
Citation: Mpouziotas, D.; Karvelis, P.;

Stylios, C. Advanced Computer

Vision Methods for Tracking Wild

Birds from Drone Footage. Drones

2024, 8, 259. https://doi.org/

10.3390/drones8060259

Academic Editors: Humberto L.

Perotto-Baldivieso and Aaron M.

Foley

Received: 29 April 2024

Revised: 10 June 2024

Accepted: 11 June 2024

Published: 12 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Advanced Computer Vision Methods for Tracking Wild Birds
from Drone Footage
Dimitris Mpouziotas 1 , Petros Karvelis 1,* and Chrysostomos Stylios 2

1 Department of Informatics and Telecommunications, University of Ioannina, 451 10 Ioannina, Greece;
mpouziotasd@gmail.com

2 Industrial Systems Insitute, Athena RC, 263 31 Patra, Greece; stylios@isi.gr
* Correspondence: pkarvelis@uoi.gr

Featured Application: Our methodologies feature an advanced model capable of processing
footage recorded in remote and difficult-to-access environments. It aims to extract valuable
analytics about wildlife from the footage, such as estimating counts of wildlife, visualizing
activities of detections, and rigorously tracking detections. The model takes advantage of state-
of-the-art computer vision models, and its main objective is to leverage long-term protection for
wildlife or any endangered species.

Abstract: Wildlife conservationists have historically depended on manual methods for the identifi-
cation and tracking of avian species, to monitor population dynamics and discern potential threats.
Nonetheless, many of these techniques present inherent challenges and time constraints. With the
advancement in computer vision techniques, automated bird detection and recognition have become
possible. This study aimed to further advance the task of detecting wild birds using computer vision
methods with drone footage, as well as entirely automating the process of detection and tracking.
However, detecting objects from drone footage presents a significant challenge, due to the elevated
altitudes, as well as the dynamic movement of both the drone and the birds. In this study, we
developed and introduce a state-of-the-art model titled ORACLE (optimized rigorous advanced
cutting-edge model for leveraging protection to ecosystems). ORACLE aims to facilitate robust
communication across multiple models, with the goal of data retrieval, rigorously using various
computer vision techniques such as object detection and multi-object tracking (MOT). The results of
ORACLE’s vision models were evaluated at 91.89% mAP at 50% IoU.

Keywords: computer vision; yolo; object tracking; oracle model; small object detection

1. Introduction

The study and conservation of wildlife have entered a new era with the integration of
advanced technologies, providing researchers with unprecedented tools to monitor and
understand animal behavior in their natural habitats [1]. Among these technologies, un-
manned aerial vehicles (UAVs) have emerged as versatile platforms for ecological research,
offering the ability to capture high-resolution imagery and video from vantage points that
were once inaccessible [2].

In the past, wildlife avian surveillance of the Amvrakikos Gulf [3] was carried out
through physical monitoring or by utilizing telescopes.However, both methods inappro-
priate for surveying wildlife. Physically approaching islets to monitor birds caused stress,
potentially leading them to break their eggs and suffer long-term detrimental effects on
their population. Meanwhile, using a telescope may keep animals unharmed, due to the
distance from the islets to the available land, this can also pose challenges due to the angle
and visibility, making it even more difficult to survey the behavior of the wildlife.

In the realm of ornithological research, the utilization of UAVs holds immense potential
for tracking and studying bird species in their natural environments [1,4]. When UAVs

Drones 2024, 8, 259. https://doi.org/10.3390/drones8060259 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8060259
https://doi.org/10.3390/drones8060259
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0009-0005-1628-767X
https://orcid.org/0000-0002-0483-4868
https://orcid.org/0000-0002-2888-6515
https://doi.org/10.3390/drones8060259
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8060259?type=check_update&version=2


Drones 2024, 8, 259 2 of 25

are coupled with automated computer vision methods, particularly those based on deep
learning architectures, researchers can automate the identification and tracking of bird
species in drone-captured footage, thereby overcoming the limitations of traditional manual
tracking methods and eliminating the dangers of physical monitoring or the limitations of
using a telescope. Figure 1 depicts an image retrieved above an islet at a safe altitude and
containing wild birds.

Figure 1. An image depicting wildlife surveillance using drones over an islet, recorded at 40 m altitude.

During the surveillance of the islands in the Amvrakikos Gulf, we acted in accordance
with precise protocols based on the nesting seasons [5] of Dalmatian pelicans (Pelecanus
crispus) [6]. Their nesting seasons typically span from mid-January to mid-June. We ensured
strict compliance with the safety protocols while surveying each island, to refrain from
disturbing the wildlife during their breeding season. Ensuring the safety of the avian
wildlife of the Amvrakikos remained our uppermost concern, simultaneously our objective
was to conduct a comprehensive survey of the wildlife population. This effort aimed to
facilitate the development of action plans aimed at mitigating any damages from avian
influenza that occurred in the past [7], leveraging the collection of knowledge and various
tools throughout the study.

