
Citation: Gao, C.; Bian, X.; Hu, B.;

Chen, S.; Wang, H. Intelligent Online

Offloading and Resource Allocation

for HAP Drones and Satellite

Collaborative Networks. Drones 2024,

8, 245. https://doi.org/10.3390/

drones8060245

Academic Editors: Chinthaka

Premachandra and Tomotaka Kimura

Received: 16 April 2024

Revised: 27 May 2024

Accepted: 28 May 2024

Published: 5 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Intelligent Online Offloading and Resource Allocation for HAP
Drones and Satellite Collaborative Networks
Cheng Gao 1, Xilin Bian 1, Bo Hu 1,* , Shanzhi Chen 2 and Heng Wang 3

1 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications,
Beijing 100876, China; gaoch@bupt.edu.cn (C.G.); bianxilin2018@bupt.edu.cn (X.B.)

2 State Key Laboratory of Wireless Mobile Communication, China Academy of Telecommunication Technology,
Beijing 100049, China; chensz@cict.com

3 Chinatelecom Research Institute, Beijing 102209, China; wangh26@chinatelecom.cn
* Correspondence: hubo@bupt.edu.cn

Abstract: High-altitude platform (HAP) drones and satellites collaborate to form a network that
provides edge computing services to terrestrial internet of things (IoT) devices, which is considered a
promising method. In this network, IoT devices’ tasks can be split into multiple parts and processed
by servers at non-terrestrial nodes in different locations, thereby reducing task processing delays.
However, splitting tasks and allocating communication and computing resources are important
challenges. In this paper, we investigate the task offloading and resource allocation problem in multi-
HAP drones and multi-satellite collaborative networks. In particular, we formulate a task splitting
and communication and computing resource optimization problem to minimize the total delay of all
IoT devices’ tasks. To solve this problem, we first transform and decompose the original problem into
two subproblems. We design a task splitting optimization algorithm based on deep reinforcement
learning, which can achieve online task offloading decision-making. This algorithm structurally
designs the actor network to ensure that output actions are always valid. Furthermore, we utilize
convex optimization methods to optimize the resource allocation subproblem. The simulation results
show that our algorithm can effectively converge and significantly reduce the total task processing
delay when compared with other baseline algorithms.

Keywords: HAP drone; LEO satellite; task offloading and resource allocation; deep reinforce learning

1. Introduction

The internet of things (IoT) is considered an important emerging technology that can
change human life and has brought great convenience to human society [1]. Internet of
things applications, such as smart cities [2], smart agriculture [3], maritime detection [4],
augmented reality (AR)/virtual reality (VR) [5], etc., have made great progress and raised
new demands for future network development [6]. It is predicted that by 2027, more than
30 billion IoT devices will be deployed around the world [7]. Limited by geographical
location, it is difficult for traditional terrestrial networks to provide reliable services for
IoT devices in maritime areaa, remote areas, and other areas without terrestrial network
coverage [8]. Therefore, non-terrestrial networks, unaffected by geographical limitations,
can provide reliable wide-area coverage for terrestrial IoT devices, becoming a crucial
direction for future network development.

According to the different deployment heights of non-terrestrial network nodes, non-
terrestrial networks can be divided into satellite networks and space-based networks.
Satellite network nodes are deployed at altitudes ranging from 160 km to 35,786 km above
the ground [9]. In the past 20 years, satellite communication networks represented by low-
orbit satellite constellations have experienced tremendous development. Typical low-earth
orbit (LEO) satellite constellations include SpaceX’s Starlink constellation system [10], the
Iridium constellation [11], the OneWeb constellation [12], the Telesat constellation [13], etc.

Drones 2024, 8, 245. https://doi.org/10.3390/drones8060245 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8060245
https://doi.org/10.3390/drones8060245
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-9698-8134
https://orcid.org/0000-0002-2523-1329
https://doi.org/10.3390/drones8060245
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8060245?type=check_update&version=2

Drones 2024, 8, 245 2 of 20

By deploying edge servers, satellite network nodes can directly provide task processing
services to terrestrial IoT devices. However, due to the high flight altitude of satellites
and the limited energy and signal transmission power of a large number of terrestrial
IoT devices, terrestrial IoT devices face challenges in sending data to satellites stably
and quickly.

Different from satellite networks, space-based networks represented by high alti-
tude platform (HAP) drones are deployed at an altitude of several hundred meters to
20 km above the ground [14]. Their flying heights are much lower than satellite networks.
Therefore, ground IoT devices can transmit data to air nodes more stably and at a higher
speed. According to the definition of the International Telecommunication Union (ITU), a
HAP drone is unmanned aerial vehicle (UAV) deployed at an altitude of 20 km above the
ground [15,16]. It can either hover to provide stable communication services for ground
equipment or be deployed mobile to respond to emergency service requirements. Since the
distance from the ground IoT device to the HAP drone is much smaller than the distance
from the ground IoT device to the satellite, the wireless channel from the ground IoT device
to the HAP drone is more stable and has a higher channel gain. Therefore, the ground IoT
device can communicate with the HAP drone at a higher rate. Similarly, HAP drones can
carry edge servers to provide edge computing services to IoT devices.

However, since the load capacity of HAP drones and LEO satellites is limited, a
single HAP drone and satellite cannot guarantee the provision of stable and effective
task processing services for the terrestrial IoT devices it serves. Therefore, sharing the
computing resources of the server through the collaboration of multiple non-terrestrial
nodes has become a promising method to improve the service capabilities of non-terrestrial
networks. By dividing the task into multiple sub-parts and processing them on servers in
different locations, the network’s task processing capabilities can be effectively improved.
However, for HAP drones and satellite collaborative networks, how to reasonably split
tasks and optimize the allocation strategy of communication and computing resources have
become important issues that need to be solved.

Inspired by these challenges, we investigate the problem of task splitting and resource
allocation under the collaborative network of HAP drones and LEO satellites, as shown in
Figure 1. In this paper, we propose that HAP drones can not only cooperate with satellites
but also with each other to jointly provide computing services for ground IoT devices. This
solution is conducive to expanding the task processing capabilities of the double-layer
network and improving the resource utilization of the network. Correspondingly, we
considered factors such as the task processing tolerance delay of ground IoT devices, the
limited computing resources of satellites, HAP drones, and IoT devices, and the limited
communication resources between devices, and we formulated the problem of minimizing
the total task processing delay.

In order to minimize the total task processing delay, we propose an intelligent online
offloading and resource allocation algorithm based on a combination of deep reinforcement
learning and convex optimization. We first decompose the original optimization prob-
lem into a task splitting optimization sub-problem and a resource allocation optimization
sub-problem. For the task splitting optimization sub-problem, we designed an intelligent
solving algorithm based on the DDPG algorithm. For the resource allocation optimization
sub-problem, we used a convex optimization algorithm to solve it. Through joint optimiza-
tion of the two sub-problems, the efficiency of task offloading and resource allocation can
be improved, and the total task processing delay can be reduced. Compared with typical
reinforcement learning solutions, the algorithm proposed in this paper does not use deep
reinforcement learning methods to directly output task offloading and resource-scheduling
strategy, which objectively reduces the scale of the neural network, thereby reducing the
training difficulty of deep reinforcement learning and improving the efficiency of neural
networks, and improving the convergence speed of the network. Finally, we conduct simu-
lation experiments to verify the convergence and performance of the proposed algorithm.
The results demonstrate that, under various scenarios, such as different task data sizes and

Drones 2024, 8, 245 3 of 20

different CPU cycles required per bit, the proposed algorithm can reduce the total task
processing delay compared to baseline algorithms.

LEO satellite HAP drone Edge server IoT device

IoT - HAP link HAP - HAP link HAP - LEO link

LEO satellite HAP drone Edge server IoT device

IoT - HAP link HAP - HAP link HAP - LEO link

Figure 1. The scenario of LEO-HAP drone collaborative networks.

The main contributions of this paper are summarized as follows:

(1) We construct an edge computing framework for multi-HAP drones and multi-LEO
collaboration. Under this framework, ground IoT devices’ tasks can be dynamically
allocated to multiple HAP drones and LEO satellites for processing. In addition, the
communication and computing resources of each node under this framework can also
be dynamically allocated.

