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Abstract: This study primarily studies the shortest-path planning problem for unmanned aerial vehicle
(UAV) formations under uncertain target sequences. In order to enhance the efficiency of collaborative
search in drone clusters, a compensation look-ahead algorithm based on optimizing the four-point
heading angles is proposed. Building upon the receding-horizon algorithm, this method introduces the
heading angles of adjacent points to approximately compensate and decouple the triangular equations
of the optimal trajectory, and a general formula for calculating the heading angles is proposed. The
simulation data indicate that the model using the compensatory look forward algorithm exhibits a maxi-
mum improvement of 12.9% compared to other algorithms. Furthermore, to solve the computational
complexity and sample size requirements for optimal solutions in the Dubins multiple traveling sales-
man model, a path-planning model for multiple UAV formations is introduced based on the Euclidean
traveling salesman problem (ETSP) pre-allocation. By pre-allocating sub-goals, the model reduces the
computational scale of individual samples while maintaining a constant sample size. The simulation
results show an 8.4% and 17.5% improvement in sparse regions for the proposed Euclidean Dubins
traveling salesman problem (EDTSP) model for takeoff from different points.

Keywords: UAV formation; shortest-path planning; compensation look-ahead algorithm; heading
angle optimization

1. Introduction

Unmanned aerial vehicles are extensively used in collaborative reconnaissance, joint
strike operations, aerial displays, express logistics, and agricultural spraying, among other
domains. This has consequently elevated the control systems for multi-UAV (unmanned
aerial vehicle) clusters, denoted as unmanned aerial systems (UAS), to the focal point of
current international and domestic research [1,2]. Within the field of UAV research, path
planning assumes a position of paramount importance. A recurrent inquiry pertains to the
determination of target sequences and the acquisition of the most expeditious flight path or
time [3]. This problem bears resemblance to the variant of the traveling salesman problem
(TSP) known as the multiple traveling salesman problem (MTSP), which is conventionally
studied but harbors certain distinctions [4]. In the research of MTSP, the paths between target
points adhere to a geometrically straight distribution, whereas the motion of UAVs adheres to
curved trajectories constrained by maximum curvature [5]. This is particularly pronounced
in the case of fixed-wing UAVs, where trajectory curvature is bounded, demanding a cur-
vature configuration in the model that aligns more closely with practical requirements [6,7].
Consequently, researchers frequently substitute the path planning for UAVs with Dubins
curves [8]. Despite the approximate similarity between UAV path planning and MTSP, the
former poses a more formidable challenge due to kinematic conditions such as curvature
constraints, necessitating the formulation of novel solution methodologies by researchers [9].
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We combined the Dubins problem with the multiple traveling salesman problem (MTSP),
coining it the Dubins traveling salesman problem (DTSP). Solving the DTSP entails not
only determining the target sequence but also considering that distinct heading angles yield
divergent path-planning outcomes. Consequently, the determination of heading angles must
precede the establishment of the target sequence [10]. Using a greedy algorithm for the
brute-force solution of the DTSP is imprudent, as the computational burden exponentially
escalates with the augmentation of target points [11]. Therefore, resolving a pre-defined target
sequence remains a common strategy for addressing curvature-constrained path planning.
Ma et al. (2007) proffered a receding-horizon algorithm grounded in the retrograde principle,
computing a smooth trajectory through the sequence of path points; however, the authors
have not yet developed a complete general formula that can characterize the three path points
and initial directions of all possible geometric configurations, so as to uniquely determine
the optimal trajectory for any problem [12]. Pantelis Isaiah et al. (2015) synergized k-step
anticipation with the retrograde principle and disrupted the target sequence by introducing
a k-step foresight algorithm; however, this algorithm is only applicable to situations where
there are fewer target points [13]. Meanwhile, Izack Cohen et al. (2017) introduced a novel
class of discretized look-ahead algorithms (DLAAs), discretizing the heading orientation
angles (HOAs) at various waypoints and formulating an integer optimization problem. The
resolution is then ascertained using an integer programming solution, but this algorithm
suffers from high computational complexity and low computational efficiency in large-scale
formation calculations [14].