During each flight over the islets, two key parameters added complexity to our
computer vision task. The drone’s movement from one point of the island to another was
continuous, in addition to some target objects being in motion. This added complexity
posed challenges for this task; however, it also allowed us to track wildlife across the
entire island in a single sweep. Computer vision with UAVs raises new questions, such
as the effects of camera motion, also known as motion blur, resulting in less than optimal
performance of the detection model. Figure 2 illustrates our flight plan methodology over
wildlife nests, alongside details regarding the altitude safety protocols.

Some additional challenges we faced in using drones for wildlife surveillance included
the interaction with the birds. The lower the altitude and the louder the drone, the more
likely the birds would be disturbed, either by flying away or moving away from the
drone. Furthermore, if birds feel threatened, they may collide with or attack the drone,
creating a hazardous situation. In addition to these challenges, the ’Drone-vs-Bird Detection
Grand Challenge’ [8] highlighted the complexity of distinguishing drones from birds in
video sequences, especially when drones operate in bird-populated environments, further
complicating wildlife surveillance efforts.

The higher the altitude of the drone from the ground, the greater a challenge it became
for the model to precisely track wildlife. Furthermore, detecting small- to medium-sized
objects from high-resolution footage posed a challenge, due to the diverse number of factors
that needed to be considered.



Drones 2024, 8, 259 3 of 25

Figure 2. Drone surveillance guidelines and altitudes during nesting season.

However, traditional tracking methods have often been limited by their reliance on
manual annotation and labor-intensive data processing. The advent of computer vision
algorithms, particularly those based on deep learning architectures, has alleviated these
challenges. These methodologies empower researchers to automate the identification
and tracking of bird species in drone-captured footage, providing a more efficient and
scalable solution.

Recent years have witnessed a surge in the application of state-of-the-art computer
vision techniques for object detection, recognition, and tracking [9]. Notably, frameworks
such as you only look once (YOLO [10]), single-shot multibox detector (SSD [11]), and faster
R-CNN (region-based convolutional neural network [12]) have demonstrated remarkable
success in real-time object detection, laying a solid foundation for their adaptation to
ecological research.

The current state-of-the-art models in computer vision for avian tracking involve
the integration of convolutional neural networks (CNNs) trained on extensive datasets of
annotated bird imagery. These models excel at recognizing complex patterns and shapes,
enabling the accurate identification and tracking of individual birds or groups within a
given scene [13]. By harnessing the power of deep learning, researchers can extract detailed
information about bird movements, spatial distributions, and social interactions from vast
amounts of aerial footage.

Previous studies that explored the application of state-of-the-art computer vision
models on avian datasets such as VLIZ [14] examined footage or images similar to the
ones in our study. Another study that examined the same problem under a specialized
dataset such as ours focused its vision problem on high-altitude top-down detection of
wild birds [9] using computer vision techniques up to YOLOv3 [15]. However, many of
these studies did not employ remote wildlife surveillance using drones from a bird’s-eye
view perspective. Furthermore, datasets that focus on wild birds such as the Macaulay
Library [16] and Caltech [17] are widely known datasets with the vast majority of bird
species. While both serve as a valuable reference for our use case, our approach was more
specialized, necessitating consideration of several additional parameters to effectively de-
tect and track wildlife using drones. We focused our attention on modern technologies such
as the detection models YOLOv7 [18] and YOLOv8 [19] and investigated their suitability
for our objective.



Drones 2024, 8, 259 4 of 25

Achieving high precision, as emphasized in similar studies [20], is a challenging task.
In this work, we leveraged recent advancements in the field and explored cutting-edge deep
learning architectures and techniques specifically designed for high-precision inference in
a custom dataset featuring small objects.

The dataset we built consisted of high-resolution drone footage of about 3840 × 2160
109 pixels (width × height). Feeding such large images directly into any model with a
significantly smaller input size, typically around 640 × 640 pixels (Width × Height), results
in a substantial loss of information. This is due to the model automatically scaling the
image to fit the input size of the model. Our objective was to make the models capable of
using their full potential, without any loss of information during inference.

Figure 3, illustrates the information loss of scaling an image down to the model’s
network size. We can observe a significant loss of information and detail in the scaled
image compared with the full-scale image.

(a) Original drone image 3840 × 2160 pixels.

(b) Scaled image 640 × 640.
Figure 3. Original drone image image scaled from 3840 × 2160 pixels down to 640 × 640 pixels.

We built upon the use of detection models for the task of identifying diverse scales
of objects, using high-precision detection methods. Additionally, we explored the use of
multi-object tracking (MOT) techniques. Our objective was the continuous tracking of
multiple individual objects across multiple frames in a video. Object tracking endeavors to
assign and maintain a unique identifier (ID) across multiple frames, as established in [21].