(2) Considering the task splitting constraints, available resource constraints, and the
maximum tolerated delay constraint of the tasks, we construct a task splitting and
resource allocation problem to minimize the total system delay. This is a non-convex
continuous optimization problem.

(3) We propose a joint optimization algorithm of deep reinforcement learning and convex
optimization. We design a task splitting optimization algorithm based on the deep
deterministic policy gradient (DDPG) method and solve the optimal resource alloca-
tion strategy through a convex optimization algorithm. We design the structure of the
actor network to ensure that the actions of DRL are effective.

(4) We verify the convergence and effectiveness of the algorithm proposed in this pa-
per through experiments. By comparing the algorithm convergence under different
discount factors and learning rates, we select reasonable neural network parameters.
By comparing our algorithm with three other baseline schemes, we verify that the
algorithm proposed in this paper can effectively reduce the total system delay.

Drones 2024, 8, 245 4 of 20

The rest of the paper is structured as follows. The related works are presented in
Section 2. The system model of HAP drones and LEO satellite collaborative networks is
introduced in Section 3. In Section 4, we formulate the problem. We introduce the task
offloading and resource allocation algorithm proposed in this paper in detail in Section 5.
Numerical results are presented to verify the convergence and performance of the proposed
algorithm in Section 6. Finally, we conclude the paper in Section 7.

2. Related Works

Recently, there have been many studies on edge computing for satellites. In [17], the
authors studied the edge cloud resource scheduling problem of space–air–ground inte-
grated networks (SAGIN). The authors proposed an improved Two_Arch2 algorithm to
optimize the resource-scheduling strategy of the SAGIN network to improve the service ca-
pabilities of the internet of vehicles. In [18], the authors proposed a satellite edge computing
network architecture that supports the IoT and constructed a multi-objective optimization
problem that considers system delay, computing power, and energy consumption. The
authors proposed a slicing-based scheduling strategy to optimize the offloading sequence
and a number of offloading tasks. In [19], the authors studied a hybrid LEO satellites and
MEO satellite network for IoT. In order to solve the problem of satellite load imbalance,
the authors formulated a joint optimization problem of computing and communication
resources and proposed an optimization algorithm based on deep reinforcement learning
to solve it. In [20], the authors studied the service chain optimization problem in satellite
edge computing scenarios. Aiming to minimize transmission delay, the authors designed
two algorithms, an approximation algorithm and an online algorithm.

In addition, there are also studies on HAP drones carrying edge servers and providing
edge computing services. Qiqi Ren et al. [21] studied HAP drone and ground network
collaboration to provide computing offloading services for ground transportation. Con-
sidering the joint optimization of cache, computing, and communication resources, the
authors used multi-agent reinforcement learning and the Lagrange multiplier method to
solve the problem, which effectively reduced task processing delay. In [22], the authors
introduced NOMA technology and deployed edge servers on HAP to provide computing
offloading services for ground users. Taking into account power, transmission bandwidth,
and maximum tolerated delay constraints, the authors proposed a transmission and deploy-
ment joint optimization algorithm based on successive convex approximation to minimize
system energy consumption. In [23], the authors also studied the HAP network that
supports NOMA. The authors proposed a power control algorithm based on DDPG to
reduce energy consumption and task processing delay. In [24], the authors considered edge
computing and wireless power transfer at the same time. In addition to offloading tasks
to HAP drones for processing, ground IoT devices can also charge themselves through
ground access points. The authors considered the problem of maximizing computing
power while minimizing IoT energy consumption and designed a heuristic algorithm to
solve the problem.

Research on edge computing for collaboration between HAP drones and satellites
mainly focuses on resource scheduling between HAP drones and satellites. In [25], the
authors studied the task offloading and resource allocation problem in the scenario where
HAP carries an edge server and cooperates with the LEO satellite network. The HAP drone
can directly provide computing services to ground vehicles or forward data to the ground
center for processing through LEO satellites. In [26], the authors studied the application
prospects of machine learning in resource scheduling problems in space–space–ground
integrated networks. The authors designed an optimization algorithm based on a deep
neural network to realize intelligent user scheduling in space–space–ground integrated
networks. In [27], the authors studied the edge computing network where HAP and
satellites collaborate. Under this framework, users’ tasks can be processed collaboratively
by HAP and satellites. The author proposes a task offloading and resource allocation
algorithm based on block coordinate descent to improve network service capabilities.

Drones 2024, 8, 245 5 of 20

At present, in edge computing research under HAP drones and satellite collaborative
networks, HAP drones directly collaborate with satellites to provide computing services
for ground users [25–28]. In this paper, HAP drones can collaborate not only with satellites
but also with each other to jointly provide computing services to users on the ground. This
method can expand the computing resources available to each user, and it is beneficial in
reducing the delay in task processing.

In addition, many current works, such as [23,25,29,30], directly design reinforcement
learning algorithms to output task offloading and resource allocation strategies. In this
way, the output size of the neural network (including task offloading strategy and resource
allocation strategy) is larger, resulting in a large network scale and a long training time.
In this paper, we propose an optimization framework that combines deep reinforcement
learning with convex optimization. Reinforcement learning only outputs task splitting
strategies, and the optimization of resource allocation is realized by the convex optimization
method, which can reduce the output size of neural networks and reduce the difficulty of
network training.

3. System Model of HAP Drones and LEO Satellite Collaborative Networks

In this section, we consider the HAP drones and LEO satellite collaborative network,
as shown in Figure 1. In this network, there are M LEO satellites flying at an altitude
of 200 km [10]. They carry edge servers to provide computing services to terrestrial IoT
devices. In the stratosphere, 20 km above the ground, N HAP drones are hovering. They
also carry edge servers, so they can also provide computing services to terrestrial IoT
devices.

We denote the collection of LEO satellites as M = {1, 2, . . . , M}. For LEO m, its
computing capability can be denoted as Fm. The set of HAP drones can be labeled as
N = {1, 2, . . . , N}, and the maximum computing capacity of HAP drone n can be denoted
as Fn. There are J terrestrial IoT devices directly connected to different HAP drones that
can offload their tasks to HAP drones. In each time slot, the input task size of IoT j can be
modeled as Dj, the computing density can be labeled as cj, and the maximum tolerable
delay of this task is Tj.

3.1. Communication Model

In this system, there are two channels to consider: the IoT–HAP drone channel and
the HAP drone–LEO channel.

3.1.1. IoT–HAP Drone Communication Model

The channel gain between terrestrial IoT device j and HAP drone n can be modeled as [28]

gn
j = (

c
4πdn

j fc
)2GH

j

∣∣∣hH
j

∣∣∣2 (1)

where c is the speed of light, which is equal to 3.0 × 108 m/s. dn
j is the distance between

terrestrial IoT device j and HAP drone n. fc is the carrier frequency of transmission signal.
GH

j is the attenuation gain, which is related to the environment. In this paper, we set the
HAP drone’s antenna gain to 17 dBi [31]. hn

j is the small scale fading component that
satisfies Rician distribution, and the Rician factor is 10 dB [31].

For the HAP drone n, the transmission date from the IoT j(j ∈ Jn) can be expressed
as follows [32]:

Rn
j ≤ Cn

j = bn
j log2(1 +

Pjgn
j

N0bn
j
), (2)

where N0 is the spectral density of additional white Gaussian noise (AWGN). bn
j is the

wireless channel bandwidth between the terrestrial IoT device j and HAP drone n.

Drones 2024, 8, 245 6 of 20

3.1.2. HAP Drone–LEO Satellite Communication Model

Because both HAP drones and LEO satellites are located at altitudes of at least 20 km
above the ground, we consider the wireless channel between HAP drones and LEO satellites
to be line-of-sight (LoS) channels, which comply with the free-space path loss model.
According to 3GPP TR 38.811 [33], we can model this channel as follows:

gm
n = 32.45 + 20 log10(d

m
n) + 20 log10(f H

c), (3)

where dm
n is the distance between the HAP drone n and LEO satellite m. f H

c represents
the carrier frequency of the wireless signal transmitted from the HAP drone to the LEO
satellite, and we set it as f H

c = 31 GHz.
The corresponding data rate between the HAP drone n and LEO satellite m can be

formulated as follows [34]:

Rm
n ≤ Cm

n = bm
n log2(1 +

pm
n GtsGtrgm

n Las

N0bm
n

), (4)

where Gts is the transmit antenna gain of the HAP drone, and Gts is the receive antenna gain
of the LEO satellite. Las represents the path loss caused by environmental and atmospheric
effects. bm

n is the wireless channel bandwidth between the HAP drone n and LEO satellite m.

