly identified and addressed. Integrating drone-in-a-box technology (e.g., DJI
Dock 2) for automated data collection can further streamline runway inspections. This
system allows for frequent, scheduled flights without the need for constant human
oversight, ensuring consistent monitoring and rapid response to emerging issues.

• Applicability to Other Unpaved Surfaces: Our model can be adapted for other types
of unpaved runways, including grass, dirt, and coral surfaces. By fine-tuning our
algorithms and training on relevant datasets, we can extend our system’s applicability
to various runway materials, enhancing the versatility and utility of our approach.

• Potential Implications in Other Industries: The techniques developed in our research
can extend beyond aviation to benefit a variety of other industries:

– Infrastructure Inspection: The technology could be adapted for inspecting roads,
bridges, and other infrastructure, identifying issues such as cracks, erosion,
and vegetation overgrowth.

– Agriculture: Automated monitoring of large agricultural fields for water pooling,
soil erosion, and crop health, similar to how runways are inspected.

– Environmental Monitoring: Assessing remote areas for environmental changes,
such as deforestation, flooding, or land degradation.

8.3. Limitations and Future Work

The following are possible future directions and limitations of our work:

• The segmentation IoU of water and vegetation is not ideal due to a lack of relevant
datasets. Even though we added 200 augmented water samples for the final training,
it is still insufficient for significant improvement. The next step of our study would
be to enrich our dataset to ensure a comprehensive number of water and vegetation
samples. This can be achieved by utilizing the latest image generation technologies.

• The smoothness evaluation algorithm’s result is highly dependent on airport weather
and lighting conditions. It is not robust enough to accurately evaluate unseen airports.
We will explore the integration of deep learning algorithms to address compatibility
issues in the future.

• The training process is prolonged due to the large dataset, input size, and the use of
a large vision transformer model. In the next phase of our research, we will apply
more training to the model, fine-tune the hyperparameters and improve the model’s
architecture to achieve faster detection and evaluation results and greater availability
of our solution in the cloud-based platform [35].
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9. Conclusions

Our paper introduces a novel approach for automating the monitoring and maintain-
ing of gravel runways at remote airports in Northern Canada. The potential applications of
our approach extend beyond the aviation sector. Our approach could be used in monitoring
the integrity of roads, bridges, and other infrastructure, identifying structural vulnerabili-
ties such as cracks and erosion. It could also assist in monitoring agricultural fields for water
pooling and detecting soil erosion, additionally assessing remote areas for environmental
changes, such as deforestation, flooding, or land degradation. Our approach is adaptable
in detecting various surface irregularities, making it a powerful tool across diverse sectors.

In conclusion, by harnessing UAV imagery and advanced computer vision techniques,
we have developed a hybrid approach that accurately detects and segments runway defects
such as water pooling, vegetation, and rough surfaces. Through extensive experimenta-
tion with diverse high-resolution aerial images collected from multiple airports, we have
demonstrated the effectiveness and robustness of our approach in providing comprehen-
sive evaluation results for runway maintenance. Ultimately, our automated system offers a
universal, effective, and user-friendly solution that can be broadly applied to diverse types
of airports globally.
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