This article mainly studies the problem of path planning for fixed-wing unmanned aerial
vehicle formation. Firstly, we propose a heading angle calculation algorithm based on four-
point optimization and called the heading angle compensation look-ahead algorithm. Building
upon the receding-horizon algorithm, we introduce the influence of the heading angle of
any adjacent point, be it antecedent or subsequent, upon the selection of the intermediary
point and propose a general formula for calculating the heading angle. This algorithm is
compared with other algorithms, such as the 2-opt algorithm [15], the alternating algorithm
(AA) [16], and the Euclidean distance traveling salesman problem (ETSP). Secondly, we have
adopted a pre-allocation mechanism to address the computational problem of path planning
in large-scale drone formations. Within the context of multiple UAV formations, we use the
ETSP algorithm for the pre-allocation of target points, thereby creating several subsets of
designated points. Subsequently, we apply the compensatory foresight algorithm introduced
in the second section to each subset, striking a balance between computational scale and the
optimization of pathways.

2. Problem Description and Necessary Theories

The typical scenario of UAV swarm mission path planning depicted in Figure 1 in this
paper involves multiple fixed-wing UAVs conducting point-based search and reconnaissance
within a designated area (Nuav ≤ Ntarget). Initially, after obtaining coordinates of various target
points scattered within the area via satellite reconnaissance or other means, the command
center assigns these task points to the leader UAV based on the distribution of the target
points. The leader UAV then plans paths for all target points, considering the maneuverability
of the UAVs. Subsequently, the planned task paths are distributed to each follower UAV [17].
Following the assigned task paths, multiple UAVs will conduct a search of all target points.

However, constrained by the size of the target area and the maneuverability of fixed-
wing UAVs themselves, in practical applications, UAV formations often encounter scenarios
where they must fly around dense distributions of target points. This requires UAVs to
perform extensive curved maneuvers to reach the target point coordinates, significantly
reducing the efficiency of the UAV formation’s search and increasing the search time.
Therefore, we recommend determining the sequence of target points and the heading
angle for each UAV towards every target point before path planning to optimize the UAV
formation’s path planning.
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This remains challenging for various reasons. Academically, Dubins curves are com-
monly used to simulate the shortest paths between target points [18]. However, the inherent
uncertainty of Dubins curves results in different paths between target points based on dif-
ferent angles, meaning there are countless possible paths between these points. Therefore,
there is a need to design a new algorithm that can provide a general formula for calculating
heading angles to determine the optimal heading angle for each target point. Additionally,
in large-scale UAV formations, as the number of target points increases, the computational
complexity of the model increases exponentially. Therefore, efficient path planning while
maintaining manageable computational complexity is also a critical consideration.

2.1. Dubins Path

The trajectory of fixed-wing unmanned aerial vehicles is a linear variation, delineating
its trajectory as a curve [19].

X(t) = [x(t), y(t), θ(t)]T ∈ R2 × S1 (1)

This paper focuses solely on the motion of unmanned aerial vehicles in a two-
dimensional environment, where x and y represent the Cartesian coordinates of the drone’s
position, and θ represents the angle of the UAV relative to the X-axis, which is the heading
angle of the drone.

Assuming a model where the UAV’s velocity is set at 1 and the maximum curvature is
1/γ, the kinematic equations can be expressed as follows:

.
x = cosθ (2)

.
y = sinθ (3)
.
θ = u/γ (4)

In this context, θ ∈ [−1/γ1/γ], and the constant u is the control variable that varies
with time for the drone, with an absolute value of |u| ≤ 1.
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In mathematical modeling, the simulation of an unmanned aerial vehicle’s curved mo-
tion with curvature 1/γ is typically achieved through the utilization of Dubins curves [20].
J-D. Boissonnat et al. had a detailed account of the specific derivations for various scenarios
involving Dubins curves [21]. Dubins curves are commonly divided into two major fami-
lies: the CCC family, which includes RLR and LRL, and the CSC family, which includes
RSR, LSL, RSL, and LSR [22]. C represents an arc with curvature not exceeding 1/γ, S rep-
resents a straight line, L represents a counterclockwise curve, and R represents a clockwise
curve. The Dubins curve is depicted by drawing the maximum curvature radius circle
tangent to the initial state, followed by the delineation of two tangent lines connecting the
circles. Through defined coordinate positions and heading angles, the shortest path can be
determined [23].