3.2. Computing Model

Each user’s task can be divided into four parts: one part can be processed locally, while
the remaining parts can be processed on the HAP drone’s edge server or LEO satellite’s
edge server. Below, we introduce each part in detail.

• Local processing: Terrestrial users can put part of the task on the local CPU for
processing. We denote xj(xj ∈ [0, 1], j ∈ J) as the proportion of task processed locally.
Therefore, the data size of the task processed locally is xjDj, and the required CPU
numbers can be expressed as xjDjcj.

• Processing on directly connected HAP drones: In addition to the amount of data pro-
cessed locally, the user will transmit other parts to the HAP drone directly connected
to it. The amount of data in this part is (1 − xj). After the HAP drone receives this
part of the data, it will directly put part of it on its own server for processing. We
express the proportion of this part as yj(yj ∈ [0, 1], j ∈ J). Therefore, the data size
and required CPU numbers can be denoted as yjDj and yjDjcj.

• Processing on forwarded HAP drones: The HAP drone can also offload part of the
task to the HAP drone connected to it and process it on its server. The proportion of
this part of the task is zj(zj ∈ [0, 1], j ∈ J), and the amount of data and the required
CPU numbers are zjDj and zjDjcj.

• Processing on LEO satellites: The HAP drone is connected to the LEO satellite, so the
remaining task can be forwarded to the LEO drone and processed on the LEO’s server.
The proportion of this part of the task is wj(wj ∈ [0, 1], j ∈ J).

3.3. Overall Delay Analysis
3.3.1. Local Processing

For terrestrial IoT device j, it can process part of the task on the local CPU. Assuming
that the processing frequency of IoT j is f l

j , the local processing delay can be written
as follows:

tl
j =

xjDjcj

f l
j

. (5)

3.3.2. Processing on Directly Connected HAP Drones

In addition to the parts processed locally, terrestrial IoT devices will offload other
parts to the HAP drone directly connected to it, and then forward them to the served using

Drones 2024, 8, 245 7 of 20

the HAP drone, another HAP drone, or a LEO connected to it for processing. The amount
of data sent by the terrestrial IoT device j is (yj + zj + wj)Dj; therefore, the transmission
delay can be expressed as follows:

tn,trans
j =

αn
j (yj + zj + wj)Dj

Rn
j

,

=
αn

j (yj + zj + wj)Dj

bn
j log2(1 +

pjgn
j

N0bn
j
)

, (6)

where αn
j ∈ {0, 1} represents the connection relationship between the IoT j and the HAP

drone n. If the IoT j is connected to the HAP drone n, αn
j = 1; otherwise, αn

j = 0.
The processing delay of the IoT j’s task in the HAP drone n is as follows:

tn,dirc
j =

αn
j yjDjcj

f n
j

. (7)

Therefore, the total processing of the IoT j’s tasks on the directly connected HAP drone
can be expressed as follows:

tHAP,dirc
j = ∑

n∈N
(tn,trans

j + tn,dirc
j),

= ∑
n∈N

αn
j (

(yj + zj + wj)Dj

bn
j log2(1 +

pjgn
j

N0bn
j
)
+

yjDjcj

f n
j

). (8)

3.3.3. Processing on Forwarded HAP Drones

After receiving the task from terrestrial IoT devices, the HAP drone can also forward
it to other HAP drones connected to it. We assume that HAP drones can be connected
through laser links [35], and the transmission bandwidth is very large. Therefore, we ignore
the delay in data forwarding between HAP drones. The overall delay of task processing on
directly connected HAP drones can be formulated as follows:

tHAP, f d
j = ∑

n∈N
αn

j (
(yj + zj + wj)Dj

Rn
j

+ ∑
n′∈N/n

βn,n′ tn,n′

j),

= ∑
n∈N

αn
j (

(yj + zj + wj)Dj

bn
j log2(1 +

pjgn
j

N0bn
j
)
+ ∑

n′∈N/n
βn,n′

zjDjcj

f n′ , f d
j

), (9)

where βn,n′ ∈ {0, 1} denotes whether HAP drone n is connected to HAP drone n′. If HAP
drone n is connected to HAP drone n′, βn,n′ = 1; otherwise, βn,n′ = 0.

3.3.4. Processing on LEO Satellites

In addition HAP drones can also forward tasks to connected LEO satellites. After the
task is forwarded to LEO, it can be processed on the server carried by LEO. The overall
delay of the task processed on the LEO satellite can be formulated as follows:

tLEO
j = ∑

n∈N
αn

j (
(yj + zj + wj)Dj

Rn
j

+ ∑
m∈M

ζn,m(
wjDj

Rm
n

+
wjDjcj

f m
j

)), (10)

where ζn,m ∈ {0, 1} denotes whether the HAP drone n is connected to the LEO satellite m.
If the HAP drone n is connected to the LEO satellite m, ζn,m = 1; otherwise, ζn,m = 0. f m

j is
the computing frequency assigned by the LEO satellite m to the terrestrial IoT device j.

Drones 2024, 8, 245 8 of 20

Therefore, the total delay of task j can be formulated as follows:

tj = max{tl
j, tHAP,dirc

j , tHAP, f d
j , tLEO

j }. (11)

For all IoT devices, the total delay can be calculated as follows:

tsum = ∑
j∈J

tj. (12)

4. Problem Formulation

The original problem of this paper can be expressed as follows:

OP : min
Θ,Ψ

tsum(Θ, Ψ), (13a)

s.t. C1 : 0 ≤ xj, yj, zj, wj ≤ 1, ∀j ∈ J , (13b)

C2 : xj + yj + zj + wj = 1, ∀j ∈ J , (13c)

C3 : 0 ≤ pj ≤ Pj, ∀j ∈ J , (13d)

C4 : 0 ≤ pm
n ≤≤ Pn, ∀n ∈ N , m ∈ M, (13e)

C5 : 0 ≤ f l
j ≤ Fl

j , ∀j ∈ J , (13f)

C6 : 0 ≤ f l
j , f n

j , f m
j , ∀j ∈ J , n ∈ N , m ∈ M, (13g)

C7 : ∑
j∈J

(f n
j + f n, f d

j) ≤ Fn, ∀n ∈ N , (13h)

C8 : ∑
j∈J

f m
j ≤ Fm, ∀m ∈ M, (13i)

C9 : tj ≤ Tj, ∀j ∈ J , (13j)

where Θ = {xj, yj, zj, wj | ∀j ∈ J } is the collection of the task splitting strategy. Ψ =

{pj, pm
n , f l

j , f n
j , f n, f d

j , f m
j | ∀j ∈ J , n ∈ N , and m ∈ M} denote the collection of multiple

resource allocation, including power control, computing resource allocation of IOT devices,
HAP drones, and LEO satellites. In this problem, (C1) and (C2) are constraints on task
partitioning, indicating that the task partitioning variables must be continuous values
between 0 and 1, and for each task j, the sum of xj, yj, zj, and wj must be 1. (C3) and
(C4) are constraints on transmit power, ensuring that the transmit power does not exceed
the maximum available transmit power of the device. (C5) to (C8) are constraints on
computation frequency, ensuring that the computation frequency allocated to each task
by each IoT does not exceed its maximum computation capacity. (C9) indicates that the
overall delay for each IoT must not exceed its maximum tolerable delay.

