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Abstract: Drone-based transportation is emerging as a novel mode in city logistics, featuring first-
mile pickup and last-mile instant delivery using drones and truck transshipment. A fundamental
challenge involves coordinating merchants, drones, transshipment hubs, trucks, and consumer
communities through the hub-and-spoke network (HSN). This study formulated the optimization
problem for HSN to minimize logistics costs and loss of orders constrained by service time limits. The
ε-constraint model, two evolutionary algorithms based on Non-dominated Sorting Genetic Algorithm
II (NSGA-II) using permutation (EAp) and rand key-based (EAr) encoding/decoding schemes were
devised to solve the bi-objective mathematical program. Three groups of twelve experiments were
conducted using ideal datasets and datasets generated from Shenzhen city to validate the models
and algorithms. Relaxing the logistics objective by 10% and subsequently minimizing the loss of
orders can significantly reduce average unmet orders by 24.61%; when spokes were beyond 20,
the ε-constraint model failed to achieve solutions within an acceptable time. While EAp and EAr
demonstrated competence, EAr proved to be more competitive in computation time, hypervolume,
spacing metric, and the number of non-dominated solutions on the Pareto fronts. Key parameters
influencing the HSN solutions include drone and truck speeds, acceptable delivery times, and the
processing and waiting time at hubs.

Keywords: drone logistics; hub-and-spoke network; last-mile distribution; genetic algorithm; city
logistics

1. Introduction

Applying drones to urban logistics, particularly in the domain of instant delivery,
has emerged as a technological trend, drawing extensive global attention and discourse [1].
Various countries and companies have made significant strides in advancing drone tech-
nology and its applications. China continues to develop drone technologies, particularly
achieving noteworthy milestones in urban logistics and instant delivery [2]. Companies
like Meituan.com, JD.com, and SF Express (sf-express.com) have undertaken substantial
efforts in pilot projects for drone-based instant deliveries [3]. Amazon and Google have
invested in developing instant-delivery drone technology [4]. European nations actively
apply drone technologies in city logistics; e.g., France and the UK are conducting numerous
pilot projects [5]. Singapore is a global logistics and technology hub dedicated to advancing
drone technologies in city logistics [6].

Large-scale applications of drones in city logistics meet challenges. First, nations must
establish pertinent regulations and policies to ensure safe and compliant drone operations
within city areas [7]. Second, drone technologies must be mature enough to operate safely
and reliably in urban environments while handling complex meteorological and environ-
mental conditions [8]. Implementing an effective air traffic management system for drones
is crucial to coordinate and prevent collisions [9]. Given that using drones raises privacy
and security concerns, it is essential to take appropriate measures to safeguard personal
information and urban infrastructure. Public acceptance also requires extensive societal
outreach and education [10]. Constraints and challenges encountered in the application of
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drones include air traffic congestion, the impact of weather conditions on flights, issues
with energy and endurance capabilities, technological barriers, and high costs [10]. With
ongoing technical development and the refinement of solutions, the prospects for applying
drones to city logistics remain extensive. The benefits of enhancing logistics efficiency,
reducing delivery times, and cutting costs will drive the widespread adoption of drones in
city logistics. As pertinent regulations are implemented and technology advances [7], the
market potential will continue to unfold.

Drone-based logistics harnesses drone technology for urban cargo transportation ser-
vices, focusing on the swift and immediate delivery of courier services, especially suitable
for small packages or urgent items requiring prompt transportation [11]. In contrast to tradi-
tional city logistics systems, drone-based instant delivery exhibits distinctive characteristics.
Drones can efficiently navigate cities, circumvent traffic congestion, and select the most
direct delivery routes, significantly enhancing distribution speed and efficiency [12]. Using
drones concurrently reduces labor costs, minimizes energy consumption, and improves
overall operational efficiency. Additionally, drone deployment contributes to environmen-
tal conservation by mitigating traffic emissions and fostering eco-friendly and sustainable
urban development [13]. Lastly, the adaptability of drones enables coverage in a broader
range of urban areas, especially within complex urban terrains. Although the drone bat-
tery technology is advanced, its flying duration is limited, while mountainous fields and
extreme climates may require additional energy consumption.

Drone-based instant delivery addresses a series of decision-making and optimization
challenges, including routing drones to minimize time and energy consumption, effectively
allocating tasks to drones to maximize overall delivery efficiency, and optimizing the
urban storage network to align with the requirements of drone logistics. Addressing these
challenges requires applying drone control and navigation technologies, optimization
algorithms, theories, methods, and technologies associated with artificial intelligence
and big data. Achieving greater efficiency in drone-based instant delivery may require
adjustments, optimizations, or reconstructions of existing city logistics networks. For
example, constructing infrastructure such as takeoff, landing facilities, and charging stations
compatible with drone logistics is necessary [14]. Refactoring the city logistics network to
accommodate drone-based instant deliveries is essential. Regulations and policies must
also be established to ensure lawful and compliant drone operations.

This study considers the logistics network design and optimization with distinct drone
characteristics in urban catering and takeaways orders and delivery: the drones undertake
the first-mile pickup and last-mile delivery [15]; the trucks undertake the transshipment;
the drones and trucks hand the packages at hubs; the drones conduct pickup and deliver
packages from and to specialized intelligent cabinets nearby merchants and consumer
communities. Considering these features, we extend the baseline hub-and-spoke network
(HSN) model to build a bi-objective program for drone-based instant delivery to minimize
logistics costs and loss of orders. The drone and truck speeds affect the transportation time
between spokes and hubs and among the hubs. The consumers will raise orders within the
accept order engagement time range, e.g., one hour. Thus, the HSN only fulfills such short-
time orders, and the network is not fully connected to different general-purpose HSNs. To
solve the bi-objective program, we devised an ε-constraint model and then developed two
evolutionary algorithms based on Non-dominated Sorting Genetic Algorithm II (NSGA-II)
using permutation (EAp) and rand keys (EAr) as encoding/decoding schemes. Using
an ideal dataset and the datasets generated in the context of the Shenzhen City case, the
devised models and algorithms were compared; the hyperparameters of the evolutionary
algorithms were studied; the sensitivities of key parameters were investigated; and some
managerial and operations strategies were discussed numerically.
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This study contributes to three streams of the literature on drone-based logistics,
first- and last-mile logistics, and hub-and-spoke network optimization. First, drone-based
logistics mainly focus on routing and coordinating the drones and other devices, e.g., trucks.
This study investigates a novel mode featuring drone-based first-mile pickup, last-mile
delivery, and truck-based transshipment. Second, most studies are concerned with last-mile
distribution by drones, while this study simultaneously formulated first- and last-mile
drone operations. Third, consolidation and distribution hubs in logistics networks are
generally fully connected. In contrast, this study considered a practical constraint: the order
time range that limits the order engagement time upper bounds. Therefore, bi-objective
HSN models and algorithms must be developed to optimize the logistics cost and loss
of orders.

The rest of the study is organized into six sections. Section 2 reviews the related
studies on instant delivery, HSN optimization, and drone-based facility location problems.
In Section 3, the problem is described. Section 4 proposes a bi-objective mathematical
program by extending a baseline HSN model. Section 5 develops three solution methods
based on ε-constraint, NSGA-II, and evolutionary algorithm. In Section 6, three groups and
twelve experiments are conducted. Finally, we conclude the study in Section 7.

2. Related Studies
2.1. Instant Delivery

Instant delivery aims to significantly enhance the efficiency of cargo transportation and
promptly respond to consumer demands by applying advanced technologies. It integrates
the Internet of Things (IoT), artificial intelligence and machine learning (ML), automation
and robotics, and big data analytics. It enables the real-time monitoring of the location and
status of packages, demand forecasting, routing optimization, and the utilization of au-
tonomous vehicles or robots for delivery tasks. Chinese e-commerce giants such as Alibaba
and JD.com have conducted trials of autonomous delivery vehicles [3], and Amazon offers
the Prime Now service for two-hour delivery while exploring the possibilities of drone
delivery [4]. In instant delivery, drones are considered a robust solution for addressing the
last-mile delivery challenge due to their rapidness and flexibility. Drone applications extend
beyond last-mile delivery to support emergency supplies transportation and delivery to
remote areas.

