High-Efficiency Data Fusion Aerodynamic Performance Modeling Method for High-Altitude Propellers
Abstract
:1. Introduction
2. Sampling Method
2.1. LHS Method
2.2. OLHS Method
2.3. SLE-CLHS Method
3. Co-Kriging Method and Infill Sampling Criterion
3.1. Co-Kriging Method
3.2. Infill Sampling Criterion
4. Efficient Modeling and Design
4.1. Modeling Process
4.2. The Constrained Sampling Method
5. Results and Discussion
5.1. Surrogate Model Construction and Convergence Assessment Criteria
5.2. Analysis of Modeling Accuracy
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Merchant, M.; Miller, L.S. Propeller performance measurement for low Reynolds number UAV applications. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9–12 January 2006; p. 1127. [Google Scholar]
- Guanglin, G.; Zhanke, L.; Bifeng, S.; Xiang, D. Key technologies of solar powered unmanned air vehicle. Flight Dyn. 2010, 28, 1–4. [Google Scholar]
- Zhu, X.F.; Guo, Z.; Hou, Z.X. Solar-powered Airplanes: A Historical Perspective and Future Challenges. Prog. Aerosp. Sci. 2014, 71, 36–53. [Google Scholar] [CrossRef]
- Malim, A.; Mourousias, N.; Marinus, B.G.; De Troyer, T. Structural Design of a Large-Scale 3D-Printed High-Altitude Propeller: Methodology and Experimental Validation. Aerospace 2023, 10, 256. [Google Scholar] [CrossRef]
- Poloczek, M.; Wang, J.; Frazier, P. Multi-information source optimization. Adv. Neural Inf. Process. Syst. 2017, 30, 4291–4301. [Google Scholar]
- Navon, I.M. Data assimilation for numerical weather prediction: A review. Data Assim. Atmos. Ocean. Hydrol. Appl. 2009, 21–65. [Google Scholar] [CrossRef] [PubMed]
- Forrester, A.I.; Sóbester, A.; Keane, A.J. Multi-fidelity optimization via surrogate modelling. Proc. R. Soc. A Math. Phys. Eng. Sci. 2007, 463, 3251–3269. [Google Scholar] [CrossRef]
- Mohammadi-Amin, M.; Entezari, M.M.; Alikhani, A. An efficient surrogate-based framework for aerodynamic database development of manned reentry vehicles. Adv. Space Res. 2018, 62, 997–1014. [Google Scholar] [CrossRef]
- Alexandrov, N.M.; Lewis, R.M.; Gumbert, C.R.; Green, L.L.; Newman, P.A. Approximation and model management in aerodynamic optimization with variable-fidelity models. J. Aircr. 2001, 38, 1093–1101. [Google Scholar] [CrossRef]
- Keane, A.J. Wing optimization using design of experiment, response surface, and data fusion methods. J. Aircr. 2003, 40, 741–750. [Google Scholar] [CrossRef]
- Ghoreyshi, M.; Badcock, K.J.; Woodgate, M.A. Accelerating the numerical generation of aerodynamic models for flight simulation. J. Aircr. 2009, 46, 972–980. [Google Scholar] [CrossRef]
- Da Ronch, A.; Ghoreyshi, M.; Badcock, K.J. On the generation of flight dynamics aerodynamic tables by computational fluid dynamics. Prog. Aerosp. Sci. 2011, 47, 597–620. [Google Scholar] [CrossRef]
- Mourousias, N.; Malim, A.; Marinus, B.G.; Runacres, M. Assessment of multi-fidelity surrogate models for high-altitude propeller optimization. In Proceedings of the AIAA AVIATION 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022; p. 3752. [Google Scholar]
- Li, K.; Kou, J.; Zhang, W. Deep learning for multifidelity aerodynamic distribution modeling from experimental and simulation data. AIAA J. 2022, 60, 4413–4427. [Google Scholar] [CrossRef]
- He, L.; Qian, W.; Zhao, T.; Wang, Q. Multi-fidelity aerodynamic data fusion with a deep neural network modeling method. Entropy 2020, 22, 1022. [Google Scholar] [CrossRef]
- Ning, C.; Zhang, W. MHA-Net: Multi-source heterogeneous aerodynamic data fusion neural network embedding reduced-dimension features. Aerosp. Sci. Technol. 2024, 145, 108908. [Google Scholar] [CrossRef]
- Wang, X.; Ning, C.; Wang, W.; Zhang, W. Intelligent fusion method of multi-source aerodynamic data for flight tests. Acta Aerodyn. Sin. 2023, 41, 12–20. [Google Scholar]
- Nagawkar, J.R.; Leifsson, L.T.; He, P. Aerodynamic shape optimization using gradient-enhanced multifidelity neural networks. In Proceedings of the AIAA SciTech 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 2350. [Google Scholar]