5. Algorithm Design for OP
5.1. Problem Conversion

Firstly, to simplify the problem-solving process, we introduce auxiliary variables
t = {t1, t2, . . . , tJ}, representing the overall delay for each terrestrial IoT device. Therefore,
the original problem OP can be rewritten as follows:

Drones 2024, 8, 245 9 of 20

P1 : min
Θ,Ψ,t

∑
j∈J

tj, (14a)

s.t.
xjDjcj

f l
j

≤ tj, j ∈ J , (14b)

∑
n∈N

αn
j (

(yj + zj + wj)Dj

bn
j log2(1 +

pjgn
j

N0bn
j
)
+

yjDjcj

f n
j

) ≤ tj, j ∈ J , (14c)

∑
n∈N

αn
j (

(yj + zj + wj)Dj

bn
j log2(1 +

pjgn
j

N0bn
j
)
+ ∑

n′∈N/n
βn,n′

zjDjcj

f n′ , f d
j

) ≤ tj, j ∈ J , (14d)

∑
n∈N

αn
j (
(yj + zj + wj)Dj

Rn
j

+ ∑
m∈M

ζn,m(
wjDj

Rm
n

+
wjDjcj

f m
j

)) ≤ tj, j ∈ J , (14e)

(13b)− (13i). (14f)

Since the variables Θ and Ψ are coupled, this makes problem P1 non-convex and
difficult to be solved directly. Therefore, to reduce the complexity of the problem, we
decompose problem P1 into two subproblems: Subproblem 1 involves determining task
splitting decisions, while Subproblem 2 involves determining the resource scheduling
decisions. Below, we explain the two subproblems, respectively.

Subproblem 1, used to solve the task splitting strategy, can be represented as follows:

SP1 : min
Θ

V(Θ), (15a)

s.t. (13b),(13c). (15b)

Subproblem 2 is used to determine the optimal resource scheduling strategy. It is
important to note that the solution to Subproblem 2 is carried out under the assumption
that the task splitting strategy is fixed, i.e., Subproblem 2 can be formulated as follows:

SP2 : V(Θ) = min
Ψ,t

∑
j∈J

tj, (16a)

s.t. (13d)− (13i),(14b)− (14e). (16b)

Below, we prove that jointly solving SP1 and SP2 can obtain the optimal solution of
the original problem.

Proof. Assume that two task splitting strategies, Θ1 and Θ2, are given. Their corresponding
resource allocation strategies can be obtained by solving SP2. If V(Θ1) < V(Θ2), then Θ1
is better than Θ2. That is, (Θ1, Ψ1) is better than (Θ2, Ψ2). By obtaining different Θ, we can
obtain (Θ, Ψ) that can make the total task processing workload smaller. Furthermore, by
solving SP1 to obtain Θ, and the Ψ corresponding to Θ by solving SP2, we can obtain
the optimal solution to the original problem. This proves that, by jointly solving SP1 and
SP2, we can obtain the optimal solution to the original problem.

In this paper, the quality of the solution obtained for Subproblem 1 (i.e., the task
splitting strategy) depends on solving Subproblem 2. For each solution derived from
Subproblem 1, Subproblem 2 must be tackled to determine the optimal resource allocation
decision given the task splitting strategy. Then, by iteratively solving Subproblem 1,
optimized task offloading and resource allocation decisions are obtained. Therefore, we
will first introduce the solution method for Subproblem 2, followed by an explanation of
how to address Subproblem 1.

Drones 2024, 8, 245 10 of 20

5.2. Algorithm Design for the Optimization of SP2

Under the fixed task splitting strategy (Θ), the total delay of all tasks depends on the
allocation of communication and computation resources. Since we are aiming to minimize
the total delay of all IoT devices’ tasks, we can infer that when the resource scheduling
strategy is optimal, the transmission power is set to the maximum available transmission
power of the devices, and the optimal allocation strategy for local computation frequency
is determined by the maximum available computation frequency for each user. Therefore,
problem SP2 can be rewritten as follows:

SP2a : min
F,t

∑
j∈J

tj, (17a)

s.t.
xjDjcj

Fl
j

≤ tj, j ∈ J , (17b)

∑
n∈N

αn
j (

(yj + zj + wj)Dj

bn
j log2(1 +

Pjgn
j

N0bn
j
)
+

yjDjcj

f n
j

) ≤ tj, j ∈ J , (17c)

∑
n∈N

αn
j (

(yj + zj + wj)Dj

bn
j log2(1 +

Pjgn
j

N0bn
j
)
+ ∑

n′∈N/n
βn,n′

zjDjcj

f n′ , f d
j

) ≤ tj, j ∈ J , (17d)

∑
n∈N

αn
j (
(yj + zj + wj)Dj

Rn,max
j

+ ∑
m∈M

ζn,m(
wjDj

Rm,max
n

+
wjDjcj

f m
j

)) ≤ tj, j ∈ J , (17e)

(13g)− (13i), (17f)

where Rn,max
j and Rm,max

n denote the maximum data transmission rates achieved when
transmitting power is maximized for IoT devices and HAP drones, respectively.

Clearly, problem SP2a is a convex optimization problem, and we can directly deter-
mine its optimal solution using existing convex optimization solvers. In this paper, since
our simulations are implemented in Python, we use CVXPY to solve this problem [36,37].

5.3. Algorithm Design for the Optimization of SP1

To address the task splitting subproblem, we devised a solution framework based on the
DDPG method. Initially, we transformed SP1 into a Markov decision process (MDP) model.
Subsequently, we employed the DDPG-based method to solve the transformed problem.

5.3.1. MDP

In general, an MDP typically consists of states, actions, a reward function, a state
transition function, and a discount factor. In this paper, we designate a specific HAP drone
as the agent interacting with the environment, which includes satellites, terrestrial IoT
devices, and other HAP drones. The HAP drone collects information such as user data
and wireless channel gain to form state representation and then devises a task splitting
strategy (i.e., actions) based on the states. Finally, the decision information is transmitted
to satellites, HAP drones, and terrestrial IoT devices for execution. Below, we provide
complete definitions for each concept.

(1) State Space: In this paper, state is defined as the environment variables of the
system, expressed as st = {Dt, Ct, Gt, Pt, Ft, T t}, specifically including the following:

• Dt = {Dj(t)|∀j ∈ J }, which represents the data sizes of all terrestrial IoTs’ tasks.
• Ct = {Cj(t)|∀j ∈ J }, which represents computing density of all terrestrial IoTs’ tasks.
• Gt = {gn

j , gm
n |j ∈ J , n ∈ N , m ∈ M}, which represents the gains of wireless channels

between nodes in the system.
• Pt = {Pj(t)|∀j ∈ J }, which represents the maximum transmitter power of all terres-

trial IoT devices.

Drones 2024, 8, 245 11 of 20

• Ft = {Fl
j (t), Fn(t), Fm(t)|∀j ∈ J , n ∈ N , andm ∈ M}, which represent maximum

computing frequency of terrestrial IoT devices, HAP drones, and LEO satellites.
• T t = {TJ(t)|∀j ∈ J , which represents the maximum tolerated delay of all terrestrial

IoT devices’ tasks.

(2) Action Space: In this MDP, the agent needs to output the task splitting strat-
egy for each task. Because each task can be divided into four parts for processing, pro-
cessing locally at the user, processing at the connected HAP drone, processing at the
adjacent HAP drone, and processing at the LEO satellite, action at can be expressed as
{xj(t), yj(t), zj(t), wj(t)|∀j ∈ J } (i.e., Ψ(t)).

(3) Reward Function: The goal of the MDP problem is to maximize rewards, while the
goal of this paper is to minimize the total task processing delay, so we take the negative of
all task processing delays and then accumulate them as rewards.

rt = − ∑
j∈J

tj. (18)

Therefore, the long-term discounted reward can be formulated as follows:

Ut = rt + γrt+1 + γ2rt+2 + · · · =
∞

∑
i=0

γirt+i, (19)

where γ ∈ [0, 1] is the discount factor, which is used to discount the value of future rewards
when calculating cumulative rewards. If the discount factor is too low, then the value of
future rewards will be severely underestimated, which may lead to the agent making less
informed decisions. If the discount factor is too high, the value of future rewards will
be overestimated, which may lead to the agent adopting an overly conservative strategy.
Therefore, choosing the right discount factor is very important. The total task processing
delay is obtained by solving SP2a based on state and action.