Instant delivery is limited by the short-order engagement time ranges, e.g., one hour,
so advanced technologies and decision-making methods are essential for saving time and
speeding the delivery processes. Table 1 lists studies on the operations research of instant
delivery, which differs from general delivery in the order engagement time limits [16].
Most studies reviewed apply UAVs (Unmanned Aerial Vehicles) or drones to cooperate
with logistics vehicles. The column “TD” (truck and drone) summarizes the transportation
devices used. Three studies coordinate trucks and drones for efficient instant delivery.
Although even complicated instant delivery problems can be formulated or transferred into
mixed-integer linear programs (MILPs), they are challenging to solve by exact algorithms
within acceptable times. Various heuristics can be applied to solve the problems. As
shown at the end of Table 1, this study investigates the solution of using trucks and drones
simultaneously and devises bi-objective MILPs that are solved by algorithms based on
ε-constraint and NSGA-II.
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Table 1. Studies on instant delivery.

Study Problem Features TD Model Algorithm

[16] Heterogeneous instant delivery order scheduling and
routing problems. T MILP CG

[17] Instant delivery by vehicles and drones. TD MILP ACO

[18] An auction-based trading platform to enable
procurement for instant delivery. T Game ML

[19] A facility location and demand allocation problem for
drone-based instant delivery. TD - HA

[20] Online instant delivery with dynamic orders. T MILP GA

[21] Time-dependent instant delivery considering cost,
customer satisfaction, and traffic. T MILP GA, VNS

[22] A VRP in an instant delivery peak period. T MILP ACO

This study
An HSN coordinating trucks for transshipments
among hubs and drones for first-mile pickup and

last-mile distribution.
TD MILP, MO NSGA-II, GA

Note: ACO = artificial colony algorithm; BG = Benders decomposition; CG = column generation; GA = genetic
algorithm; Game = game theory model; HA = heuristic algorithm; MILP = mixed-integer linear program;
ML = machine learning; MO = multi-objective optimization; VNS = variable neighborhood search; TD = truck (T)
or/and drone (D).

2.2. Hub-and-Spoke Network Optimization

The HSN is a classic model for designing logistics and transportation systems. The
network features a set of hubs connecting peripheral spokes, which are interconnected to
utilize the economy of scale of logistics. HSN is widely applied in the logistics industry,
especially in building efficient supply chain systems for retail and e-commerce [23]. The
aviation industry also adopts this concept by connecting different destinations through hub
airports to enhance flight operational efficiency [24]. The design of public transportation
routes can similarly draw inspiration from the HSN concept to achieve efficient connec-
tions [12]. The theoretical and technical challenges in designing and optimizing HSNs
include addressing distinct features, developing faster solutions, and considering uncertain
and dynamic demands, traffic, and network structures.

Many studies have investigated HSN optimization, as presented in Table 2. The HSNs
have been applied in waterways [25], maritime [26], roads [27], railroad [28], and avia-
tion transportation and logistics systems. Generally, the hubs are not fully connected to
waterways and maritime transportation systems. In this study, the hub connections are
constrained by order engagement time ranges. In the column “PF” (partial or complete con-
nections among hubs), some studies consider the partial connections practically [25,28–30].
The HSN involves logistics costs, efficiency, and emissions, so it should be formulated as a
multi-objective model. Although it can be formulated as MILPs, due to its complexities,
various math-heuristics and metaheuristics have been developed in the literature. As
elucidated in the last row in Table 2, we considered minimizing the logistics cost and order
loss simultaneously in a bi-objective model, which is solved by ε-constraint and NSGA-II.
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Table 2. Pioneering studies on hub-and-spoke network optimization.

Study Problem Features PF Model Algorithm

[31] A hierarchical urban and rural logistics network with hub
capacity and demand uncertainty. F MILP B&C

[32] Reconfiguring the merged HSNs considering vehicle
emissions, on-time delivery, and operating costs. F MO, MINLP SOCP

[28] An HSN network for railroad freight with links to
concentrated freight flows. P MILP HA

[30] Service networks based on round-trips. P MILP VNS, ML

[25] Inland container shipping HSN networks, determining hubs,
feeder port allocation, and fleet deployment. P MILP BD

[33] HSN network design considering congested hubs and links. F Queue NSGA-II, ILS

[34] Hub location considering links with incentive-dependent
capacities, affecting the hub selections and flow assignment. P Convex Approx

[24] A cross-docking HSN with electric truck fleets, mobile
charging stations, and capacity constraints. F Graph GA

This study
Drones undertake transportation between spokes and hubs,
while trucks undertake transshipment among hubs. Instant
delivery time ranges constrain the connections among hubs.

P MILP, MO GA, NSGA-II

Note: Approx = outer-approximation algorithm; B&C = branch-and-cut algorithm; BD = Benders decomposition;
ILS = Iterated Local Search; MINLP = mixed-integer nonlinear program; SOCP = second-order cone program.

2.3. Drone-Based Facility Location Problems

The application of drone technology to logistics is gradually becoming widespread,
bringing forth new features and challenges in facility location problems. These features
consider the rational spatial utilization and safety requirements of drone takeoff and
landing facilities, charging stations, and maintenance to ensure sustained and stable drone
operations. Various new technologies and methods with drone-based logistics systems
are applied to facility locations. Virtual reality and simulation technologies are used to
simulate location selection scenarios virtually, evaluating the operational effectiveness of
drones in different locations [35]. Data analytics and predictive technologies help assess
the demands and potential traffic at various locations, while autonomous navigation and
environmental perception technologies ensure safe and effective drone flights in urban
environments [12]. However, limitations include short endurance [36], susceptibility to
weather conditions, regulation challenges [7], and privacy protection.

Table 3 reviews pioneering studies on drone-based routing and location optimization
in three aspects: problem features, model, and algorithm. Three classification criteria are
further developed to study the problem features: FL (first-mile pickup or last-mile delivery),
RN (routing or network optimization), and FD (fixed or dynamic drone launching and
returning locations). In all reviewed studies, drones undertake the last-mile delivery tasks.
Most studies concern the truck/vehicle and drone routing problem, and some consider
the locations of drone launching and returning, while these locations depend on the truck
routes. As for models, although some studies formulate the problems as MILPs, they
also analyze the problems and devise models by scenario-based sensitivities. The above
studies correlate well with methodology, while the large-scale drone application in urban
distribution may challenge management, the environment, and safety.
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Table 3. Related studies on drone-based routing and location optimization.

Study Problem Features FL RN FD Model Algorithm

[37] Minimize the makespan in TDRP with
non-customer stops. L R D MILP SA, VNS

[29] TDRP with uncertain demands and drone capacity. L R F MILP SAA, GA

[38] TDRP with synchronization on arcs. L R D MINLP ALNS

[39] Drone launch/retrieval with a moving truck. L N F SP GA, HA

[12] Drone routing constrained by traversal time and
limited batteries. L R D SP SAA

[35] Locate drone takeoff platforms. L R F Graph BD

[11] Robust drone TSP with uncertain travel time. L R D RO B&PC, HA

[40] Optimize contactless delivery risk and makespan. L FN F SP BD

[41] Minimize customer waiting times in multi-trip
one-truck and multi-drone routing. L FN F MO NSGA-II, TS

This study Minimize customer waiting times in multi-trip
one-truck and multi-drone delivery. FL RN FD Model Algorithm

Note: B&PC = branch-and price-and-cut algorithm; FD = fixed and/or dynamic drone launching and return-
ing locations; FL = first-mile pickup and/or last-mile delivery; MINLP = mixed-integer non-linear program;
RO = robust optimization; SA = simulated annealing; SAA = sample average approximation; SP = stochastic
program; TS = tabu search algorithm.