The Dubins shortest-path problem belongs to the realm of solving minimization
problems in traditional optimal control theory. In this problem, the initial and final states of
the UAV are uncertain, and the control vector is a continuous function, making it amenable
to solution using variational methods. In the UAV motion model presented in this paper,
the UAV’s velocity is set to 1. The performance functional for the shortest path of Dubins
curves can be represented by an integral, as shown in Equation (5).

minJ =
∫ tf

t0

L(x, y, θ)dt =
∫ tf

t0

1dt (5)

In Equation (5), t0 and tf represent the initial and terminal times of the UAV. We set φx,
φy, φθ as parameters for the shortest path. Combining Equations (2)–(4), which represent
the UAV’s kinematic equations, with Equation (5), which represents the performance
functional, we construct the Hamiltonian function based on the theorems of optimal control
theory. Therefore, the Hamiltonian function for the UAV’s shortest path is given as

H(x, y, θ) = 1 +φxcosθ+φysinθ+φθu/γ (6)

According to the Pontryagin maximum principle, we can obtain the necessary condi-
tions for the shortest path of the Dubins curve [24].

d
dt

φx
φy
φθ

 =

 0
0

φxsinθ−φycosθ

 (7)

The above equation indicates that φx and φy are piecewise constant within the UAV’s
motion cycle [t0, tf]. Due to the linearity of the Hamiltonian in the control function u, there
are two distinct types of optimal control [25]. In the situation that φθ ̸= 0, u takes on the
value of u = −sign(φθ). Conversely, when φθ = 0, u ∈ [−1, 1]. The former condition
corresponds to the maximum curvature arc with a radius of r, while the latter aligns with
the trajectory of a straight line where the direction is given by tanθ = φx/φy.

Sussmann and his colleagues, in their seminal paper in 1991, established the existence
of a solution to the Dubins path problem, wherein the optimal trajectories manifest as
either CαCβCδ or CαSdCβ, where 0 ≤ α, δ < 2π, π < β < 2π, and d ≥ 0 [26]. Given the
inherent non-uniqueness of solutions to the Dubins path, generally, multiple trajectories
can converge to the minimal value [27]. As discerned from Equation (7), the shortest path
of the Dubins curve is intricately linked to the heading angle. The choice of distinct heading
angles results in divergent selections within the path details. Consequently, determining
the heading angles in the Dubins curve emerges as a pivotal factor in ascertaining the
unmanned aerial vehicle’s shortest path [28]. In Section 2.2, we introduce a heading angle
model that exhibits a notable enhancement when compared to existing algorithms. The
specific data comparisons are presented in Section 4.
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2.2. Compensatory Look-Ahead Algorithm

In Section 2.1, the necessary conditions for the shortest path and the existence of the
optimal solution are demonstrated. It is also shown that the shortest path of Dubins curves
is closely related to the heading angle. Determining the heading angle in Dubins curves
is crucial for determining the shortest path for unmanned aerial vehicles. Compared to
path planning between two waypoints, smooth curve optimization between three way-
points better meets practical requirements and yields superior planning results. Ma et al.
introduced a midpoint (x1, y1) between the initial point

(
x0, y0

)
and the terminal point

(x2, y2) of the Dubins curve. Referring to the analysis in [26], they obtained the boundary
relationships of the midpoint, as shown below.

φx
(
t+1

)
= φx

(
t−1

)
+ k1

φy
(
t+1

)
= φy

(
t−1

)
+ k2

φθ

(
t+1

)
= φθ

(
t−1

)
H
(
t+1

)
= H

(
t−1

) (8)

In Equation (8), k1 and k2 are constants. Combined with Equation (7), it becomes
evident that φx and φy exhibit a discontinuous jump at (x1, y1) and are not continuous.

Figure 2 presents a schematic diagram of the optimal path. The red trajectory rep-
resents the Dubins optimal path, which passes through the initial point, midpoint, and
terminal point. θ0 is the heading angle (relative to the X-axis) of the initial point

(
x0, y0

)
.

θ1 and θ2 are the angles of the line where they are located (relative to the X-axis). θm
represents the heading angle of the midpoint (x1, y1). Ma et al. reached the conclusion that
a line drawn from the midpoint (x1, y1) to the point of intersection A

(
x3, y3

)
of the two

line segments bisects the angle of intersection, which is shown by the blue line segment
in Figure 2. On the optimal path, φθ = 0 and dφθ/dt = 0. Substituting these values into
Equation (8) allows the system of simultaneous equations to be solved. The results can
then be utilized in Equation (9).

φx = −cos θ1
φy = −sin θ1

φx + k1 = −cos θ2
φy + k2 = −sin θ2

(9)
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From Equation (9), we can derive that k1/k2 = −tan (θ 1 + θ2
)
/2. The Hamiltonian

function is continuous along the optimal trajectory at point (x1, y1). Therefore, it can be
represented as follows:

min
∥u∥≤1

[
1 +φxcos θm +φysin θm +φθu

]
=

min
∥u∥≤1

[
1 + (φx + k1)cos θm +φy + k2sin θm +φθu

] (10)

From the above equation, it can be deduced that

k1cos θm + k2sin θm = 0 (11)

From Equations (7) and (9), Equation (10) can be obtained.