Based on the above discussion, the problem of maximizing the long-term discount
reward can be expressed as follows:

max
Θ

∞

∑
i=0

−γi ∑
j∈J

tj(i), (20a)

s.t. (13b), (13c). (20b)

5.3.2. Proposed Task Splitting Algorithm Based on DDPG

The algorithm for the optimization of task splitting in this paper is based on the DDPG
method, as shown in Figure 2. In this algorithm, four neural networks are included, namely
an actor network, a critic network, a target actor network, and a target critic network. Below,
we first introduce the actor and critic networks.

Target Critic Network

Target Critic Network

Critic Network

Critic Network

Target Actor Network

Target Actor Network

Actor Network

Actor Network

Replay BufferReplay Buffer

E
n

v
iro

n
m

en
t







 

S
o
ft u

p
d

a
te

S
o
ft u

p
d

a
te

),,,(1+ tttt srs),,,(1+ tttt srs

),(sQ

Target Critic Network

Critic Network

Target Actor Network

Actor Network

Replay Buffer

E
n

v
iro

n
m

en
t







 

S
o
ft u

p
d

a
te

S
o
ft u

p
d

a
te

),,,(1+ tttt srs),,,(1+ tttt srs

),(sQ

Communicat

ion and

Computing

Resource

Allocation

2SP

Figure 2. The schematics of the proposed intelligent algorithm.

Drones 2024, 8, 245 12 of 20

(1) Actor and Critic Networks:
The output of the actor network is a continuous action value, expressed as a = ϕ(s|η),

where η represents the parameters of the actor network. The output of the critic network
is the evaluation of the action a output by the actor network, which can be expressed as
Q(s, a|θ), where θ represents the parameters of the critic network. During each round of
training, the actor network will output an action decision a based on the current environ-
ment state s, and then the critic network will evaluate the decision; that is, obtain Q(s, a).

Our constructed actor network consists of two parts: a deep neural network (DNN)
module and an action validity assurance module based on a normalization function, as
shown in Figure 3. The DNN module is responsible for making optimized task partitioning
decisions based on the input state. However, the output of the DNN cannot guarantee
compliance with constraints (13b) and (13c). Therefore, we designed the action validity
assurance module to ensure that the actor network’s output meets these constraints.

First, we restructure the DNN’s output into a two-dimensional tensor (denoted as
δ), with dimensions of J rows and four columns. We represent the j-th row of δ as
δj = {δ1,j, δ2,j, δ3,j, δ4,j}. Then, we normalize each δj, j ∈ J , and the processed result
is expressed as ϵj and ϵj satisfies the following:

ϵi,j =
δi,j

∑4
k=1 δk,j

, i ∈ {1, 2, 3, 4}, j ∈ J . (21)

Obviously, each ϵj satisfies ϵ1,j + ϵ2,j + ϵ3,j + ϵ4,j = 1; that is, ϵj satisfies constraints (13b)
and (13c). In this way, we can ensure that the output of the actor network (i.e., the task
splitting decision) is valid.

DDPG introduces an experience buffer mechanism to store states, actions, and rewards
information, represented as {st, at, rt, st+1}. During training, to update the critic and actor
networks, a batch of Ξ samples is first drawn from the replay buffer. For the sample
st, at, rt, st+1, the Critic network first computes the target value, satisfying the following:

yt = rt + γQ′(st+1, ϕ(st+1|η′)|θ′). (22)

Then, by minimizing the loss function L(θ) = ∑t∈Ξ(yt − Q(st, at|θ))2, we can update
the critic network by one step of gradient descent using 1

|Ξ|∇θ ∑ L(θ).
In the same way, we can update the actor network parameters by one step of gradient

descent using 1
|Ξ| ∑(∇ηϕ(st)∇at Q(st, at|θ)).

Reshape Reshape

DNN

,1i ,2i ,3i ,4i

,

, 4

,1

i j

i j

i kk

є



=

=



Reshape Reshape

DNN

,1i ,2i ,3i ,4i

,

, 4

,1

i j

i j

i kk

є



=

=



Figure 3. The framework of the actor and target actor networks.

(2) Target Actor and Target Critic Networks:
In order to improve the stability of the training process, reduce the fluctuation of

the training process, and reduce the variance of the training process, the DDPG method
introduces the target actor network and the target critic network. The target actor network
is used to output the best action of the next state, and the target critic network is used to
evaluate the Q value of the next state. The structures of the target actor network and the
target critic network are the same as the actor network and critic network. Moreover, the

Drones 2024, 8, 245 13 of 20

parameters of the target actor network and target critic network (corresponding parameters
are η′ and θ′) are slowly updated from the actor network and critic network. The most
commonly used parameter update is soft update, and the update method is as follows [7]:

η′ = τη + (1 − τ)η′, (23)

θ′ = τθ + (1 − τ)θ′, (24)

where τ is the soft update factor, and τ satisfies τ ≪ 1, which is beneficial to improving the
stability of training.

Based on the above analysis, we can summarize the intelligent task splitting and
resource allocation algorithm proposed in this paper as Algorithm 1.

Algorithm 1 Task splitting and resource allocation algorithm

1: Randomly initialize the parameters of the actor network and critic network η, θ.
2: Initialize the parameters of the target actor network and target critic network η′ = η,

θ′ = θ.
3: Initialize the replay buffer Λ.
4: for i = 1, 2, . . . , do
5: The actor network generates action decisions at based on the current state st.
6: Execute action at and obtain the corresponding reward rt based on solving SP2a,

an obtain new state st+1.
7: Store {st, at, rt, st+1} into the replay buffer Λ.
8: Randomly sample small samples Ξ from the replay buffer Λ.
9: The critic network calculates the target value yt = rt + γQ′(st+1, ϕ(st+1|η′)|θ′)

10: Update the critic network parameters by calculating the loss function L(θ) =
∑t∈Ξ(yt − Q(st, at|θ))2, and update critic network by one step of gradient descent
using 1

|Ξ|∇θ ∑ L(θ).
11: Update the actor network parameters by one step of gradient descent using

1
|Ξ| ∑(∇ηϕ(s)∇at Q(st, at|θ)).

12: Update the parameters of the target actor network and target critic network through
soft update (23) and (24).

13: end for

5.4. Complexity Analysis

The complexity of the algorithm proposed in this article mainly consists of two parts:
reinforcement learning and convex optimization. First, we analyze the complexity of
reinforcement learning. The complexity of the reinforcement learning method based on
DDPG designed in this paper mainly depends on the scale of the actor network and
critic network. We assume that the actor network and critic network are composed of
X layer and Y layer fully connected networks. If the number of neurons in each layer
of the network is mx and ny, the training complexity of DDPG is O(|A|m1 + |S|mX−1 +

∑X−2
x=1 mxmx+1 + (|A| + |S|)n0 + ∑Y−2

y=1 nyny+1) [38]. Among them, |A|m1, |S|mX−1, and
(|A| + |S|)n0 represent the computational complexity of the actor network input layer,
actor network output layer, and critic network input layer, respectively; |A| and |S| are the
number of elements in action and state. The complexity of DDPG online decision-making
is O(|A|m1 + |S|mX−1 + ∑X−2

x=1 mxmx+1).
The computational complexity of the convex optimization algorithm depends on

the computational complexity of solving SP2a. The number of variables in SP2a is
I1 = (2 + M + 2N)J, and the number of constraints is I2 = 4J + M + N. Therefore the
computation complexity of solving SP2a is O((I2

1 I2 + I3
1)I0.5

2) [39].
In summary, the computational complexity of the algorithm proposed in this paper in

the training phase is O((|A|m1 + |S|mX−1 +∑X−2
x=1 mxmx+1 + (|A|+ |S|)n0 +∑Y−2

y=1 nyny+1)

Drones 2024, 8, 245 14 of 20

(I2
1 I2 + I3

1)I0.5
2), and the computational complexity of the online decision-making stage is

O((|A|m1 + |S|mX−1 + ∑X−2
x=1 mxmx+1)(I2

1 I2 + I3
1)I0.5

2).

6. Performance Evaluation

In this section, we adopt a series of experiments to verify the convergence and performance
of our proposed algorithm for the optimization of task offloading and resource allocation.