Due to the complexities of the truck–drone routing problem (TDRP) and location opti-
mization models, exact algorithms (e.g., B&PC and BD) and various heuristic algorithms
(e.g., ALNS, GA, and TS) contribute to obtaining optima or approximate solutions. As
indicated in the last row of Table 3, this study was activated by drone-based urban instant
delivery and aimed to optimize the HSN coordinating drones and trucks. In particular, the
drones undertake the first-mile pickup from merchants to hubs and last-mile delivery from
hubs to consumers, while the trucks serve the transshipment among hubs. Therefore, the
drone launching and returning hubs incur a strategic decision. We formulated the problem
as a bi-objective MILP, which was solved using ε-constraints and NSGA-II.

3. Problem Statement

As a Chinese technology retail company, Meituan (www.meituan.com, accessed on
4 June 2024) has launched an advanced drone-based instant delivery service in Shenzhen,
primarily applied in scenarios such as tourist attractions, parks, community office buildings,
and residential areas, providing consumers with marvelous, efficient, safe, and convenient
takeaway ordering experiences. Shenzhen City is critical in developing drone technologies
and applications in China and worldwide. The local governments set up positive technol-
ogy, economy, and regulation environments to promote drone experiments and marketable
applications. Meituan’s drone-based instant delivery service began active exploration
in 2017 and successfully initiated the first domestic industrial park drone-based instant
delivery route in China in Shenzhen in 2021. By 2023, the service operated 17 routes in
cities, including Shenzhen and Shanghai, completing over 184,000 orders and delivering
efficient consumer services [42].

As a notable feature, drone-based instant delivery utilizes cutting-edge technologies,
including navigation, obstacle avoidance, three-dimensional visual mapping, and routing
control intelligent devices and technologies. Advanced technologies enable drones to use
autonomous flight and airborne traffic management, enhancing flight safety and stability.
Drone-based instant delivery effectively mitigates road congestion and environmental
pollution [43,44], aligning with green and low-carbon development targets.

Despite the significant achievements, drone-based instant delivery still faces challenges
and difficulties, including issues related to the city logistics system with drones, operating

www.meituan.com
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costs, technologies, regulations, and consumer behaviors. Addressing these challenges
requires further in-depth exploration and refinement to adapt to market demands and
enhance the quality and sustainability of the service.

To improve logistics operations management performances, we investigated the so-
lutions based on HSN for cooperating with drone-based first-mile pickup and last-mile
delivery.

Typically, an HSN consists of a set of spokes (S) and a minor set of hubs (H). The
logistics flow among two given spokes, i, j, is denoted by Wij, and the distance is Cij.
Indeed, the terrain will impact the distance between any two points and even the climate.
Thus, we can further compute Cij considering real-world 3D trajectories, even considering
constraints by airspace regulations and discretization. The HSN operator should select
a set of spokes to be fully connected hubs to achieve the economy of scale of logistics
operations among the hubs. Thus, the unit consolidation cost is defined from spokes to
hubs, the transshipment cost among hubs, and the distribution cost from hubs to spokes as
PC, PT , PD, generally, PC > PD > PT . Without a loss of generality and for simplification
purposes, we created an ideal example, as presented in Figure 1, to explain the related
concepts and entities. In Figure 1, the HSN has 16 spokes and four hubs. Here, each spoke
is assigned to only one hub entitled single-allocation HSN.
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As illustrated in Figure 1, drones pick up packages from spokes and send them to
hubs. Then, the packages are gathered and transshipped among the hubs by trucks. Finally,
some drones load the packages from the hubs and deliver them to the target spokes. In the
above processes, the consumers will only raise orders within an instant order engagement
time range (denoted by Torder), generally one hour in the urban catering and takeaway
delivery scenarios. The drones can only take tasks within flying duration limits. The trucks
and drones can only travel at given speeds (denoted by Struck, Sdrone). Under the above
premises, the HSN hubs are not always connected entirely under the constraint of Torder.
Thus, the hubs incur transshipment ranges. Considering this feature, the HSN should be
sparse because the long connections among hubs will be eliminated.

4. Formulation
4.1. Baseline Hub-and-Spoke Optimization Model

The parameters and decision variables are defined in the baseline HSN optimization
model. S is a set of spokes, S = {1, 2, 3, . . .}. Cij is the distance between two spokes,
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i, j ∈ S, Cii = 0. PC, PD, PT are the costs of transporting a unit of packages for a unit of
distance from spokes to hubs, among hubs, and from hubs to spokes. The cargo flow from
a spoke i ∈ S to another j ∈ S is Wij. Oi, Di represent the in- and out-flows of the spoke
i ∈ S, namely, Oi = ∑j Wij, Di = ∑j Wji.

Two decision variables are defined: xik and yikh. When xik = 1, the spoke i ∈ S is
assigned to the hub k ∈ S and xkk = 1; then, k is a hub. yikh is the cargo flow from the spoke
i through the hub k and then the hub h, i, k, h ∈ S. The hub set is denoted by H, H ⊆ S.
In literature, the cost of i ∈ S to be a hub is denoted by Fi. Hub investment is a strategic
problem. We introduced the number of hubs to be chosen, H, namely, H = |H|.

The above notations are summarized as follows.

Sets

S, H, H
S is a set of nodes, namely, spokes and potential hubs; H is a set of hubs,
and H is the number of hubs.

Data

Cij
Distance from the node i ∈ S to j ∈ S, Cii = 0 for all i ∈ S; assume that the
triangle inequality is satisfied, Cij ≤ Cik + Ckj, i, j, k ∈ S.

PC, PD, PT The consolidation (from spokes to hubs), transshipment (among hubs), and
distribution (from hubs to spokes) cost discounts.

Wij Cargo flow from the node i ∈ S to j ∈ S
Oi = ∑j Wij Cargo flow originated from the node i ∈ S
Di = ∑j Wji Cargo flow destinated to the node i ∈ S
H Number of hubs.

Variables

xik ∈ {0, 1} xik = 1 if the spoke i is assigned to the hub k; otherwise,
0. xkk = 1 represents that k is chosen as a hub.

yikh ≥ 0
The flow originated from the spoke i ∈ S, through the hubs k and h
sequentially to the target spoke (i, k, h ∈ S).

The HSN optimization problem can be formulated as a cost minimization model
[M1], where the total cost (zhsn) consists of consolidation (zC), transshipment (zT), and
distribution (zD) costs, as denoted by (1), (2), (3), and (4).

[M1]minzhsn = zC + zT + zD, (1)

where
zC = ∑

ik
PCCikOixik, (2)

zT = ∑
ikh

PTCkhyikh, (3)

zD = ∑
ik

PDCkiDixik, (4)

subject to
∑
k

xik = 1, ∀i (5)

xik ≤ xkk, ∀i, k (6)

∑
k

xkk = H (7)
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∑
h

yikh −∑
h

yihk = Oixik −∑
j

Wijxjk, ∀i, k (8)

∑
h ̸=k

yikh ≤ Oixik, ∀i, k (9)

xik ∈ {0, 1}, ∀i, k (10)

yikh ≥ 0, ∀i, k, h (11)

The constraint (5) constrains that a spoke can be assigned to one and only one hub.
In (6), a spoke can accept flows from spokes only when it is chosen as a hub. The number
of hubs is given in (7). The flow originating from a spoke is determined by (8) and (9). The
variable domains are given in (10) and (11).

4.2. Extended Bi-Objective Optimization Models

Unlike the general HSN solutions defined in [M1], the investigated instant logistics
solution uses drones for first-mile pickup and last-mile delivery [45]. The consumers
raise takeaways orders under the consideration of the acceptable order engagement time
range (Torder) between their locations and the merchants. Therefore, some orders may be
unacceptable because the total logistics time exceeds Torder.