The complex interplay between object detection and tracking is of great importance
for successful multi-object tracking. While robust object detection is the foundation of this
task, various factors beyond detection call for consideration [22]. One such crucial aspect is
the ability of the tracker to sustain an object’s ID, even when the object detection model fails
to detect an object between consecutive frames; this technique is called re-identification.
Re-identification aims to compensate for any data loss that may occur during inference due
to missed detections by the object detector.

This manuscript delves into the intricacies of applying cutting-edge computer vision
methods to avian wildlife monitoring, elucidating the nuances of YOLO and other relevant
frameworks in the context of UAV-captured data. The subsequent sections will expound
upon the specific adaptations and optimizations carried out to tailor these algorithms
for the challenges posed by bird tracking, considering factors such as varying lighting
conditions, diverse bird species, and complex natural environments.

As we navigate through this exploration of computational vision tools, our aim is to
not only showcase their current capabilities but also to inspire further innovation in the
realm of ecological monitoring. The synthesis of UAV technology and advanced computer
vision methodologies not only augments the precision of avian tracking but also opens



Drones 2024, 8, 259 5 of 25

avenues for interdisciplinary research at the intersection of computer science and ecology,
fostering a deeper understanding of avian behaviors and ecological dynamics.

The overarching goal of this research is to contribute to the growing body of knowledge
on avian ecology by leveraging the capabilities of UAVs and sophisticated computer vision
algorithms. As biodiversity faces increasing threats and challenges, understanding the
dynamics of wildlife populations becomes crucial for effective conservation strategies.
This manuscript elucidates the development and application of novel computational tools
designed to track and analyze wild bird species, with a focus on their movements, group
dynamics, and habitat preferences.

Through this interdisciplinary approach, merging insights from ecology, computer
science, and remote sensing, our research contributes to the advancement of wildlife moni-
toring methodologies. The findings presented herein not only offer valuable contributions
to the scientific community but also pave the way for enhanced conservation strategies that
are grounded in a deeper understanding of avian behaviors and ecological interactions.

Our study presents several key contributions to the field of wildlife monitoring using
advanced computer vision techniques:

• We introduce a novel state-of-the-art computer vision model, ORACLE, designed to
enhance the accuracy and efficiency of wildlife bird tracking from drone footage.

• The ORACLE model demonstrated exceptional object detection capabilities, with a
mean average precision (mAP) of 91.89% at 50% intersection over union (IoU), address-
ing the challenge of detecting small- to medium-sized wildlife from high altitudes.

• Our methodology incorporates advanced multi-object tracking techniques that main-
tain consistent identification numbers across frames, which is crucial for long-term
behavioral studies and population monitoring.

• ORACLE facilitates detailed behavioral and population analytics, which are critical
for conservation efforts, providing environmentalists and researchers with valuable
insights into wildlife dynamics.

• The application of our model extends to remote and inaccessible regions, demon-
strating its robustness under challenging environmental conditions where traditional
monitoring methods are not feasible.

Furthermore, the impact of avian influenza in 2022 on Dalmatian pelicans was a severe
disaster [7]. Our goal is to observe the wildlife and the environment of the Amvrakikos
Gulf in Greece and to conserve it in the long run with the assistance of our model.

2. Materials and Methods

This section provides extensive information regarding the methodologies and imple-
mentations used to develop not just ORACLE, but also a high-accuracy computer vision
model capable of a robust object detection system. Our primary emphasis lay on addressing
the challenges of a specialized problem regarding computer vision in high-resolution drone
footage with small- to medium-sized objects.

2.1. YOLO Models and Their Performance

A key objective of this research was not only to inform but to conduct an excessive
review of several detection models. We chose to focus specifically on YOLO (you only look
once) models for several reasons. Firstly, YOLO models are renowned for their efficiency
and speed in object detection tasks, making them well-suited for real-time applications.
Additionally, YOLO architectures have demonstrated strong performance across various
datasets, including the challenging Microsoft COCO dataset [23], which contains a wide
range of object classes and scenarios.

We aimed to thoroughly assess the accuracy and performance of different YOLO mod-
els. To achieve this, we conducted extensive evaluations using various YOLO architectures
and sizes on the Microsoft COCO dataset. This dataset is widely recognized and utilized
for benchmarking object detection algorithms, due to its large-scale and diverse collection
of images. By testing multiple YOLO models on the COCO dataset, we were able to gather



Drones 2024, 8, 259 6 of 25

comprehensive insights into their capabilities and limitations. This rigorous evaluation
process allowed us to compile a comprehensive set of results, enabling us to make informed
decisions about which models performed best under different conditions and tasks.