6.1. Simulation Setup

Our experiments were conducted on a laptop with 13th Gen Intel(R) Core(TM)
i7-13650HX 2.60 GHz, 16.0 GB RAM, and NVIDIA GeForce RTX4060 Laptop GPU. All
simulations were developed based on Python 3.11, the neural network method was de-
signed based on PyTorch, and the solution of convex optimization problems was performed
through CVXPY. We considered the following scenario: two LEO satellites are located in
high-altitude orbits 200 km above the ground [27], while three HAP drones are positioned
20 km above the ground, randomly distributed within a square area with a side length
of 2 km. On the ground, there are J randomly distributed terrestrial IoT devices. Both
the IoT-HAP drone and HAP drone-LEO satellite links adopt the access strategy with
maximum channel gain. In each time slot, we assume each terrestrial IoT device generates
a task for processing. For each task, the default generated data size is in the range of
[1, 1.2] Mbits. The number of CPU cycles required per bit is 1000 [40], and the maximum
tolerable latency is T = 3 s [27]. In this paper, we assume that the available bandwidth
for each wireless channel is 20 MHz, allocated evenly to each device. The maximum local
computing capacity for each ground user is the same, set at 1 GHz. Both HAP drones and
LEO satellites have a maximum computing capacity of 5 GHz. Other important simulation
environment parameters are shown in Table 1.

Choosing appropriate hyper parameters is crucial for the performance of DDPG. In
this paper, we mainly focused on the following key hyper parameters: batch size, replay
buffer size, learning rates of the actor network and critic network, the soft update factor for
the actor network and critic network, and the discount factor.

Our goal in selecting the batch size and replay buffer size was to ensure the stability
and convergence speed of DDPG training while minimizing computational and memory
resources. We chose a batch size of 64 and a replay buffer size of 100,000 as the hyperparam-
eters for subsequent simulations. The soft update factor was chosen to control the update
speed of the weights of the target network (including the actor target network and critic
network). We chose τ = 0.0001. A smaller value was chosen to increase the stability of
training. Finally, we chose appropriate discount factors and learning rates to ensure the
convergence, convergence speed, and performance of the DDPG algorithm in this scenario.
In this regard, we designed comparative experiments with different discount factors ([0.95,
0.75, 0.55, 0.35]) and different learning rates ([1 × 10−4, 1 × 10−3, 1 × 10−2, 1 × 10−1]). The
experimental results are shown in Section 6.2. The specific parameters are shown in Table 2.

Table 1. Simulation environment settings.

Parameter Value

AWGN spectral density (N0) −174 dBm/Hz [34]

Maximum transmit power of terrestrial IoT device (Pj) 23 dBm

Maximum transmit power of HAP drone (Pn) 43 dBm

Transmit antenna gain of HAP drone (Gts) 0 dB [34]

Receive antenna gain of LEO satellite (Gtr) 53 dB [34]

Path loss (Las) 5.2 dB [34]

Drones 2024, 8, 245 15 of 20

Table 2. Algorithm parameter settings.

Parameter Value

Batch size 64

Replay buffer size 100,000

Learning rate of actor network 0.001

Learning rate of critic network 0.001

Soft update factor of actor network 0.0001

Soft update factor of critic network 0.0001

Discount factor 0.75

6.2. Convergence and Parameter Analysis

In this subsection, we demonstrate the impact of the discount factor and learning rate
on the performance of the algorithm proposed in this paper to help us choose appropriate
parameter values.

(1) Impact of the Discount Factor: Figure 4 illustrates the impact of the discount factor
on the performance of the algorithm proposed in this paper. We selected four typical
discount factors: 0.95, 0.75, 0.55, and 0.35. From this figure, it can be observed that all
curves converge after approximately 1500 iterations. Among all the curves, the curve
corresponding to a discount factor of 0.75 achieved the highest reward, and its convergence
speed was only slightly slower than the curve with a discount factor of 0.35. Therefore, in
all subsequent simulations, we set the discount factor to 0.75.

0 500 1000 1500 2000 2500 3000
Episode

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

R
ew

ar
d

 = 0.95
 = 0.75
 = 0.55
 = 0.35

Figure 4. Impact of discount factor.

(2) Impact of the Learning Rate: Figure 5 illustrates the impact of different learning
rates on the performance of the algorithm proposed in this paper. In the simulation,
we compared four different learning rates: 0.0001, 0.001, 0.01, and 0.1. The learning
rates for both the actor and critic networks are the same. From each curve, it can be
observed that the curves corresponding to learning rates of 0.0001, 0.001, and 0.01 converge
at around 1000 iterations. The curve corresponding to a learning rate of 0.1 does not
converge because when the learning rate is too large, the algorithm skips over local or
global optimal solutions, resulting in poor performance of the model. Among the four
curves, the curve corresponding to a learning rate of 0.01 converges the fastest and exhibits
the best performance. Therefore, we chose a learning rate of 0.01 as the parameter for
subsequent simulations.

Drones 2024, 8, 245 16 of 20

0 500 1000 1500 2000 2500 3000
Episode

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

R
ew

ar
d Learning rate = 1e-4

Learning rate = 1e-3
Learning rate = 1e-2
Learning rate = 1e-1

Figure 5. Impact of learning rate.

6.3. Performance Analysis

In order to verify the performance of the algorithm proposed in this paper, we com-
pared the performance of multiple algorithms under different environmental parameters.
We set up four baseline algorithms as follows:

• Local processing (LP): All tasks are processed locally on the IoT device’s CPU, and the
processing computational frequency is set to the IoT’s maximum available computa-
tional frequency.

• Pure HAP processing (PHAP): All tasks are offloaded to HAP drones for processing,
and the HAP drones do not offload tasks to LEO satellites. The resource allocation
strategy can be obtained by solving problem SP2.

• Random offloading (RAND): The tasks are randomly allocated (i.e., the sizes of xj, yj, zj
and wj are random and satisfy xj + yj + zj + wj = 1). The resource allocation strategy
can be obtained by solving problem SP2.

• Block coordinate descent (BCD-based): Taking the task splitting problem and the
resource allocation problem as two sub-problems and alternately solving the two
sub-problems iteratively to obtain the optimal solution of the original problem. The
original solution of the algorithm is obtained by the RAND algorithm.

In Figure 6, the changes in total system delay under five different algorithms are
depicted for various task data sizes. It can be observed from the figure that with the
increase in task data size, the overall system delay shows an upward trend for all schemes.
This is attributed to the fact that as the data volume increases, devices require more time to
transmit and process user tasks. Among them, the curve of the RAND algorithm shows
occasional decreases at some points due to its random nature, leading to unstable solution
quality. The performance of the BCD-based algorithm depends largely on the quality of the
original solution. Therefore, in this figure, the overall system delay obtained by it is better
than RAND but inferior to LP and the algorithm proposed in this paper. Among the five
algorithms, the proposed algorithm consistently achieves the minimum total delay in all
scenarios, confirming the effectiveness of the proposed approach.

Figure 7 shows the changes in total delay of the four algorithms under different
computing densities. It can be seen from the figure that, as the computing density cj(j ∈ J)
increases, the total delay obtained by the four algorithms continues to increase. This is
because, as the computing density increases, the number of CPU cycles required to process
the task continues to increase, and the processing delay of the task increases, resulting in
an increase in the total delay. The RAND algorithm has no solution when c = 1100 and
1200. This is because the task splitting strategy obtained by the RAND algorithm cannot

Drones 2024, 8, 245 17 of 20

allow the resource allocation problem to meet all constraints, resulting in task timeout for
some IoT devices. The initial solution of the BCD-based algorithm is obtained through the
RAND algorithm; therefore, when c = 1100 and c = 1200, the BCD-based algorithm has
no solution. Among the five algorithms, the algorithm proposed in this paper can always
obtain the smallest total delay, which proves that the algorithm proposed in this article can
effectively reduce the total system delay.

0.6~0.7 0.7~0.8 0.8~0.9 0.9~1.0 1.0~1.1 1.1~1.2
Task size (Mbits)

5

10

15

20

25

30

35

40

45

50

55

60
T

ot
al

 d
el

ay
 (

s)

Proposed
BCD-based
LP
PHAP
RAND

Figure 6. Total delay of the system versus the task size of tasks.