For a given pair of spokes i, j, the total logistics time accomplishing the pickup,

transshipment, and delivery is denoted by
∼
t

order

ij , which consists of five parts: drone-based
pickup time, processing and waiting time at the consolidation hub, truck transshipment
time from the consolidation hub to the distribution hub, the processing and waiting time at
the distribution hub, and the drone-based delivery time. To simplify the formulation, we

use A(i) to represent the hub assigned to the spoke i. If
∼
t

order

ij > Torder, the order is likely to
be lost because the consumer may not accept a later delivery. Indeed, the consumer raises
the order to consider (13), and the takeaway ordering platforms must consider such criteria.

∼
t

order

ij =
CiA(i)

Sdrone + Ttr +
CA(i)A(j)

Struck + Ttr +
CA(j)j

Sdrone (12)

Cij

Struck ≤ Torder (13)

The drone-based logistics solution changes the components of time in the order engage-
ment. Therefore, the decision-makers must improve the logistics network and operations
to minimize the loss of orders.

To formulate the minimization of the loss of orders, we introduced additional variables

besides
∼
t

order

ij . First, ttr
ijkh represents the transshipment time by a truck from the hub k to the

hub h in the engagement of the order from the spoke i to the spoke j. ttr
ijkh can be determined

by (14) when k and h are hubs of i and j. Second, ttr
ij is the transshipment time by a truck,

which is computed based on ttr
ijkh, as calculated in (15). Third, a binary variable zij is defined,

indicating whether the order (i, j) will be lost or not, as denoted in (16). Finally, the loss of
orders can be expressed in (17).

ttr
ijkh ≥

Ckh

Struck ·
(

xik + xhj − 1
)

(14)

ttr
ij = ∑

kh
ttr
ijkh (15)

zij ·M ≥
∼
t

order

ij − Torder, ∀i, j (16)
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f loss = ∑
ij

zijWij (17)

A revised model was then formulated as [M2].

[M2]min
(

zhsn, zloss
)

Subject to
Constraints ((1)–(9), (14)–(17)).

xik ∈ {0, 1}, yikh ≥ 0, zij ∈ {0, 1}, ttr
ijkh ≥ 0, ttr

ij ≥ 0, ∀i, k, h

The known data of the model can be represented by a vector (I), and the variables can
be represented by X, as denoted by (18) and (19).

I =
[
S, W, C, PC, PD, PT , D, O, Sdrone, Struck, Ttr, Torder

]
(18)

X =
[

xik, yikh, zij, zhsn, zsum, zC, zT , zD, ttr
ij , ttr

ijkh

∣∣∣∀i, j, k, h
]

(19)

5. Solution Algorithm
5.1. Solving Bi-Objective Models by ε-Constraints

As formulated in Section 4.2, [M2] is a bi-objective model, which can be solved based
on ε-constraints

First, we can optimize [M2] by minimizing the single objective zhsn, which can be
denoted by [M2a], as defined in (20). We can use f [M2a](·) to represent the solving process
(21), where zhsn∗, X∗ are the solution values of the variables.

[M2a]min
{

zhsn
∣∣∣((1)− (17))

}
(20)

zhsn∗ ← X∗ ← f [M2a](I) (21)

Second, we can formulate a new model to consider the relaxation of zhsn by considering
a new constraint with a relaxation coefficient ε ≥ 0, as denoted in (22).

[M2(ε)]min
{

zloss
∣∣∣((1)− (17)); zhsn ≤ (1 + ε)zhsn∗

}
(22)

Third, by iterating the acceptable values of ε, we can obtain the pairs of
(

zhsn, zloss
)

to

construct Pareto fronts between the two objectives, zhsn and zloss.
The ε-constraint method, as formulated in (22), converts the bi-objective model [M2]

into a computable model. For each value of ε, [M2] is solved to obtain the two objectives
through the constraint (zhsn ≤ (1 + ε)zhsn∗) and objective (zloss) in (22). When [M2] can
be solved mathematically, it can provide a tight Pareto front. However, solving [M2] is
time-consuming and does not apply to practical instances with more than 20 nodes (see
Section 6.4.4).

5.2. Evaluating Solutions with Determined Hubs

Algorithm 1 evaluates solutions with given hubs, assigns hubs to spokes, and calcu-
lates the logistics cost zhsn and the order loss zloss.
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Algorithm 1. Evaluate an HSN solution determined by given hubs (eval)

Inputs Data : I.
A set of hubs, hubs.

Outputs Logistics cost and loss of orders, zhsn, zloss.
Steps
Step 1 Assign spokes to hubs

A(s) = arg min
k∈hubs

distance(s, k), ∀s ∈ S.

Step 2 Calculate logistics cost zhsn

zC = ∑i∈S PCOiCiA(i).
zD = ∑i∈S PDDiCA(i)i.
zT = ∑i,j∈S PTWijCA(i)A(j).
zhsn = zC + zT + zD.

Step 3 Calculate loss of orders zloss

torder
ij =

CiA(i)

Sdrone + Ttr +
CA(i)A(j)

Struck + Ttr +
CA(j)j

Sdrone , ∀i, j, Wij > 0.
zloss = ∑ij;torder

ij >Torder Wij.

Step 4 Return zhsn, zloss

Algorithm 1 can be denoted by f eval as follows:

zhsn, zsum, x∗ ← f eval(I; hubs)

5.3. Evolutionary Algorithms Based on NSGA-II
5.3.1. Introducing NSGA-II-Based EAs

NSGA-II addresses the multi-objective optimization problems (MOP). The algorithm
has been proven effective in solving real-world MOPs in various domains, promoting
diversity and convergence of Pareto-optimal solutions. Many MOP solution algorithms
have been developed, while NSGA-II is widely used in literature and practice and is a
typical base of most other MOP algorithms. NSGA-II ranks the population through non-
dominated sorting, calculates the crowding distance of individuals in the population to
maintain diversity, and obtains an approximate solution when the termination condition is
met [46]. The basic flowchart of the NSGA-II algorithm is shown in Figure 2. The algorithm
employs a fast, non-dominated sorting method, reducing the algorithm’s computational
complexity from O

(
mN3) to O

(
mN2) (m is the number of objective functions, and N is

the population size), significantly decreasing the computation time [47]. The introduced
method for calculating crowding distance avoids the issue of manually specifying the shar-
ing radius in fitness-sharing strategies [48]. The elite strategy is adopted, merging parent
and offspring individuals for non-dominated sorting, expanding the search space [46].
Individuals with higher priority are selected to generate the next generation of parent
populations. Within the same priority level, the binary tournament strategy is employed
based on crowding distance to select high-quality individuals in the population [49], which
ensures that excellent individuals have a greater chance of being retained.
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5.3.2. An Evolutionary Algorithm Framework Based on NSGA-II

We devised an EA framework (Algorithm 2) based on NSGA-II to obtain Pareto fronts
as defined in [M2]. The population size is set to Pn, the maximum number of generations
is Pgen, the mutation probability is pm, and the crossover probability is pc. Based on
the characteristics of the model, we encoded the decision variables and thus devised
decoding schemes correspondingly denoted by f decode(·), as defined by Algorithms 3 and 4
in Section 5.3.3.
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Algorithm 2. An EA based on NSGA-II for HSN optimization (EA)

Inputs Data : I =
[
S, W, C, PC, PD, PT , Di, Oi, Sdrone, Struck, Ttr, Torder

]
.

Hyperparameters:
Population Size (Pn );
Maximum number of generations (Pgen );
Mutation probability (Pm );
Crossover probability (Pc );

Objective function
(

f decode(·) ).

Outputs Pareto front solutions.
Step 1 Initialization

Set Gen = 1
Generate an initial population

(
Pgen

)
of Pn individuals randomly in the decision

variable space.
Evaluate the objective values for each individual.(

zhsn, zloss
)
← f decode(I, pop), ∀pop ∈ POPGen .