θm =
θ1 + θ2

2
(12)

By Equation (10), the midpoint heading angle of the shortest path can be obtained,
and the solution to the coupled trigonometric equations can be found. While this can be
accomplished numerically, it is challenging to describe using a general formula. In their
paper, Ma et al. did not provide a complete equation that could represent all possible geo-
metric configurations of three path points and initial direction, thus uniquely determining
the optimal trajectory for any problem. Solving the coupled trigonometric equations can
be performed numerically but is difficult to describe with a general formula. Therefore,
based on the horizon backtracking principle, we propose a four-point optimization-based
algorithm for calculating the heading angle (Algorithm 1) and provide a general formula
for computing the heading angle size at the target point.

First, let us consider the scenario where the distances between the initial, intermediate,
and terminal waypoints are relatively long. Figure 3 illustrates the path planning between
the initial, intermediate, and terminal waypoints, where the solid red lines represent Dubins
trajectories. Point F (x4, y4) and point D (x5, y5) denote the tangent points of two circular
trajectories. While the midpoint heading angle θm can be solved using Equation (10),
when the distances between the initial and intermediate points are considerable, the error
between the angle θ1 (relative to the X-axis) of the line segment connecting point F (x4, y4)
and point D (x5, y5) and the angle θ3 (relative to the X-axis) of the line segment connecting
the initial point B (x0, y0) and the tangent point D (x5, y5) (red dashed line segment) can be
neglected. Solving for the coordinates of tangent point F (x4, y4) is difficult, so the direction
angle θm (relative to the X-axis) of the intermediate point can be directly solved using the
coordinates of the initial point B (x0, y0) substituted into Equation (12).

From Figure 3, the total range L between the three points after task planning can be
obtained, as shown below:

L = LBD + LEC + SarcDE

> a + b + α+β
180 πR − 2Rsin α

2 − 2Rsin β
2

> a + b + α+β
180 πR − 4Rsin α+β

4 cos α−β
4

(13)

From Equation (13), it can be seen that the value of L is related to α, β, as shown in
Equation (14):

S =
α+ β

180
πR − 4Rsin

α+ β

4
cos

α− β

4
(14)
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It is discernible from the equation that as the sum of α and β decreases, reaching
equality (α = β), the value of Equation (14) attains its minimum. Illustrated graphically,
when the center O of the circle lies on the angle bisector of angle A, the total course length L
achieves its minimum value, denoted as Lmin = a+ b+ α+β

180 πR− 4Rsin α+β
4 . The heading

angle θm at the midpoint (x1, y1) is given by θm = θ3+θ2
2 .

Next, let us consider the scenario where the distances between the initial, intermediate,
and terminal waypoints are relatively close. Figure 3 depicts the path planning between the
initial, intermediate, and terminal waypoints, where the solid red lines represent Dubins
trajectories. However, when the distances between the initial and intermediate points are
close, the error between the angle θ1 (relative to the X-axis) of the line segment connecting
point F (x4, y4) and point D (x5, y5) and the angle θ3 (relative to the X-axis) of the line
segment connecting the initial point B (x0, y0) and the tangent point D (x5, y5) (red dashed
line segment) cannot be neglected. Therefore, we cannot directly substitute the coordinates
of the initial point B (x0, y0) into Equation (12) to solve for the direction angle θm (relative
to the X-axis) of the intermediate point. In this scenario, the heading angles of the initial
and terminal points will affect the values of θ1 and θ2.

From Figure 3, it can be observed that when the waypoints are close to each other,
the actual θ3 can significantly differ from the original θ1. In such cases, continuing to use
θ1 for calculations would lead to significant errors. It is challenging to obtain a solution
for the fully coupled trigonometric equations. To address this issue, we propose a four-
point optimization algorithm for calculating the heading angles, aiming to minimize the
deviation caused by error terms.