700 800 900 1000 1100 1200
Computing Density (cycles/bit)

10

15

20

25

30

35

40

45

50

55

60

T
ot

al
 d

el
ay

 (
s)

Proposed
BCD-based
LP
PHAP
RAND

Figure 7. Total delay of the system versus the computing density of all tasks.

Figure 8 shows the total system delay compared with the computing capacity of
terrestrial IoTs. With the increase in local computing capacity, except for the PHAP solution,
the total system delay of other solutions shows a downward trend. This is because, as
the local computing capacity increases, terrestrial IoT devices can process more tasks on
the local CPU, thereby reducing overall system delay. In the PHAP solution, no task is
processed locally, so the total system delay of this solution does not change with changes
in local computing capabilities. Compared with the other four schemes, the proposed
algorithm in this paper achieves the smallest total system delay.

Drones 2024, 8, 245 18 of 20

0.7 0.8 0.9 1.0 1.1 1.2
Computing capacity of IoTs (GHz)

10

15

20

25

30

35

40

45

50

55

60

T
ot

al
 d

el
ay

 (
s)

Proposed
BCD-based
LP
PHAP
RAND

Figure 8. Total delay of the system versus the computing capacity of IoTs.

7. Conclusions

In this paper, we investigated the task offloading and resource allocation problem
for multiple-HAP drones and multiple-satellite collaborative networks. The problem was
formulated to minimize the total delay of all IoTs’ tasks. We transformed and decomposed
it into two subproblems: the task splitting optimization subproblem and the resource
allocation optimization subproblem. We designed a DDPG-based algorithm to obtain an
optimal task splitting strategy, and we optimized resource allocation strategies through
convex optimization. Simulation results show that the proposed algorithm can achieve
lower total delay compared with baseline algorithms. As the number of IoT devices, HAP
drones, and satellites increases, the scale of the neural network in the proposed algorithm
will also expand. This can lead to difficulties in training the algorithm and challenges
in achieving convergence. Therefore, we believe that future research should focus on
designing optimization algorithms that combine multi-agent reinforcement learning with
convex optimization techniques.

Author Contributions: Conceptualization, B.H. and C.G.; methodology, C.G., B.H. and X.B.; valida-
tion, C.G. and H.W.; formal analysis, C.G. and B.H.; investigation, C.G. and X.B.; writing—original
draft preparation, C.G.; writing—review and editing, C.G., X.B. and B.H.; supervision, S.C. and H.W.;
project administration, B.H. and S.C.; funding acquisition, B.H. and S.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (NSFC)
under Grant 61931005.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Laghari, A.A.; Wu, K.; Laghari, R.A.; Ali, M.; Khan, A.A. A review and state of art of Internet of Things (IoT). Arch. Comput.

Method Eng. 2022, 29, 1395–1413. [CrossRef]
2. Salih, H.S.; Jaber, M.M.; Ali, M.H.; Abd, S.K.; Alkhayyat, A.; Malik, R.Q. Application of edge computing-based information-centric

networking in smart cities. Comput. Commun. 2023, 211, 46–58. [CrossRef]
3. Luo, Y.; Pu, L. UAV Remotely-Powered Underground IoT for Soil Monitoring. IEEE Trans. Ind. Inform. 2024, 20, 972–983.

[CrossRef]

http://doi.org/10.1007/s11831-021-09622-6
http://dx.doi.org/10.1016/j.comcom.2023.09.003
http://dx.doi.org/10.1109/TII.2023.3272016

Drones 2024, 8, 245 19 of 20

4. Xu, F.; Yang, F.; Zhao, C.; Wu, S. Deep reinforcement learning based joint edge resource management in maritime network. China
Commun. 2020, 17, 211–222. [CrossRef]

5. Feng, J.; Liu, L.; Hou, X.; Pei, Q.; Wu, C. QoE fairness resource allocation in digital twin-enabled wireless virtual reality systems.
IEEE J. Sel. Areas Commun. 2023, 41, 3355–3368. [CrossRef]

6. Ruby, R.; Yang, H.; de Figueiredo, F.A.P.; Huynh-The, T.; Wu, K. Energy-Efficient Multiprocessor-Based Computation and
Communication Resource Allocation in Two-Tier Federated Learning Networks. IEEE Internet Things J. 2023, 10, 5689–5703.
[CrossRef]

7. Zhang, Y.; Hu, J.; Min, G. Digital Twin-Driven Intelligent Task Offloading for Collaborative Mobile Edge Computing. IEEE J. Sel.
Areas Commun. 2023, 41, 3034–3045. [CrossRef]

8. Chen, S.; Sun, S.; Kang, S. System integration of terrestrial mobile communication and satellite communication—The trends,
challenges and key technologies in B5G and 6G. China Commun. 2020, 17, 156–171. [CrossRef]

9. Communications Satellite. Avariable online: https://en.wikipedia.org/wiki/Communications_satellite#Low_Earth_orbit_(LEO)
(accessed on 29 May 2024).

10. Ding, C.; Wang, J.-B.; Cheng, M.; Lin, M.; Cheng, J. Dynamic Transmission and Computation Resource Optimization for Dense
LEO Satellite Assisted Mobile-Edge Computing. IEEE Trans. Commun. 2023, 71, 3087–3102. [CrossRef]

11. Huang, Y.; Zhang, X. Microservice Scheduling for Satellite-Terrestrial Hybrid Network with Edge Computing. In Proceedings
of the 2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Sanshui, Foshan, China,
11–13 August 2022; pp. 24–29.

12. Cassará, P.; Gotta, A.; Marchese, M.; Patrone, F. Orbital Edge Offloading on Mega-LEO Satellite Constellations for Equal Access to
Computing. IEEE Commun. Mag. 2022, 60, 32–36. [CrossRef]

13. Cao, X.; Yang, B.; Shen, Y.; Yuen, C.; Zhang, Y.; Han, Z.; Poor, H.V.; Hanzo, L. Edge-Assisted Multi-Layer Offloading Optimization
of LEO Satellite-Terrestrial Integrated Networks. IEEE J. Sel. Areas Commun. 2022, 41, 381–398. [CrossRef]

14. Renga, D.; Meo, M. Can High Altitude Platform Stations Make 6G Sustainable? IEEE Commun. Mag. 2022, 60, 75–80. [CrossRef]
15. Euler, S.; Lin, X.; Tejedor, E.; Obregon, E. High-Altitude Platform Stations as International Mobile Telecommunications Base

Stations: A Primer on HIBS. IEEE Veh. Technol. Mag. 2022, 17, 92–100. [CrossRef]
16. Cumalı, İ.; Özbek, B.; Kurt, G.K.; Yanikomeroglu, H. User Selection and Codebook Design for NOMA-Based High Altitude

Platform Station (HAPS) Communications. IEEE Trans. Veh. Technol. 2022, 72, 3636–3646. [CrossRef]
17. Cao, B.; Zhang, J.; Liu, X.; Sun, Z.; Cao, W.; Nowak, R.M.; Lv, Z. Edge–Cloud Resource Scheduling in Space–Air–Ground-

Integrated Networks for Internet of Vehicles. IEEE Internet Things J. 2022, 9, 5765–5772. [CrossRef]
18. Kim, T.; Kwak, J.; Choi, J.P. Satellite Edge Computing Architecture and Network Slice Scheduling for IoT Support. IEEE Internet

Things J. 2022, 9, 14938–14951. [CrossRef]
19. Cui, G.; Duan, P.; Xu, L.; Wang, W. Latency Optimization for Hybrid GEO–LEO Satellite-Assisted IoT Networks. IEEE Internet

Things J. 2023, 10, 6286–6297. [CrossRef]
20. Xia, Q.; Wang, G.; Xu, Z.; Liang, W.; Xu, Z. Efficient Algorithms for Service Chaining in NFV-Enabled Satellite Edge Networks.

IEEE. Trans. Mob. Comput. 2023, early access. [CrossRef]
21. Ren, Q.; Abbasi, O.; Kurt, G.K.; Yanikomeroglu, H.; Chen, J. Caching and Computation Offloading in High Altitude Platform

Station (HAPS) Assisted Intelligent Transportation Systems. IEEE Trans. Wirel. Commun. 2022, 21, 9010–9024. [CrossRef]
22. Zhang, Y.; Na, Z.; Wang, Y.; Ji, C. Joint power allocation and deployment optimization for HAP-assisted NOMA–MEC system.