Step 2 Non-dominated sorting
Perform non-dominated sorting to divide the population into fronts (F1, F2, · · · , Fn).
Assign a rank to each individual based on its front.

Step 3 Termination
If the termination criterion (e.g., Gen > Pgen) is met, Go to Step 8.

Step 4 Crowding distance assignment
Calculate the crowding distance for each individual on each front.
Assign the crowding distance to measure the density of solutions around each
individual.

Step 5 Create Offspring Population
Initialize an empty offspring population.
P os = ∅.
Repeat until the offspring population is filled:

Perform binary tournament selection based on non-domination and crowding
distance to get two individuals (pop1, pop2) from Pgen.
Apply crossover with probability Pc to produce two children.
(popa, popb)

crossover← (pop1, pop2).
Apply mutation with probability Pm to each child of (popa, popb).

popa
mutation← popa, popb

mutation← popb.
Evaluate the objective values for the children.(

zhsn, zloss
)
← f decode(pop), ∀pop ∈ {popa, popb}

]
.

Fill the new offspring into P os.
P os ← P os ∪ {popa, popb} .

Step 6 Merge Populations.
Combine the parent

(
Pgen

)
and offspring (P os ) populations.

Pm ← Pgen ∪ P os .
Step 7 Tournament selection

Perform non-dominated sorting and crowding distance assignment on the combined
population.
Select the top Pn individuals from 2Pn individuals in Pm based on non-domination
rank and crowding distance.
Gen← Gen + 1 .

PGen
tournament← Pm.

Go to Step 2
Step 8 Output

The final set of non-dominated solutions, (F1, F2, · · · , Fn).

Algorithm 2 can be denoted by f [EAp](·) and f [EAr](·), depending on the decoding
scheme used, namely, the permutation (EAp) and random key (EAr).
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5.3.3. Encoding/Decoding Schemes Based on Permutation and Random Keys

1. Permutation-Based Encoding/Decoding Scheme

The permutation-based individual representation encodes the HSN solutions into a
vector of spoke indices and chooses the first H ones as hubs, and the costs of hubs are
evaluated using Algorithm 1. The whole decoding steps are given in Algorithm 3.

Algorithm 3. Permutation-base decoding ( f p )

Inputs The number of hubs, H;
A vector of indexed spokes, S;
A vector of permutated spokes, chroms.

Outputs Values of the two objectives, zhsn, zsum.
Steps
Step 1 Slice the first H genes in chroms in to s.

s = chroms
[
1, . . . , H

]
.

Step 2 Map each index in s into the spoke as a hub, denoted by hubs.
hubs = {S[i]|∀i ∈ s}.

Step 3 Obtain the objective values by Algorithm 1.
zhsn, zloss, x∗ ← f [A1](I; hubs) .

Step 4 Return zhsn, zloss

Algorithm 3 can be denoted by f p(·):

zhsn, zloss ← f p(H, S; chroms
)
.

Because H, S are parts of the known data I of the HSN, we can use f p(chroms) for
simplicity.

2. Random key-based encoding/decoding scheme

The random key-based encoding scheme uses a vector of 2H genes with values in
[0, 1]. These values are mapped to coordinates in the space determined by the coordinates
of all spokes. Then, the spoke closest to each coordinate is set to a hub. Algorithm 4 gives
the steps where X−, X+, Y−, Y+ are the minimum and maximum of the coordinates of the
spokes, calculated as Equation (23).

Algorithm 4. Random key-based decoding ( f r )

Inputs The number of hubs, H;
A vector of spokes, and its coordinates, S, X, Y;
The ranges of spokes’ coordinates, X−, X+, Y−, Y+;
A vector of random keys, chroms.

Outputs Values of the two objectives, zhsn, zsum.
Steps
Step 1 Initialize the set of hubs, hubs = ∅.

Step 2 Get the random keys
(

xrk
i , yrk

i

)
for each potential hub i.

xrk
i = chroms[i], yrk

i = chroms
[
i + H

]
, ∀i ∈

{
1, 2, · · · , H

}
.

Step 3 Map the random keys into coordinates for each hub i.
xco

i = X− + xrk
i
(
X+ − X−

)
, ∀i ∈

{
1, 2, · · · , H

}
.

yco
i = Y− + xrk

i
(
Y+ −Y−

)
, ∀i ∈

{
1, 2, · · · , H

}
.

Step 4 For each i ∈
{

1, 2, · · · , H
}

:
Find the nearest spoke to the coordinates

(
xco

i , yco
i
)

for the hub i.
si ← argmin

k∈S

{
distance

(
X[k], Y[k], xco

i , yco
i
)∣∣∀k ∈ S\hubs

}
.

Update the hub set: hubs← hubs ∪ {si} .
Step 5 Obtain the objective values by Algorithm 1.

zhsn, zsum, x∗ ← f [A1](I; hubs) .
Step 6 Return zhsn, zsum

X− = min
i∈S

X[i] (23)
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X+ = max
i∈S

X[i]

Y− = min
i∈S

Y[i]

Y+ = max
i∈S

Y[i]

Algorithm 4 can be denoted by f r(·):

zhsn, zloss ← f r(H, S; chroms
)
.

Because H, S are parts of the known data I of the HSN, we can use f r(chroms) for
simplicity.

The notated function f decode(·) is introduced to represent the above two algorithms,
f p and f r, namely, decode ∈ {p, r}.

5.3.4. Evolutionary Operators

In NSGA-II, parent individuals are selected using the binary tournament method. The
process can be described as four steps. First, two individuals from the current population
will be randomly selected as competitors. Second, compare competitors based on non-
dominated relationships: if one individual dominates the other, choose the more dominant
one. If two individuals have a non-dominated relationship, further compare their crowding
distances. Third, select the winner based on the comparison results and add it to the
breeding pool. Finally, repeat the above steps until the size of the breeding pool reaches the
desired quantity.

The permutation-based encoding/coding scheme employs the partially matched
crossover (PMX) operator [50] and the Inversion Mutation (IM) operator. PMX is a crossover
operation used in genetic algorithms, typically applied to solve permutation-based prob-
lems. PMX exchanges partial genes between two parent individuals to generate offspring
individuals. IM selects and reverses a substring to introduce mutation and develop a new
individual.

The random key-based encoding/decoding scheme uses the simulated binary crossover
(SBX) and polynomial mutation operators [51]. SBX is a real-value crossover operator. It
blends information from two parents to create offspring solutions by simulating the binary
crossover process for real-value variables. SBX uses a B (beta) distribution to balance
exploration and exploitation, and ensures that the offspring solutions are created within
the feasible ranges of the variable spaces. The polynomial mutation operator generates
parameters by polynomial distribution to control the magnitude of perturbations.

6. Numerical Experiments
6.1. Datasets

To demonstrate and verify the devised models and solution algorithms, we developed
an ideal dataset (as presented in Figure 1, entitled [IDEAL]) with 12 spokes and four hubs
and a dataset generated using the geography map of Baoan District, Shenzhen City, China,
considering that Baoan should be a leading district for developing drone-based urban
logistics system (see Figure 3). The Baoan District provides the environment for applying
drones to instant delivery. The dataset is entitled SaHbic. For example, S16H4i3 is the ith
dataset with 16 spokes and four hubs.

In [IDEAL], the coordinates of the nodes were regularly set to [0, 1, 2, 3, 4]. The dis-
tances among the nodes were calculated using Euclidean distance. Additional parameters
were set to H = 4, PC = PT = PD = 5, Struck = Sdrone = 1, Torder = 2.1. and Ttr = 0.1.