In the following section, we explored several models with various sizes and architec-
tures by evaluating them under the Microsoft COCO dataset and ultimately compiled this
information into a comprehensive set of evaluation results.

The YOLO models utilize a size-based naming convention for their sub-models:
YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large), and YOLOv8x
(extra large). Furthermore, some frameworks contain additional architectures to train based
on the specialization of the dataset. The integration of an architecture in a model may
vary based on the problem in question. Architectures such as P6 prioritize medium- to
large-sized detections, whilst P2 and P3 architectures prioritize small- to medium-sized
detections. Ultralytics contains an active repository with these architectures available and
ready to use at any time, from P2 up to P7.

Due to the great number of models already available for use, it is difficult to determine
which model fits best for a specialized dataset such as ours. As such, this part of the
study delved into a comparative analysis of the models (v5, v7, and v8), including their
sub-models. As mentioned previously, we evaluated their overall performance (mAP) on
the MS COCO dataset [23] to clarify several key points in employing specific model sizes
or architectures in comparison to the COCO dataset and ours.

The MS COCO dataset consists of annotations sized from small to extra-large objects.
Table 1 describes the annotation size distributions in COCO. The most dominant size range
of annotations are the small ones at a total of 41.43%, whilst the large detections consist of
24.25% of the overall dataset.

Table 1. MS COCO annotation size percentages as opposed to the image sizes. Table information
cited from a rigorous study performed with the COCO dataset for small object detection [24].

Annotation Size Size Range (%) Annotation Distribution (%)

Small 0–0.3 41.44%
Medium 0.3–3 34.32%

Large 3–100 24.24%

In all our experiments, we made sure to evaluate each model with little to no imbal-
ances. We achieved this by manually tuning some of the settings during the evaluation of
the models. This was achieved by using the same confidence and IoU threshold [25] values
for the post-processing function non-maximum-suppression (NMS) [26].

All models listed in Table 2 were evaluated using the pycocotools library from Mi-
crosoft COCO [23]. It should be noted that many YOLO models are distributed across
multiple frameworks, such as Darknet [27], Ultralytics [19], and PyTorch [28]. This diversity
might produce slight variations, typically within a range of 1–2%, in the evaluation results.

The evaluation results of YOLOv5, YOLOv7, and YOLOv8 in Figure 2 serve as an
indication of the overall performance of each model on a dataset such as MS COCO [23].

The trained models of YOLOv5 with the P6 architecture produced satisfactory results,
with YOLOv5x6 performing with the highest overall mAP compared to the other models
in the COCO dataset. The sub-models of YOLOv5 with P6 prioritize medium, large, or
extra-large detections, which explains the high accuracy on the COCO dataset.

YOLOv7 and its sub-models demonstrated optimal performance when utilizing the
P6 architecture. However, it is noteworthy that large-sized models may exhibit much less
improvement in overall mAP compared to some of the smaller-sized models. Despite that,
larger-sized models play a crucial role in achieving extensive detection results in certain
challenging tasks.



Drones 2024, 8, 259 7 of 25

Table 2. Evaluation results of several YOLO models in various frameworks, starting from YOLOv5,
up to YOLOv8 (Excluding v6). The mAP percentages colored red correlate to the lowest value in
that column produced by the corresponding model (v5, v7, and v8), whilst the green percentages
represent the highest value.

Model Params (M) FLOPs (G) mAPval (50%) mAPval (75%) mAPval (50–95%)

YOLOv5n [19] 1.9 4.5 49.17% 36.99% 34.07%
YOLOv5s 7.2 16.5 59.42% 46.96% 42.84%
YOLOv5m 21.2 49.0 65.55% 53.60% 48.85%
YOLOv5l 46.5 109.1 68.74% 57.07% 52.19%
YOLOv5x 86.7 205.7 69.75% 58.13% 53.22%

YOLOv5n6 3.2 4.6 57.76% 46.04% 41.73%
YOLOv5s6 12.6 16.8 65.44% 53.35% 48.44%
YOLOv5m6 35.7 50.0 70.24% 58.82% 53.53%
YOLOv5l6 76.8 111.4 72.23% 60.98% 55.75%
YOLOv5x6 140.7 209.8 73.27% 62.24% 56.97%

YOLOv7 [18] 36.9 104.5 69.5% 55.86% 51.27%
YOLOv7x 71.3 189.7 70.90% 57.77% 53.00%
YOLOv7w6 70.4 89.9 67.77% 54.49% 50.16%
YOLOv7e6 97.2 128.6 69.26% 56.00% 51.62%
YOLOv7d6 133.7 175.4 69.58% 56.61% 51.97%
YOLOv7e6e 151.7 210.5 70.54% 57.63% 52.82%

YOLOv8n [19] 8.7 3.2 52.08% 40.30% 37.3%
YOLOv8s 11.2 28.6 61.30% 48.44% 44.9%
YOLOv8m 25.9 78.9 66.72% 54.55% 50.2%
YOLOv8l 43.7 165.2 69.45% 57.63% 52.9%
YOLOv8x 68.2 257.8 70.69% 58.87% 53.9%

In contrast to YOLOv7, which contains a limited number of architectures for small-
object detection, YOLOv8 boasts a diverse range of models optimized for this task. We
directed our focus towards YOLOv8 due to its exceptional efficiency in dynamically detect-
ing small- to medium-sized objects with minimal inconsistencies.