Wirel. Netw. 2022, 1–13. [CrossRef]
23. Nguyen, T.-H.; Truong, T.P.; Dao, N.-N.; Na, W.; Park, H.; Park, L. Deep Reinforcement Learning-based Partial Task Offloading in

High Altitude Platform-aided Vehicular Networks. In Proceedings of the 2022 13th International Conference on Information and
Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 19–21 Ocober 2022; pp. 1341–1346.

24. Nauman, A.; Alruwais, N.; Alabdulkreem, E.; Nemri, N.; Aljehane, N.O.; Dutta, A.K.; Assiri, M.; Khan, W.U. Empowering smart
cities: High-altitude platforms based Mobile Edge Computing and Wireless Power Transfer for efficient IoT data processing.
Internet Things 2023, 24, 2542–6605. [CrossRef]

25. Waqar, N.; Hassan, S.A.; Mahmood, A.; Dev, K.; Do, D.-T.; Gidlund, M. Computation Offloading and Resource Allocation in
MEC-Enabled Integrated Aerial-Terrestrial Vehicular Networks: A Reinforcement Learning Approach. IEEE Trans. Intell. Transp.
Syst. 2022, 23, 21478–21491. [CrossRef]

26. Dahrouj, H.; Liu, S.; Alouini, M.-S. Machine Learning-Based User Scheduling in Integrated Satellite-HAPS-Ground Networks.
IEEE Netw. 2023, 37, 102–109. [CrossRef]

27. Ding, C.; Wang, J.-B.; Zhang, H.; Lin, M.; Li, G.Y. Joint Optimization of Transmission and Computation Resources for Satellite and
High Altitude Platform Assisted Edge Computing. IEEE Trans. Wirel. Commun. 2022, 21, 1362–1377. [CrossRef]

28. Alsharoa, A.; Alouini, M.-S. Improvement of the Global Connectivity Using Integrated Satellite-Airborne-Terrestrial Networks
With Resource Optimization. IEEE Trans. Wirel. Commun. 2020, 19, 5088–5100. [CrossRef]

29. Xu, C.; Tang, Z.; Yu, H.; Zeng, P.; Kong, L. Digital Twin-Driven Collaborative Scheduling for Heterogeneous Task and Edge-End
Resource via Multi-Agent Deep Reinforcement Learning. IEEE J. Sel. Areas Commun. 2023, 41, 3056–3069. [CrossRef]

30. Jiang, Y.; Liu, J.; Humar, I.; Chen, M.; AlQahtani, S.A.; Hossain, M.S. Age-of-Information-Based Computation Offloading and
Transmission Scheduling in Mobile-Edge-Computing-Enabled IoT Networks. IEEE Internet Things J. 2023, 10, 19782–19794.
[CrossRef]

http://dx.doi.org/10.23919/JCC.2020.05.016
http://dx.doi.org/10.1109/JSAC.2023.3313195
http://dx.doi.org/10.1109/JIOT.2022.3153996
http://dx.doi.org/10.1109/JSAC.2023.3310058
http://dx.doi.org/10.23919/JCC.2020.12.011
https://en.wikipedia.org/wiki/Communications_satellite#Low_Earth_orbit_(LEO)
http://dx.doi.org/10.1109/TCOMM.2023.3253721
http://dx.doi.org/10.1109/MCOM.001.2100818
http://dx.doi.org/10.1109/JSAC.2022.3227032
http://dx.doi.org/10.1109/MCOM.002.2101048
http://dx.doi.org/10.1109/MVT.2022.3202004
http://dx.doi.org/10.1109/TVT.2022.3220647
http://dx.doi.org/10.1109/JIOT.2021.3065583
http://dx.doi.org/10.1109/JIOT.2021.3132171
http://dx.doi.org/10.1109/JIOT.2022.3222831
http://dx.doi.org/10.1109/TMC.2023.3312352
http://dx.doi.org/10.1109/TWC.2022.3171824
http://dx.doi.org/10.1007/s11276-022-03201-8
http://dx.doi.org/10.1016/j.iot.2023.100986
http://dx.doi.org/10.1109/TITS.2022.3179987
http://dx.doi.org/10.1109/MNET.006.2200281
http://dx.doi.org/10.1109/TWC.2021.3103764
http://dx.doi.org/10.1109/TWC.2020.2988917
http://dx.doi.org/10.1109/JSAC.2023.3310066
http://dx.doi.org/10.1109/JIOT.2023.3283287

Drones 2024, 8, 245 20 of 20

31. Ren, Q.; Abbasi, O.; Kurt, G.K.; Yanikomeroglu, H.; Chen, J. Handoff-Aware Distributed Computing in High Altitude Platform
Station (HAPS)—Assisted Vehicular Networks. IEEE Trans. Wirel. Commun. 2023, 22, 8814–8827. [CrossRef]

32. Fang, F.; Wang, K.; Ding, Z.; Leung, V.C.M. Energy-Efficient Resource Allocation for NOMA-MEC Networks with Imperfect CSI.
IEEE Trans. Commun. 2021, 69, 3436–3449. [CrossRef]

33. Standard 3GPP TR 38.811 (V15.4.0); Study on New Radio (NR) to Support Non-Terrestrial Networks (Release 15). 2020. Available
online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3234 (accessed on 29
May 2024).

34. Chen, Q.; Meng, W.; Quek, T.Q.S.; Chen, S. Multi-tier hybrid offloading for computation-aware IoT applications in civil aircraft-
augmented SAGIN. IEEE J. Sel. Areas Commun. 2022, 41, 399–417. [CrossRef]

35. Fidler, F.; Knapek, M.; Horwath, J.; Leeb, W.R. Optical Communications for High-Altitude Platforms. IEEE J. Sel. Top. Quantum
Electron. 2010, 5, 1058–1070. [CrossRef]

36. Diamond, S.; Boyd, S. CVXPY: A python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 2016, 17, 1–5.
37. Zhang, X.J.; Zhang, X.L.; Yang, W.T. Joint Offloading and Resource Allocation Using Deep Reinforcement Learning in Mobile

Edge Computing. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3454–3466. [CrossRef]
38. Cheng, Z.; Min, M.; Liwang, M.; Huang, L.; Gao, Z. Multiagent DDPG-Based Joint Task Partitioning and Power Control in Fog

Computing Networks. IEEE Internet Things J. 2022, 9, 104–116. [CrossRef]
39. Dai, Y.; Xu, D.; Maharjan, S.; Zhang, Y. Joint computation offloading and user association in multi-task mobile edge computing.

IEEE Trans. Veh. Technol. 2018, 67, 12313–12325. [CrossRef]
40. Ren, Q.; Abbasi, O.; Kurt, G.K.; Yanikomeroglu, H.; Chen, J. High Altitude Platform Station (HAPS) Assisted Computing for

Intelligent Transportation Systems. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Madrid, Spain,
7–11 December 2021; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TWC.2023.3266344
http://dx.doi.org/10.1109/TCOMM.2021.3058964
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3234
http://dx.doi.org/10.1109/JSAC.2022.3227031
http://dx.doi.org/10.1109/JSTQE.2010.2047382
http://dx.doi.org/10.1109/TNSE.2022.3184642
http://dx.doi.org/10.1109/JIOT.2021.3091508
http://dx.doi.org/10.1109/TVT.2018.2876804

	Introduction
	Related Works
	System Model of HAP Drones and LEO Satellite Collaborative Networks
	Communication Model
	IoT–HAP Drone Communication Model
	HAP Drone–LEO Satellite Communication Model

	Computing Model
	Overall Delay Analysis
	Local Processing
	Processing on Directly Connected HAP Drones
	Processing on Forwarded HAP Drones
	Processing on LEO Satellites

	Problem Formulation
	Algorithm Design for OP
	Problem Conversion
	Algorithm Design for the Optimization of SP2
	Algorithm Design for the Optimization of SP1
	MDP
	Proposed Task Splitting Algorithm Based on DDPG

	Complexity Analysis

	Performance Evaluation
	Simulation Setup
	Convergence and Parameter Analysis
	Performance Analysis

	Conclusions
	References