The Baoan dataset was constructed using the following three steps. First, we obtained
the geographical map from OpenStreetMap (www.openstreetmap.org, accessed on 4 June
2024). Second, we used the Baoan political polygon to extract the road network and catering
positions from the map. Third, the spokes were randomly chosen from the merchant
positions, and thus the datasets were generated.

www.openstreetmap.org
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We constructed the datasets based on actual data from Baoan District, Shenzhen
City. The datasets are scalable; we can derive new ones from them by choosing nodes
and connections. In the models and algorithms devised in Sections 4 and 5, we focus
on the distinct features of coupling HSN and drone technologies in the formulations and
computational strategies while they do not impose particular assumptions on the datasets.
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6.2. Assessment Metrics for Multi-Objective Optimization Solutions

We used three metrics, namely the number of non-dominated solutions (NS), hy-
pervolume (HV), and Spacing, to assess the performance of multi-objective optimization
algorithms. Each metric offers unique insights into different aspects of Pareto fronts,
contributing to a comprehensive assessment of algorithmic effectiveness.

(1) The NS measures diversity, emphasizing the quantity and diversity of solutions
on Pareto fronts [52]. The higher the NS, the broader the exploration of the Pareto fronts,
facilitating the search for global optimal solutions.

(2) The HV measures the volume occupied by the non-dominated set, depicting the
spatial coverage of non-dominated solutions, underscoring the convergence of solutions on
Pareto fronts [53]. A larger HV is preferable in optimization problems with a minimization
objective. The formula for calculating HV is formulated by Equation (24). The Lebesgue
measure, denoted as δ(S), is employed to quantify the volume of the non-dominated
solution set, representing its extent in the objective space; |S| signifies the number of
solutions in the non-dominated set; vi represents the HV formed by the reference point and
the ith solution in the set.

Hypervolume = δ(S)−
|S|

∑
i=1

vi (24)

(3) The Spacing metric quantifies the dispersion of solutions, capturing the relative dis-
tances between solutions [54]. Higher Spacing values imply a more favorable distribution
of solutions, while lower values may indicate a concentration of the Pareto front solutions
in specific local regions. Consequently, higher Spacing values are generally considered
indicative of superior performance. The formula for calculating Spacing is as formulated
by Equation (25), where di represents the minimum distance from the ith solution to other
solutions in the set P, |P| denotes the number of solutions in set P, and d̄ signifies the mean
of all di.

Spacing(P) =

√√√√ 1
|P|

|P|

∑
i=1

(
di − d̄

)2 (25)
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6.3. Experimental Settings

In Table 4, we developed three groups of experiments to reveal the distinct features
of the devised models and algorithms. In the first group, we compared the models and
algorithms’ computing performances and optimality capabilities and determined the rec-
ommended values of the critical parameters. In the second group, we investigated the
parameter sensitivities and impacts on computing performances. We examined four typical
managerial strategies or scenarios in the third group, considering overdue delivery, rush
hours, drone delays, and hub busyness and exploration.

Table 4. Experimental purposes, settings, and results.

No. Purposes Settings and Steps Results

1 Demonstration (1) Dataset: [IDEAL]
(2) Models and algorithms: [M1], [M2(ε = 0.1)], [EAp], and [EAr].

Figure 4

2 Compare [M1] and [M2] (1) Dataset: [S10H2i(0–9)];
2) Models: [M1], [M2], and [M2(ε = 0.1)].

Table 5

3 Analyze the EA’s hyperparameters (1) Dataset: [S60H6i0];
(2) Algorithms: [EAp] and [EAr].

Table 6

4 Compare [M2], [EAh] and [EAr] (1) Dataset: [S10H3i1];
(2) Model: solve [M2(ε)] for ε ∈ [0, 0.1, · · ·] until there is no change
in the objectives;
(3) Algorithms: [EAp] and [EAr].

Figure 5

5 Compare [EAh] and [EAr] (1) Dataset: [S(40, 60, 80, 100)H(4, 6, 8, 10)i0];
(2) Algorithms: [EAp] and [EAr].

Table 7
Figure 6

6 Sensitivities of Struck , Sdrone, Torder , and Ttr (1) Dataset: [S60H6i0];
(2) Algorithm: [EAr];
(3) The reference values of the four parameters: [40.0, 50.0, 1.0, 0.3];
(4) The ratios for adjusting the parameter values:
[−0.1,−0.05, 0, 0.05, 0.10];

Table 8
Figure 7

7 Number of hubs impacting on the performances (1) Dataset: [S60H6i0];
(2) Algorithm: [EAr];
(3) Varying the hubs: H = [5, 10, · · · , 30].

Table 9
Figure 8

8 Number of spokes impacting on the performances (1) Dataset: all datasets generated;
(2) Algorithm: [EAr].

Table 10

9 Study the overdue delivery strategy (1) Dataset: [S60H6i0];
(2) Algorithm: [EAr];
(3) The reference values of the order time

(
Torder ): 1 h;

(4) The ratios for adjusting the parameter values:
[0.00, 0.05, 0.10, 0.15, 0.20].

Table 11
Figure 9

10 Impacts of urban rush hours on the solutions (1) Dataset: [S60H6i0];
(2) Algorithm: [EAr];
(3) The reference values of the truck speed

(
Struck ): 50 km/h;

(4) The ratios for adjusting the parameter
values: [0.00,−0.05,−0.10,−0.15,−0.20].

Table 12
Figure 10

11 Impacts of drone delays on the solutions (1) Dataset: [S60H6i0];
(2) Algorithm: [EAr];
(3) The reference values of the drone speed

(
Sdrone ): 50 km/h;

(4) The ratios for adjusting the parameter values:
[0.00,−0.05,−0.10,−0.15,−0.20].

Table 13
Figure 11

12 Impacts of hub busy and even explosion periods on
the solutions

(1) Dataset: [S60H6i0];
(2) Algorithm: [EAr];
(3) The reference values of the hub stay time

(
Ttr ): 0.3 h;

(4) The ratios for adjusting the parameter values:
[0.00, 0.05, 0.10, 0.15, 0.20].

Table 14
Figure 12
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Figure 5. Pareto fronts of the results using [EAp], [EAr], and [M2].

Table 5. Objective values of solving [M1] and [M2].

Dataset
[M1] [M2a] [M2(ε=0.1)] (zsum−zhsn(ε))·100

zsum
zhsn zhsn zsum zhsn(ε) zsum(ε)

S60H6i0 8361 8361 56 8361 26 53.57
S60H6i1 9421 9421 46 9421 36 21.74
S60H6i2 5740 5740 18 5740 18 0.00
S60H6i3 10,152 10,152 72 10,152 36 50.00
S60H6i4 9525 9525 84 9525 44 47.62
S60H6i5 9751 9751 42 9751 30 28.57
S60H6i6 9347 9347 48 9347 46 4.17
S60H6i7 11,439 11,439 78 11,439 52 33.33
S60H6i8 7999 7999 32 7999 32 0.00
S60H6i9 8333 8333 28 8333 26 7.14

Mean 9006.8 9006.8 50.4 9006.8 34.6 24.61
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Table 6. Tuning the mutation and crossover probabilities of [EAp] and [EAr].

[EAp] [EAr]

CT HV Spacing NS CT HV Spacing NS

pm 0.00 18.45 0.032 76.95 20 2.99 0.044 2050.63 16.54
0.25 17.90 0.048 398.24 20 9.19 0.070 1644.33 18.74
0.50 17.18 0.052 656.81 20 13.01 0.078 2395.58 18.66
0.75 16.66 0.048 270.85 20 14.85 0.076 3889.27 16.06
1.00 16.47 0.056 348.98 20 16.15 0.084 4738.29 14.08

pc 0.00 17.67 0.042 31.81 20 9.77 0.062 3544.90 14.92
0.25 17.42 0.046 358.84 20 10.78 0.070 2270.35 17.68
0.50 17.68 0.046 340.67 20 11.48 0.072 2726.01 17.40
0.75 16.90 0.050 586.60 20 11.98 0.074 2925.85 16.88
1.00 17.00 0.052 433.91 20 12.18 0.074 3250.99 17.20

Note: CT = Computing time (s); HV = Hyper volume; NS = Number of Non-dominated solutions.