Moving forward, our study expanded further in a methodology regarding small
object detection. We examined the techniques employed to develop a tiling algorithm,
as well as the challenges encountered alongside this technique. Subsequently, our study
evaluated several models using a custom dataset that prioritizes high-resolution images
with small-sized detections.

2.2. ORACLE-Five-Layered Model for Advanced Object Detection & Tracking

Our efforts in implementing a model capable of advanced object detection and tracking,
as well as the extraction of valuable analytics, began by developing a five-layered model.
During the development of this study, we implemented an advanced algorithm capable
of processing footage recorded using high-grade industrial drones. The model’s objective
is to receive as input, footage recorded in wildlife environments and to extract important
analytics observed from the wildlife, in the form of statistics of data visualizations. This
model targets data analysts and environmentalists, to process and understand the activity
of ecosystems.

ORACLE is a five-layered model capable of applying advanced object detection and
tracking techniques, along with the extraction of valuable information and analytics from
drone footage. It is capable of extracting data, such as estimating counts of wildlife, ex-
porting videos using various visualization methods, adding masks to distinguish an object
from the background, and more. ORACLE uses state-of-the-art computer vision models
prioritizing small- to medium-sized objects. Figure 4 illustrates the sequential processes
executed by our model to facilitate the extraction and exportation of significant analytics.



Drones 2024, 8, 259 8 of 25

Figure 4. The process flow of the ORACLE model.

Layer One: Pre-Processing Layer

The pre-processing layer works by dynamically loading the models based on their
individual framework. Additionally, each frame is enhanced with the use of the gamma
correction technique [29], to reduce sunlight degradation. The footage is loaded in the form
of a dataset. Each frame is processed individually and is later tiled during inference under a
tensor that takes advantage of cuda technology [30], in order to achieve faster inference [31].
Figure 5, depicts a frame loaded into the dataset. This image is later processed in the second
layer, the object detection layer.

(a)

(b)

Figure 5. Layer one pre-processing: input frame example with a visible object to detect. Image frames
located at Koronisia, Balla (Location at Koronisia, Nisida Balla [GPS Pin]), 22 June 2023. (a) Original
drone image 3840 × 2160 pixels (width by height). (b) target object.

Layer two: object detection layer

The object detection layer works by selectively applying inference based on the model
version. This layer processes each frame individually, and this is repeated throughout
the entire video. Each frame is segmented into multiple pieces and then passed onto the
detection model [32].

https://www.google.com/maps/search/?api=1&query=39.05285415470534,20.854573719986032


Drones 2024, 8, 259 9 of 25

This layer was developed to dynamically utilize specific inference functions based on
the model version and the platform it was published in. Models published and developed
in Ultralytics utilize SAHI inference [32]. Models published and developed in PyTorch take
advantage of our tiling algorithm based on DarkHelp [33].

Figure 6 depicts the results using our tiling algorithm for most PyTorch models.

(a)

(b)

Figure 6. Layer two object detection output: target object depicts two detections. The green grid
showcases the processed tiles. (a) Original drone image 3840 × 2160 pixels (width by height).
(b) Target object layer two output.

Layer three: post-detection processing layer

The post-detection processing layer merges the detections that were split during
inference with tiling. This layer attempts to merge the detections that were split due to the
image tiling algorithm, as depicted in Figure 6b.

The post-detection processing layer is only activated when using a PyTorch model to
merge any detections that were split during inference due to tiling.

Figure 7b depicts the result of the post-detection processing layer, which attempts to
merge the two detections resulting from the previous layer, Figure 6b.

(a) Output of layer three of ORACLE.

(b) Target object layer three
output

Figure 7. Layer three: post-detection processing layer: detection merging.

Layer four: tracking layer

The tracking layer is dedicated to the tracking model, which handles the outcomes
derived from the previous layer. Its objective is to assign an identifier to each detected
object and consistently retain this identifier across multiple frames. Figure 8 showcases the
visible results of the model, with each detection displaying information such as the class
name, identification number, and prediction confidence.



Drones 2024, 8, 259 10 of 25

(a) Output of layer three of ORACLE.

(b) Target object layer four
output

Figure 8. Layer four post-detection processing: detection merging.