In the scenario where the initial point (x0, y0) is close to the midpoint, the heading
angle at the initial point will affect the heading angle at the midpoint. In this paper, we
introduce an adjacent point (x6, y6) to the initial point (x0, y0). We preprocess the target
point (x6, y6) using the optimization algorithm for the scenario where the initial point is far
from the midpoint, as described in Figure 3, to obtain a tangent point Q1 (x4, y4). Then, we
use this tangent point Q1 (x4, y4) instead of the initial point (x0, y0) as the new target point.
We repeat the previous step for the midpoint (x1, y1). This process allows us to obtain a
compensated heading angle θm for the midpoint. As shown in Figure 4, θ1 represents
the angle of the line segment connecting tangent points Q1 (x4, y4) and Q2 (x5, y5), and
θ2 represents the angle of the line segment connecting tangent point Q3 (x7, y7) and the
terminal point C. O1 and O2 are the centers of the two circular trajectories. The solid black
line represents the process of solving for the substitute point Q1, and the dashed black line
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represents the process of using the substitute point Q1 instead of the initial point B to solve
for the direction angle θm of the midpoint.

θm =
θ1 + θ2

2
(15)
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Algorithm 1. Compensation look-ahead algorithm

Input: B(x0, y0), C(x1, y1), D(x6, y6), E(x2, y2), R
Output: compensation heading angle θm

1: Center of circle O1 =
→
B +

(( →
BC +

→
BD

)
/
√
|BC|2 + |BD|2

)
/2

2: Distance from point to tangent point |CQ1| =
√
|CO1|2 − R2

3: Acquiring tangent point Q1 =

( →
CO1
|CO1|

)
∗ Cos(Sin)

(
asin

(
R

|CQ1|

))
4: Center of circle O2 =

→
c +

(( →
CQ1 +

→
CE

)
/
√
|CQ1|2 + |CE|2

)
/2

5: Distance from point to tangent point |BQ2| =
√
|BO2|2 − R2

6: Distance from point to tangent point |BQ3| =
√
|BO2|2 − R2

7: Acquiring tangent point Q2 =

( →
BO2
|BO2|

)
∗ Cos(Sin)

(
asin

(
R

|BQ2|

))
8: Acquiring tangent point Q3 =

( →
EO2
|EO2|

)
∗ Cos(Sin)

(
asin

(
R

|EQ3|

))
9: Obtain compensation heading angle θm =

∣∣∣acos
(
(x2−x7)
|Q3E|

)∣∣∣+ ∣∣∣acos
(
(x5−x6)
|Q1Q2|

)∣∣∣∓ 90◦

10: end

3. Model Decomposition
3.1. MTSP Model Based on Shortest Distance

The multiple traveling salesman problem (MTSP) is an extension of the traveling
salesman problem (TSP) [29,30]. In the MTSP problem, there are n couriers assigned to
visit m destinations, where m exceeds n. Each destination is assigned to only one courier,
with the objective of minimizing the combined travel distance of all couriers [31]. Task
planning of a drone cluster can be seen as an instantiation of the MTSP. It can be succinctly
described as follows: provide an undirected graph G = (V, A), where V is the set of nodes,
and A is the set of arcs representing road segments. The arcs of the undirected graph G
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have non-negative costs, and the objective function is to divide V into g non-empty subsets
{Subi}1

g and find the minimum cost through each target point in each subset Subi [32].
The total range from the starting point of the drone cluster to the return of all

drones is used as the optimization objective of the MTSP model. There are n task
target points, m drones, and the coordinates of all target points are represented by
Target = [(x1, y1), (x2, y2), · · · , (xn, yn)]. Therefore, the distance between the two points
after the drone cluster task planning can be expressed as

di,j =
∣∣xi − xj

∣∣+ ∣∣∣yi − yj

∣∣∣ (16)

The drones in this paper are all fixed-wing drones, which are different from rotary-
wing drones. The trajectory change in fixed-wing drones belongs to a linear process.
Therefore, the distance equation between the two points needs to add constraints that meet
the trajectory of the drone. Here, we simulate the actual trajectory-change ability of the
drone using a Dubins curve with a turning radius of 100 m:

di,j = l + r + D (17)

In Equation (17), D represents the straight portion of the Dubins curve between
adjacent task points in the task planning trajectory, and l and r are the arc lengths between
adjacent task points and the straight line, respectively.