Table 7. Comparisons between [EAp] and [EAr].

[EAp] [EAr]

CT HV Spacing NS CT HV Spacing NS

S40H4i0 29.80 0.090 693.37 20 6.13 0.072 485.86 20
S60H6i0 66.84 0.018 0.00 20 33.09 0.020 1646.67 12
S80H8i0 109.64 0.052 2155.95 20 96.02 0.074 3145.04 20

S100H10i0 179.93 0.103 8278.05 20 176.28 0.102 7077.65 20

Note: CT = computing time (s); HV = hypervolume; NS = number of non-dominated solutions.

Table 8. Sensitivity analysis of Struck, Sdrone, Torder, and Ttr.

Struck Sdrone

CT HV Spacing NS CT HV Spacing NS

−10% 26.76 0.037 775.43 20 −10% 27.59 0.045 627.47 20
−5% 25.55 0.070 1213.59 20 −5% 27.41 0.056 678.49 20

40 km/h 28.79 0.052 703.80 20 50 km/h 34.00 0.063 840.17 20
+5% 42.30 0.066 2875.58 20 +5% 22.57 0.081 732.21 20

+10% 25.29 0.060 624.55 20 +10% 30.68 0.134 1588.44 20

Torder Ttr

CT HV Spacing NS CT HV Spacing NS

−10% 31.72 0.039 1090.38 20 −10% 27.72 0.130 661.56 20
−5% 37.62 0.065 5948.01 20 −5% 38.73 0.190 3331.42 18
1.0 h 30.01 0.087 1404.75 20 0.3 h 40.02 0.142 1453.31 20
+5% 39.60 0.147 976.20 20 +5% 41.18 0.136 2342.76 20

Note: CT = computing time (s); HV = hypervolume; NS = number of non-dominated solutions.

Table 9. Impacts of hubs on the solutions.

Hubs CT HV Spacing NS

5 20.26 0.120 873.76 20
10 58.55 0.135 2652.49 20
15 62.64 0.068 2613.29 19
20 65.15 0.016 255.07 6
25 67.16 0.025 6256.34 8

Note: CT = computing time (s); HV = hypervolume; NS = number of non-dominated solutions.
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Table 10. Results of datasets with different spokes on the solution performances.

Dataset Spokes CT HV Spacing NS

S10H2i(0–9) 10 0.52 0.021 198.67 9.0
S20H2i(0–9) 20 0.91 0.066 808.51 17.8
S30H3i(0–9) 30 2.13 0.084 362.13 20.0
S40H4i(0–9) 40 6.03 0.075 1349.72 18.9
S50H5i(0–9) 50 15.48 0.079 2150.26 20.0
S60H6i(0–9) 60 37.60 0.084 4649.13 19.7
S70H7i(0–9) 70 60.74 0.083 3728.19 19.8
S80H8i(0–9) 80 100.84 0.077 3447.47 19.9
S90H9i(0–9) 90 163.06 0.073 4785.11 20.0

S100H10i(0–9) 100 190.47 0.076 7020.31 19.9
Note: CT = computing time (s); HV = hypervolume; NS = number of non-dominated solutions.

Table 11. Impacts of overdue delivery on the solutions.

Torder/h CT HV Spacing NS

1.00 71.23 0.021 390.23 17
1.05 69.21 0.027 295.87 20
1.10 70.67 0.054 1480.62 18
1.15 70.43 0.072 823.20 17
1.20 74.54 0.072 5247.09 17

Note: CT = computing time (s); HV = hypervolume; NS = number of non-dominated solutions.

Table 12. Impacts of truck speeds on the solutions.

Struck/(km/h) CT HV Spacing NS

(50 km/h) -0% 74.44 0.061 1015.32 11
−5% 69.74 0.026 18,814.66 13
−10% 71.80 0.047 1663.90 16
−15% 70.61 0.058 3305.27 18
−20% 70.44 0.065 802.18 20

Note: CT = computing time (s); HV = hypervolume; NS = number of non-dominated solutions.

Table 13. Impacts of drone speeds on the solutions.

Sdrone/(km/h) CT HV Spacing NS

(40 km/h) -0% 74.44 0.061 1015.32 11
−5% 69.74 0.026 18,814.66 13
−10% 71.80 0.047 1663.90 16
−15% 70.61 0.058 3305.27 18
−20% 70.44 0.065 802.18 20

Note: CT = computing time (s); HV = hypervolume; NS = number of non-dominated solutions.

Table 14. Impacts of busy hubs on the solutions.

Ttr/h CT HV Spacing NS

0.300 (+0.00%) 74.10 0.016 463.47 10
0.315 (+0.05%) 74.07 0.017 178.23 13
0.330 (+0.10%) 77.26 0.013 636.95 6
0.345 (+0.15%) 79.38 0.013 338.28 9
0.360 (+0.20%) 82.33 0.013 128.00 9

Note: CT = computing time (s); HV = hypervolume; NS = number of non-dominated solutions.
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Figure 6. Pareto fronts of [EAp] and [EAr] used for solving four datasets.

Figure 7. Pareto fronts of sensitivities of four parameters. (a) Truck speed; (b) Drone speeds; (c) Order
time range; (d) Process time at hubs.
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Figure 8. Pareto fronts of varying hub numbers.

Figure 9. Pareto fronts of extending order time overdue.

Figure 10. Pareto fronts impacted by truck speeds.
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Figure 11. Pareto fronts impacted by drone delays in transportation.

Figure 12. Pareto fronts impacted by drone delays at hubs [S60H6i0].

6.4. Results

As presented in Table 4 for the 12 experiments, the results with figures, tables, and
explanations are given in the following sub-section.

6.4.1. Demonstration

The devised models and algorithms solve the dataset [IDEAL] and get the same results
as Figure 4. This dataset is typically ideal, and its Pareto front has only one solution. In the
solution, zhsn = 874 and zloss = 216; namely, there are 216 orders whose engagement times
are beyond Torder. For example, because Torder = 2.1, the order (i = 13, j = 5) with direct
distance 2 will not be met because the drone-based instant delivery distance contains five
parts, 13→ 10→ 6→ 5 . The distance is beyond 2 because there is additional processing
time at hubs 10 and 6.

6.4.2. Compare [M1] and [M2]

As studied in Section 4, [M1] is a baseline HSN optimization model, while the extended
[M2] optimizes the logistics cost and order loss in the bi-objective program. As revealed in
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Table 5, [M2a] minimizes zhsn and so gets the same results as [M1]. The model [M2(ε = 0.1)]
relaxes the objective zhsn by 10% and then minimizes zloss. We can find that the unmet
orders are significantly reduced by 24.61% on average.

6.4.3. Analyze the Hyperparameters of [EAp] and [EAr]

Table 6 presents the results of crossing experiments on the mutation probability (Pm)
and the crossover probability (Pc). Here, Pm and Pc iterate five values, [0, 0.25, 0.5, 0.5, 1],
and we calculate four metrics, namely computing time (CT), hypervolume (HV), Spacing,
and the number of non-dominated solutions (NS). We cannot recommend concrete values
based on the experimental results because four metrics are involved. However, we can
judge that bigger values are more beneficial than minor ones. We set Pm to 0.25 and Pc to
1.00 in the following experiments.

6.4.4. Compare [M2], [EAp], and [EAr]

When solving instances with more spokes (beyond 20), [M1] and [M2] cannot obtain
optimal solutions within an acceptable time. In Figure 5, [M2], [EAp], and [EAr] can obtain
solutions, while [M2] can obtain better Pareto fronts than [EAp] and [EAr]. In this case,
[EAp] and [EAr] obtain the same Pareto front. Although [M2] with ε-constraints may find
better Pareto fronts, it fails to solve even medium-scale instances. Therefore, we devised
[EAp] and [EAr] for medium- and large-scale HSN instances.