In Figure 8, a green mask overlays the object we tracked. The goal of creating an
overlay of the object is to target pixels that depict the tracked object’s surface. Mask
overlaying allows us to process those pixels in the future and give us a more in-depth
analysis (e.g., targeting the exact temperature of the green pixels). We achieved this
technique by applying color thresholding to each detection individually using a specific
pixel value distinguishable on the object’s surface compared to the background. As evident
in the Figure 8b, there is a noticeable contrast that makes the masking process far easier.

Layer five: post-processing layer

The post-processing layer is the final layer where ORACLE generates visualizations, as
well as extracting valuable information regarding the environment depicted in the footage.
In this layer, ORACLE uses several algorithms capable of producing insightful information
from the data. An example of a post-processing layer algorithm is the estimation of wildlife
detected within the footage.

We can observe from the previous Figures 6–8 that during visualization we created a
zoom effect for the oldest active tracks based on life-span sorted by ID. This visualization
method was primarily used for better observation of the objects.

Figure 9 displays three tracked objects in four different timelines of a video. With the
application of advanced object-detection techniques alongside tracking methods, we can
observe how those models were capable of consistently maintaining the same track IDs for
the same objects over extended periods of time.

Using ORACLE, we produced a video demonstrating the development of the model
ORACLE Video Result.

(a) Time-frame: 1 s (b) Time-frame: 4 s
Figure 9. Cont.

https://youtu.be/P68YwJPc2DY


Drones 2024, 8, 259 11 of 25

(c) Time-frame: 8 s

(d) Time-frame: 12 s
Figure 9. ORACLE fifth layer output in four different time-frames in a video.

2.3. Image Tiling

Our approach involves segmenting each full-scale image into smaller tiles and feeding
them individually into the model. This methodology is consistently applied during both the
inference and training stages, to sustain the same dimensions. However, existing libraries
like PyTorch offer limited algorithms for specific models like YOLOv7. To address this
issue, we developed our own custom tiling algorithm inspired by the implementation in
DarkHelp [33]

During inference, the image is segmented into multiple tiles, and each tile is processed
by the model to generate individual results. Subsequently, the tiled detections are stitched
back together to reconstruct the complete image. This approach not only reduces memory
consumption but also ensures that no information is lost during inference.

Given that our target network size is 640 × 640, a 4 k image should ideally be tiled ap-
proximately 20 times. However, considering the dimensions of the image and the network
size, a portion of the image will not be present in the tiles (3840 ∗ 2160)/(640 ∗ 640) = 20.25.
To address this issue, we padded the remaining information of the image, to compensate
for any information that might be lost during inference. Figure 10 visually demonstrates
this process.

(a)
(b)

Figure 10. Application of the image tiling technique in a high-resolution image (4 k). Tiling the image
resulted in a total of 24 images sized at 640 × 640 pixels. (a) High-resolution image 3840 × 2160
(4 k) ready to be tiled. (b) A composition of all the tiles of an image, created by our tiling algorithm,
including the padded space.

Image tiling maximizes the model’s potential for higher-resolution images; however,
many challenges are faced when using this technique. The larger the resolution of the
images, the more tiles are segmented, leading to slower inference times.

A substantial issue we faced using image tiling was when we attempted to segment
an image into multiple tiles and subsequently load each tile individually into the model for
inference. This led to detections being split across tiles when the image was reconstructed.
To compensate for this issue, we developed a detection merging technique based on the



Drones 2024, 8, 259 12 of 25

image tiling implementation in DarkHelp [33]. This detection merging technique works by
sorting the candidate and non-candidate detections. Candidate detections, Figure 11, are
the detections that are closest to the tiles based on a tile edge factor. The default tile edge
factor was set to 0.3.

Figure 11. The candidate detection closest to the tiles for merging.

The determining factor for if a detection is near the edge of a tile is calculated using the
distances of the detection in all directions, as opposed to the distance to the edges of each
tile. If either of these distances are smaller than a minimum horizontal/vertical threshold,
then the detection is a candidate. Equation (1), depicts the method used to calculate the
minimum threshold values, including the distances.

Minimum Horizontal Dst = tileEdgeFactor× det_width

Minimum Vertical Dst = tileEdgeFactor× det_height

Top Distance = Det_y1− tileSize× (tileRow + 1)

Left Distance = Det_x1− tileSize× (tileCol + 1)

Bot Distance = tileSize× (tileRow + 1)−Det_y2

Right Distance = tileSize× (tileCol + 1)−Det_x2

(1)

Det_width/height represents the width or height of the detection. TileEdgeFactor by
default was set to 0.3. Top/left/bot/right distances were calculated based on the tile
location and (tileSize× (tileRow or tileCol + 1)).