The optimization objective of the UAV swarm Dubins multiple traveling salesman
model is to minimize the total flight distance of the UAV swarm. According to Equation (17),
the objective function can be represented as follows:

minL = ∑n,n,m
i=1,j=1,q=1 di,j ∗ ki,j,q (18)

In Equation (18), ki,j,q represents whether UAV q has a planned task between target
points i and j. The value of ki,j,q is either 0 or 1. The constraint functions are as follows:

∑n,n
i=1,j=1,∀q∈m ki,j,q ≥ k (19)

∑n,n,m
i=1,j=1,q=1 ki,j,q = n (20)

∑m
i∈n,j∈n,q=1 ki,j,q = 1 (21)

d1,w = |(x1, y1), (xw, yw)| = 0, ∀(x, y) ∈ Target (22)

Equation (19) is the number of targets assigned to each drone, which ensures that
each drone is assigned no less than k targets; Equation (20) represents the total number
of targets allocated to the drone cluster, which ensures that all target points are allocated;
Equation (21) is the number of times the target point is assigned to the drone, and this
constraint ensures that each point is only assigned once; and Equation (22) represents the
decision criterion for the starting and ending points. (xw, yw) denotes the coordinates of
the last target point planned for a single UAV, indicating that each aircraft must start and
end at the same point.

Dijkstra algorithm is a classic method for solving the MTSP (multiple traveling sales-
man problem), but it is only suitable for scenarios with a small number of samples. The
computational complexity increases exponentially with the number of samples, making it
unsuitable for large-scale UAV formations in the current context. The discrete DTSP method
(DDTSP) is another classical approach for handling the MTSP problem. In DDTSP, for
each target, h possible angles are considered, and the interval [0, 2π) is uniformly divided
into h sub-intervals. The resulting discrete DTSP (DDTSP) can be transformed into an
integer linear programming (ILP) problem. DDTSP method is equivalent to the generalized
asymmetric traveling salesman problem with n clusters and 1 + h (n − 1) cities (Noon
Bean, 1991), which requires a small value of h. However, the minimum time function of
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the Dubins model is non-continuous. Therefore, to approximate the optimal solution of
DTSP, a larger value of h is required [33]. When the number of task points is small, DDTSP
can provide the optimal path, but there are problems of high computational load and slow
computational efficiency in large-scale task points and multiple traveling merchants [34,35].
In order to balance the number of task points and computational efficiency, the fourth sec-
tion proposes a DTSP processing method based on ETSP classification, which simplifies the
computational workload while ensuring the shortest path. The specific data comparisons
are shown in the fourth section.

3.2. UAV Formation EDTSP Model

In the scenario of multiple unmanned aerial vehicles (UAVs) tasked with multiple
objectives, direct application of the DDTSP algorithm for solving the shortest path is
deemed imprudent. Hence, a preprocessing step for the sequential arrangement of mission
objectives becomes imperative. This paper introduces a preprocessing DTSP model based
on the ETSP algorithm called the EDTSP model. The specific approach of this model is
outlined as follows.

Let the set of target points be denoted as Target = [(x1, y1), (x2, y2), · · · , (xn, yn)] ∈ R2,
and the ensemble of UAV formations as U. We conceptualize the DTSP problem as an
ETSP problem for solving and computing the mission target points, obtaining subsets
Subi = {(xi, yi)} ∈ Target. These obtained subsets of targets serve as the target point set
to be solved. We use the compensatory look-ahead algorithm proposed in Section 2 of
this paper to determine the heading angle size for each target point, completing the path
planning. The planning results of several subsets constitute the overall path planning. Pre-
grouping the original task target points with the ETSP algorithm reduces the dimensionality
in the DTSP solving process, thereby reducing computational complexity.

Subsequently, within each subset Subi, we use the compensatory look-ahead algorithm
to solve the DTSP problem for the target sequence, thereby deriving UAV formation
planning paths that meet the specified requirements. The specific process of the model is
shown in Figure 5. To illustrate our model method, let us illustrate our model approach
with the following example: Suppose we have a task point set consisting of 3n target
points, and we have m UAVs for surveillance, with each UAV assigned to n targets. We
use the ETSP algorithm to plan paths for the target set, resulting in three subsets of
targets. After allocating the subsets, under the constraints of Dubins curves and UAV
performance, where θ belongs to [−1/γ, 1/γ], we solve the TSP problem to obtain the
optimal trajectories. We compute the results for the three subsets and combine them to form
the overall planning results. If we were to directly solve the DTSP model using bio-inspired
algorithms, we would need to consider (3n)! cases. However, by preprocessing the target
point set with the ETSP model, we only need to consider 3 ∗ n! cases, greatly reducing the
computational complexity.
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4. The Analysis of the Simulations

In the third and fourth sections, we introduced a compensatory look-ahead algorithm
based on four-point optimization and a path-planning model for multi-UAV formations
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in multi-tasking scenarios. To prove the accuracy of our algorithm and model, we ran-
domly distributed a certain number of target points in both dense (1000 m × 1000 m) and
sparse (5000 m × 5000 m) regions. Using various algorithms, we generated the shortest
planned paths.