6.4.5. Compare [EAp] and [EAr]

Two EAs, [EAp] and [EAr], were devised considering two different encoding/decoding
schemes. [EAp] uses individuals with genes of the same length as spokes and encodes
them as permutations of spoke indices. [EAr] maps 2H and keys as coordinates to hubs. So,
[EAr] uses fewer genes for solutions. In Table 7, the computing time of [EAr] is less than
[EAp]; as for HV and Space, [EAr] is also competitive, while the NS values are not stable. In
Figure 6, [EAr] can generate a better Pareto front than [EAp], although the competitiveness
is minor. Comprehensively, [EAr] is chosen as the algorithm in the following experiments.

6.4.6. Sensitivities of Four Parameters

As studied in Section 4, the drone-based HSN will be affected much by the key
parameters, including Struck, Sdrone, Torder, and Ttr. As shown in Table 8, the computing
time (CT) is unstable for all the parameters and variations; the number of non-denominated
solutions (NS) is stable and can obtain enough. The Spacing metrics also incur uncertainties
while the trends are apparent. The impacts on HV are clear. Figure 7 gives five Pareto
fronts (−10%,−5%, 0%,+5%, 10%) for each parameter’s sensitivity analysis results.

6.4.7. Numbers of Hubs Impacting on the Performances

[EAr] uses 2H individuals in the encoding and decoding schemes so that the hubs
will impact the solution performances. In Table 9, when increasing the number of hubs
(NS), the computing time (CT) decreases, the HV and NS values also lower with a tendency,
while the Space metrics are not stable. In Figure 8, from five to 10 hubs, the Pareto front
moves to the corner fast.

6.4.8. Numbers of Spokes Impacting on the Performances

As studied above, the number of hubs can affect the HSN solution difficulty, while
Table 10 indicates that the number of spokes is the most affected. The computing time (CT)
drastically increases when the number of spokes (NS) increases from 10 to 100. In Spacing
metrics, more spokes help find diversities of solutions on the Pareto fronts.

6.4.9. Study the Overdue Delivery Strategy

In drone-based instant delivery, the merchants should have a strong attitude to extend
the acceptable order engagement time range (Torder) because it will enlarge the coverage of
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the transshipment hubs and the consumer group. However, they must consider the costs
to extend the overdue delivery. Consumers may accept comparatively delayed delivery
for three reasons: first, drone-based delivery is fantastic; second, drone-based delivery is
much cleaner and contactless; third, it is at least a new choice. Table 11 presents the results
of increasing Torder, and Figure 9 depicts five Pareto fronts. From 0% to 5% and 5% to 10%,
the Pareto front moves fast.

6.4.10. Impacts of Urban Rush Hours on the Solutions

Big cities generally have several rush hours, which will affect the truck speeds in the
transshipment stage.

6.4.11. Impacts of Drone Delays on the Solutions

The drones may delay transportation because of air and various emergency conditions.
Although the reasons may be diverse, the impacts on the logistics are mainly reflected
by reduced drone speeds. Table 13 shows the results of gradually reducing drone speeds.
Figure 11 further depicts the Pareto fronts. In the illustrated case, a slight delay (5%) may
be acceptable, and a 10% delay is severe.

6.4.12. Impacts of Busy Hubs and Even Explosion Periods on the Solutions

In [M2], the busy hubs and explosion degrees are formulated by the parameter Ttr,
which depends on the efficiency of transshipment at the hubs. Table 14 presents the impacts
of the four performance metrics by increasing Ttr. When its value is tight, CT increases, HV
drops, and NS drops, making it difficult to find solutions. Figure 12 indicates that bigger
Ttr values will drastically make more unmet orders.

6.5. Managerial Implications

Based on the results analyzed above for the devised models and algorithms, we can
conclude that the following generations have managerial implications for drone-based
instant delivery service providers and merchants.

(1) Drone-based pickup and delivery can utilize the economy of scale of transportation
while additional interaction time is incurred, including the processing times at hubs,
transshipment operations between drones and trucks, and drones and loading/unloading
cabinets (Section 6.4).

(2) Introducing drones for urban instant pickup and delivery may prolong the order
engagement time. Optimizing the logistics networks and tuning the parameters can help
reduce costs and mitigate order losses (Section 6.4.9).

(3) HSN and extended HSN optimization, particularly when considering urban drone-
based instant delivery, pose challenges for on-the-shelf mathematical program solvers. As
examined in Section 6, mathematical programs can produce good Pareto fronts for small-
scale instances, while [EAr] and [EAp] are competitive in solving large-scale instances and
cannot ensure optimality. It is practical to develop heuristics and intelligent algorithms
(Sections 6.4.4 and 6.4.5).

(4) More hubs will demand more computing resources and challenge the solution meth-
ods. More hubs could be practical in drone-based instant delivery, given that transshipment
hubs should be more flexible than traditional city logistics (Sections 6.4.7 and 6.4.8).

(5) Practical applications of the devised models and algorithms must address large-
scale instances, e.g., with more than 100 spokes. So, fast solution algorithms with promising
computing performance are essential (Sections 6.4.4 and 6.4.5).

(6) Multi-objective Pareto front analysis assesses the impacts of extending the order
engagement time ranges on the solutions, which must reflect the costs. So, drone-based
instant delivery service providers and merchants should prioritize balancing expenses and
revenues (from Sections 6.4.7–6.4.12).
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(7) The Pareto front analysis of the drone delays can contribute to investing and back-
ing up additional drones. Drone-based instant delivery service providers should carefully
weigh the Pareto front improvement and drone investment costs (from Sections 6.4.7–6.4.12).

(8) Among all parameters and strategies, mitigating drone delays at hubs may impact
the solution most, and addressing it is achievable through effective management, advanced
technologies, and innovations (Section 6.4).

7. Conclusions

Drone-based instant delivery with simultaneous first and last-mile pickup is a challeng-
ing decision-making and optimization problem. Inspired by the Shenzhen City drone-based
instant delivery case, this study investigated the hub-and-spoke network (HSN) optimiza-
tion problem, considering logistics costs and order loss minimization as a bi-objective
optimization problem. Extending the baseline HSN model, we devised a bi-objective
mixed-integer linear program (MILP), solved by the ε-constraint method and two evolu-
tionary algorithms using permutation (EAp) and rand keys (EAr) as encoding and decoding
schemes. Using an ideal dataset and the datasets generated in the Shenzhen City scenarios,
the solution methods are compared by experiments, the parameter sensitivities are ana-
lyzed numerically, and three groups and twelve experiments are conducted to demonstrate
the problem features and validate the devised models and algorithms.

The examined drone-based logistics networks and operations optimization problems
are exciting and challenging in formulation and algorithm development. Based on the
problem and the methods devised, the following research directions should help enable
the development of drone-based instant delivery. First, extending the solution algorithms
by mathematic heuristics and advanced intelligent algorithms for large-scale practical
instances is beneficial. For example, the Baoan District of Shenzhen City contains more
than 20,000 takeaway merchants and 200,000 buildings. The existing algorithms based
on NSGA-II can be adapted to other multi-objective optimization algorithms that may
optimize computation performance and optimality. Further, we will try to find solutions
to the multi-objective model by using methods that solve mathematical programs exactly.
Second, the instant delivery scenarios are full of uncertainties and dynamics. We should
extend the deterministic solutions to stochastic programs and robust optimization. We
can even incorporate the potential economic and environmental impacts of widespread
drone use in urban logistics into the models. Third, some cities are trying different logistics
service modes. The layouts and traffic conditions of other cities may also impact network
optimization and scheduling results, and thus, it is beneficial to develop dataset generation
schemes. We can create the mode featured by drone-based pickup/delivery and truck-
based transshipment to other creative modes, e.g., crowdsourcing and cloud logistics.
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