After calculating the relative distances of the detections to the tiles, they are compared
with each other to determine whether detection is a candidate or non-candidate. Once the
candidate detections have been found, they are then merged based on a merging factor,
that is typically set to 1.35. Equation (2) (defines lhs_plus_rhs as the subtraction of the
areas of the lhs and rhs bounding boxes, multiplied by a merge factor of 1.35, whereas
union refers to the union of the two rectangles provided by the detections):

lhs_plus_rhs = (lhs_area + rhs_area)×mergeFactor

UnionRect = Union(lhs_det_bbox, rhs_det_bbox)
(2)

lhs_area: Area of the Left-Hand-Side Bounding Box (Detection);
rhs_area: Area of the Right-Hand-Side Bounding Box (Detection)

Finally, the logic behind whether two detections will be merged is determined using
Equation (3).



Drones 2024, 8, 259 13 of 25

MergeDetections =

{
True if lhs_plus_rhs > Union Area
False otherwise

(3)

Figure 12 is a visual representation describing the comparison across several detections. If
two detections are in proximity to the edges of two tiles and their combined areas times a
factor is greater than the union of both, then the detections are merged, otherwise the rhs
detection is not merged with the lhs detection. The red squares outline the slicing of two
tiles, the green rectangles represent the split detections resulting from image tiling, whilst
the orange-dotted rectangle represents the union of the two detections in question.

Figure 12. Descriptive image of the detection merging technique.

Additionally, the pseudocode Algorithm 1 of the merging technique thoroughly de-
scribes the analytical steps taken to merge the candidate detections.

Algorithm 1 Detection Merging

1: function MERGE_DETECTIONS(detections, tile_rect_factor)
2: result← []
3: checked_indices← {}
4: for each lhs_index, lhs_pred in detections do
5: if lhs_index is in checked_indices then
6: continue
7: end if
8: append lhs_index to checked_indices
9: merged← False

10: for each rhs_index, rhs_pred in detections do
11: if rhs_index is in checked_indices or rhs_index equals lhs_index then
12: continue
13: end if
14: calculate lhs_area and rhs_area
15: create union_rect from lhs_rect and rhs_rect
16: calculate union_rect_area
17: lhs_plus_rhs← (lhs_area + rhs_area) * tile_rect_factor
18: if union_rect_area ≤ lhs_plus_rhs then
19: create new_pred based on union_rect, lhs_pred and rhs_pred
20: append new_pred to result
21: mark rhs_index as checked
22: merged← True
23: break
24: end if
25: end for
26: if not merged then
27: append lhs_pred to result
28: end if
29: end for
30: return result
31: end function



Drones 2024, 8, 259 14 of 25

Upon completion, each combined detection, alongside the detections with no neigh-
boring detections for merging, is appended to a detection results list. An illustration of this
technique can be observed in Figure 13.

(a) (b)

Figure 13. The effect of Image tiling in object detection in large-scale images. The green line represents
the split between the two tiles, whilst the red boxes represent the detections. (a) Target object split
in two detections due to image tiling. (b) Successfully merged target object after being split by the
two tiles.

2.4. Model Fine-Tuning

Model fine-tuning is a standard process of developing high-precision detection models,
such as the one we aimed to achieve for small object detection. Wildlife surveillance via
drones poses a great challenge, due to the variety in the shapes and forms in which the
birds may appear (e.g., spread/wings, different angles, different sizes, etc.). Fine-tuning
aims to address these issues by enhancing the quality and quantity of the dataset and
training, thereby improving the accuracy of the detection models.

There are two common fine-tuning methods: one involves enhancing the dataset
through image augmentation techniques and the other focuses on fine-tuning the model by
adjusting the augmentation parameters used during training. In addition to these, transfer
learning is another method that significantly improves model performance by adapting
pre-trained models to new tasks (datasets).

Our first approach in fine-tuning the YOLO detection model was through the applica-
tion of transfer learning [34]. This method significantly enhances a model’s accuracy by
refining its detection capabilities from one dataset to another. Transfer learning is generally
more effective than training from scratch, leading to substantial improvements in a model’s
overall performance.

Our second approach involved further enhancing the dataset through image augmen-
tation techniques. Specifically, the application of zoom and crop significantly increased the
dataset size by applying random zooms or crops to the images. The resulting images were
resized to match the network’s input size, ensuring consistency across all images.

Our final approach was to adjust the hyper-parameters during training. Training
a detection model such as YOLOv8 [19] allows users to manually edit augmentation
parameters. Our primary focus was to adjust some of these parameters to achieve higher
performance in the task of detecting small objects.

Our final approach was to tune the augmentation hyper-parameters during training,
with the goal of increasing accuracy. In the case of small object detection, adjusting certain
parameters will assist the model to either have more or less variety during training, there-
fore increasing the performance of various detection models. Parameters such as mosaic,
scale, and fliplr [35] generally have a positive effect in creating more variety during training;
however, mixup will negatively impact the accuracy for small object detection tasks. Our
primary focus was to adjust the parameters that applied augmentation to the image. Table 3
depicts the various adjustments to the hyper-parameters made across the frameworks.