- Wu, X.; Zuo, Z.; Ma, L.; Zhang, W. Multi-fidelity neural network-based aerodynamic optimization framework for propeller design in electric aircraft. Aerosp. Sci. Technol. 2024, 146, 108963. [Google Scholar] [CrossRef]
- Yondo, R.; Andrés, E.; Valero, E. A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses. Prog. Aerosp. Sci. 2018, 96, 23–61. [Google Scholar] [CrossRef]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 2000, 42, 55–61. [Google Scholar] [CrossRef]
- Park, C.; Haftka, R.T.; Kim, N.H. Remarks on multi-fidelity surrogates. Struct. Multidiscip. Optim. 2017, 55, 1029–1050. [Google Scholar] [CrossRef]
- Fang, K.T.; Lin, D.K.; Winker, P.; Zhang, Y. Uniform design: Theory and application. Technometrics 2000, 42, 237–248. [Google Scholar] [CrossRef]
- Rubinstein, R.Y.; Kroese, D.P. Simulation and the Monte Carlo Method; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Johnson, M.E.; Moore, L.M.; Ylvisaker, D. Minimax and maximin distance designs. J. Stat. Plan. Inference 1990, 26, 131–148. [Google Scholar] [CrossRef]
- Morris, M.D.; Mitchell, T.J. Exploratory designs for computational experiments. J. Stat. Plan. Inference 1995, 43, 381–402. [Google Scholar] [CrossRef]
- Wang, S.; Lv, L.; Du, L.; Song, X. An improved LHS approach for constrained design space based on successive local enumeration algorithm. In Proceedings of the 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China, 29 July–2 August 2019; pp. 896–899. [Google Scholar]
- Yi, J.; Li, X.; Xiao, M.; Xu, J.; Zhang, L. Construction of nested maximin designs based on successive local enumeration and modified novel global harmony search algorithm. Eng. Optim. 2017, 49, 161–180. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, L.; Long, T.; Peng, L. A novel algorithm of maximin Latin hypercube design using successive local enumeration. Eng. Optim. 2012, 44, 551–564. [Google Scholar] [CrossRef]
- Couckuyt, I.; Dhaene, T.; Demeester, P. ooDACE toolbox: A flexible object-oriented Kriging implementation. J. Mach. Learn. Res. 2014, 15, 3183–3186. [Google Scholar]
- Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient global optimization of expensive black-box functions. J. Glob. Optim. 1998, 13, 455–492. [Google Scholar] [CrossRef]
- Han, Z.H.; Zimmermann Görtz, S. Alternative cokriging method for variable-fidelity surrogate modeling. AIAA J. 2012, 50, 1205–1210. [Google Scholar] [CrossRef]
- Wenjun, N.I.; Ying, B.I.; Di, W.U.; Xiaoping, M.A. Energy-optimal trajectory planning for solar-powered aircraft using soft actor-critic. Chin. J. Aeronaut. 2022, 35, 337–353. [Google Scholar]
Num_HF | Thrust_MRE | Torque_MRE | Efficiency_MRE | Thrust_MAE | Torque_MAE | Efficiency_MAE |
---|---|---|---|---|---|---|
0 | 16.27% | 14.08% | 7.15% | 25.622 | 13.779 | 0.032 |
150 | 12.44% | 8.51% | 6.24% | 24.773 | 9.058 | 0.028 |
250 | 4.33% | 2.91% | 3.76% | 7.624 | 1.802 | 0.015 |
350 | 2.96% | 1.92% | 2.39% | 3.729 | 1.018 | 0.01 |
450 | 2.54% | 1.83% | 1.67% | 3.182 | 0.778 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Jiao, J.; Zhang, J.; Zhang, Z. High-Efficiency Data Fusion Aerodynamic Performance Modeling Method for High-Altitude Propellers. Drones 2024, 8, 229. https://doi.org/10.3390/drones8060229
Zhang M, Jiao J, Zhang J, Zhang Z. High-Efficiency Data Fusion Aerodynamic Performance Modeling Method for High-Altitude Propellers. Drones. 2024; 8(6):229. https://doi.org/10.3390/drones8060229
Chicago/Turabian StyleZhang, Miao, Jun Jiao, Jian Zhang, and Zijian Zhang. 2024. "High-Efficiency Data Fusion Aerodynamic Performance Modeling Method for High-Altitude Propellers" Drones 8, no. 6: 229. https://doi.org/10.3390/drones8060229
APA StyleZhang, M., Jiao, J., Zhang, J., & Zhang, Z. (2024). High-Efficiency Data Fusion Aerodynamic Performance Modeling Method for High-Altitude Propellers. Drones, 8(6), 229. https://doi.org/10.3390/drones8060229