Simulation 1: Using a single UAV, taking off from any location, we executed trajectory
planning for ten task points in the dense region. Upon completing the tasks, the UAV
returned to the departure point. We compared the itineraries of planning paths utilizing
the compensation look-ahead algorithm, 2-opt look-ahead algorithm, alternating algorithm,
and the ETSP model. Comparing the search efficiency of the four models.

Figure 6 describes the planned trajectories utilizing the compensatory look-ahead
algorithm, 2-opt look-ahead algorithm, alternating algorithm, and the ETSP model. The
straight-line trajectory based on the ETSP algorithm serves as the reference standard under
ideal conditions. It can be seen that the model trajectory with the compensatory look-ahead
algorithm is notably smoother. Through the comparison of total mileage in Table 1, it
can be affirmed that in dense regions, the compensatory look-ahead algorithm exhibits a
minimum improvement of 12.9% compared to other algorithms. The increase in Euclidean
distance is minimal, with a mere 33.2% increment. This is for the constraints imposed by
the maximum curvature of the UAV in dense regions.
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Table 1. Total mileage of path planning in dense areas using different algorithms.

Compensation Look-Ahead Algorithm 2-Opt Look-Ahead Algorithm Alternating Algorithm ETSP

Total mileage (102 m) 36.7695 42.2248 48.0164 27.6005

Table 2 displays the path-planning total mileage for different algorithms with 5, 10,
15, 20, and 25 target points. Through this table, it is discernible that the compensatory
look-ahead algorithm is consistently better than other algorithmic models. This further
substantiates the efficacy of the compensatory look-ahead algorithm in optimizing planning
paths within dense regions, aligning seamlessly with our requirements.

Table 2. Total mileage of path planning with different target points for different algorithms in
dense regions.

Target Number (Total
Mileage 102 m)

Compensation
Look-Ahead Algorithm

2-Opt Look-Ahead
Algorithm Alternating Algorithm ETSP

5 23.9851 24.8415 26.8562 22.3707
10 36.7695 42.2248 48.0164 27.6005
15 47.1584 55.5124 60.8612 35.2885
20 56.5147 64.3615 76.1574 37.7948
25 65.1845 74.6124 87.1451 41.1114

Simulation 2: Using a single unmanned aerial vehicle (UAV) from a designated
location, we conducted trajectory planning for 10 target points within a sparse region.
Upon completing the tasks, the UAV returned to the starting point. We compared the
travel distances of the planned paths using the compensatory look-ahead algorithm, 2-opt
look-ahead algorithm, alternating algorithm, and ETSP model. Comparing the search
efficiency of the four models.

Figure 7 describes the planned paths using the compensatory look-ahead algorithm,
2-opt look-ahead algorithm, alternating algorithm, and ETSP model within the sparse
region. The straight-line trajectory based on the ETSP algorithm serves as the reference
standard under ideal conditions. In comparison to simulation 1, the disparities among
various algorithms in simulation 2 are not substantial. The reason is the vast distances
between adjacent points in the sparse region, where subtle variations in heading angles
have less impact compared to dense areas. The comparison of total mileage across different
algorithms in Table 3 reveals that the compensatory look-ahead algorithm still yields the
shortest planned path. In contrast to other algorithms, it boasts an improvement of up to
3.1%, with the increase in the shortest Euclidean distance merely reaching 1.4%.

Simulation 3 involves three unmanned aerial vehicles (UAVs) taking off from a desig-
nated location and planning trajectories for 30 target points within a sparse region. After
completing the tasks, the UAVs return to the starting point, a comparison of the travel
distances of planned paths using the compensatory look-ahead algorithm, 2-opt look-ahead
algorithm, alternating algorithm, and ETSP model. Comparing the search efficiency of the
four models.

Figure 8 describes the trajectory planning for multiple unmanned aerial vehicles
(UAVs) and various target points employing distinct algorithms for takeoff from the same
points. The straight-line trajectory based on the ETSP algorithm serves as the reference
standard under ideal conditions. From the illustration, it is evident that the compensatory
look-ahead algorithm adeptly accomplishes the planning of paths for multiple UAVs
and multiple targets. Notably, the total mileage of path planning for multiple UAVs and
multiple targets using different algorithms is shown in Table 4. The compensatory look-
ahead algorithm demonstrates an improvement of no less than 8.4% in the context of the
multi-tasking, multi-UAV path-planning model.
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Table 3. Total mileage of path planning in sparse areas using different algorithms.

Compensation Look-Ahead Algorithm 2-Opt Look-Ahead Algorithm Alternating Algorithm ETSP

Total mileage (102 m) 36.7695 42.2248 48.0164 27.6005

Simulation 4 involves three unmanned aerial vehicles (UAVs) taking off from different
locations and planning trajectories for 30 target points within a sparse region. After
completing the tasks, the UAVs return to the starting point, a comparison of the travel
distances of planned paths using the compensatory look-ahead algorithm, 2-opt look-ahead
algorithm, alternating algorithm, and ETSP model. Comparing the search efficiency of the
four models.

Figure 9 shows the planned trajectory of multiple unmanned aerial vehicles (UAVs)
taking off from different points using different algorithms. The straight-line trajectory based
on the ETSP algorithm serves as the reference standard under ideal conditions. The three
drones are takeoff at [0, 7.5], [12.5, 0], and [25, 7.5]. From the graph, it can be seen that the
compensation look-ahead algorithm can complete the multi-objective path-planning task
for multiple drones. Compared with the 2-opt look-ahead algorithm and the alternating
algorithm, the planned trajectory is more in line with practical requirements, and the total
distance of the planned path is the shortest. According to Table 5, it can be calculated
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that the compensation forward algorithm has a maximum improvement of 17.5% in the
multi-task and multi-drone path-planning model compared to the alternating algorithm.
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the same points: (a) compensation look-ahead algorithm; (b) 2-opt look-ahead algorithm; (c) ETSP; 
(d) alternating algorithm. 

Table 4. The total mileage of path planning for multiple UAVs and multiple targets using different 
algorithms starting from the same point. 

 Compensation Look-Ahead Algorithm 2-Opt Look-Ahead Algorithm Alternating Algorithm ETSP 
Total mileage 
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Simulation 4 involves three unmanned aerial vehicles (UAVs) taking off from differ-
ent locations and planning trajectories for 30 target points within a sparse region. After 
completing the tasks, the UAVs return to the starting point, a comparison of the travel 
distances of planned paths using the compensatory look-ahead algorithm, 2-opt look-

Figure 8. Trajectory maps for drone formation planning using different algorithms for takeoff from
the same points: (a) compensation look-ahead algorithm; (b) 2-opt look-ahead algorithm; (c) ETSP;
(d) alternating algorithm.

Table 4. The total mileage of path planning for multiple UAVs and multiple targets using different
algorithms starting from the same point.

Compensation Look-Ahead Algorithm 2-Opt Look-Ahead Algorithm Alternating Algorithm ETSP

Total mileage (102 m) 141.17 154.115 159.702 109.995

Table 5. Total mileage of path planning for multiple UAVs and multiple targets using different
algorithms starting from different points.

Compensation Look-Ahead Algorithm 2-Opt Look-Ahead Algorithm Alternating Algorithm ETSP

Total mileage (102 m) 114.1742 124.1158 138.4113 94.7549
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Figure 9. Trajectory maps for drone formation planning using different algorithms for takeoff from
different points: (a) compensation look-ahead algorithm; (b) 2-opt look-ahead algorithm; (c) ETSP;
(d) alternating algorithm.

5. Conclusions

This article mainly studies the shortest-path planning problem of unmanned aerial
vehicle formation under uncertain target sequences. Firstly, in order to improve the ef-
ficiency of collaborative search in drone clusters, a four-point optimized heading angle
calculation method is proposed based on the horizon algorithm. On the basis of Ma et al.’s
research, a general formula for calculating heading angle was proposed. Through the
simulation data in the fourth section, it can be proven that our proposed compensation
look-ahead algorithm reduces the situation where drones need to perform large-scale curve
movements to reach the target point coordinates. Compared with existing algorithms, it
has a maximum improvement of 12.9%. Secondly, for the large-scale formation problem,
the ETSP algorithm is used to pre-allocate the large-scale target points to be allocated and a
single drone, forming multiple subsets of target points. Then, the compensation foresight
algorithm proposed in the second section is used to calculate each subset, ensuring that
the computational scale of single-machine path planning is reduced while the scale of the
target point set remains unchanged, achieving a balance between computational complexity
and optimized path. The simulation data show that the EDTSP model proposed in this
paper has at least 8.4% and 17.5% improvement in the sparse interval for takeoff from
different points.
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