Drones 2024, 8, 259 15 of 25

Table 3. Fine-tuned hyper-parameters during training.

Hyperparameter Default Value Fine-Tuned Value Description

mosaic 0.0 1.0 Mixes multiple randomly cropped images together
into a new image. Figure 14

mixup 0.15 0.0 Blends pairs of images and their labels and creates
a new image. (Reduced to prevent inconsistencies.)

scale 0.9 0.5 Scales the image based on a gain factor, simulating
objects at different distances. (Decreased to match
parameters across frameworks as well as decrease
the gain of this augmentation algorithm.)

fliplr 0.5 0.4 (Flip left-right) Flips images from left to right ran-
domly based on the given value.

cls 0.5 0.3 The weight of the classification loss in the total loss
function, affecting the importance of correct class
prediction relative to the other components.

Figure 14 displays the training batch of 16× images used to train the detection models
whilst utilizing various augmentation hyper-parameters such as mosaic.

Figure 14. Training batch of our dataset containing images augmented using the mosaic algorithm.

2.5. Multi-Object Tracking Models

During inference, we used the highest performing advanced multi-object tracking,
(MOT) model OSNet [36,37]. OSNet was trained on the MSMT17 dataset [38], which
consists of a combination of various datasets perfect for our use-case of re-identification.
They were trained on a large-scale dataset with small to medium-sized detections perfect for
our use case. The tracker we used for all our use cases was DeepOC-Sort [39], an advanced
algorithm prioritizing MOT with re-identification. Table 4 describes the evaluation results
of the various Osnet model sizes under the dataset MSMT17 [38].



Drones 2024, 8, 259 16 of 25

Table 4. Evaluation results of the different OSnet model sizes. The mAP percentages colored red
represent the lowest value in that column produced by the corresponding model, whereas the green
percentages represent the highest value.

Model [36,37] Params (M) FLOPs (G) mAP (50%) mAP (75%)

Osnet_x1_0 2.2 0.98 74.9% 43.8%
Osnet_x0_75 1.3 0.57 72.8% 41.4%
Osnet_x0_5 0.6 0.27 69.7% 37.5%
Osnet_x0_25 0.2 0.08 61.4% 29.5%

Integrating a tracker into our inference algorithm greatly increased the depth and
value of information we could extract, instead of relying solely on an object detector to
extract information such as an estimated number of objects visible in a video.

Simply using an object detector fell short in pinpointing the precise detection that
we wanted to target within a frame. In short, the amount of information provided by
an object detector is insufficient to pinpoint individual detections across frames. The
only information gathered from an object detector is the coordinates (x1, y1, x2, y2), the
confidence, and the class name. This indicates that the information provided solely by
a detector is insufficient to track detections. However, the information provided by the
detector is sufficient to append to a tracker such as DeepOC-Sort. Using a tracker allows
us to not only identify a specific detection on the screen but also track the same detection
across multiple frames. During the inference of DeepOC-Sort, we can extract the same
amount of information as the object detector, but this time each detection now contains an
identification number.

2.6. Tools & Equipment

The specifications for this study included a high-end computer equipped with an RTX
4090, which allowed us to train detection models quickly and run ORACLE at high speeds.

A low-noise drone was used for multiple flight plans over several days, to avoid
disturbing the wildlife. The drone was equipped with a rotating gimbal camera that
records up to 4 k videos and can fly for up to 30 min in ideal conditions.

Additional tools for this research included DarkMark [40], an advanced labeling tool
used to develop, improve, and augment our dataset, which features automatic labeling,
dataset statistics reviewing, and more.

3. AMVRADIA Dataset

The AMVRADIA dataset is named after the Amrvrakikos gulf, the largest gulf in
Greece. It was named due to our original task of leveraging the protection of ecosystems
using drones and surveying the environment’s wildlife to obtain analytics of the ecosystem.

The dataset development commenced with the retrieval of wildlife footage from the
Amvrakikos Gulf. Initially, our dataset consisted of three videos totaling 10 min of footage,
as described in a prior study [13]. Subsequently, each video was processed and a selection
of frames within the footage were used as images for our dataset. These images underwent
manual or automatic annotation, tiling, and augmentation procedures to construct our
dataset. The structure of the previous dataset is illustrated in Table 5.

Table 5. Dataset scale and improvements across the study.

Dataset Type Image Count Annotation Count

(2022) Initial 769 -

(2022) Augmented 10,653 34,536

(Current) Initial 1.104 27.189

(Current) Augmented 16.354 90.581



Drones 2024, 8, 259 17 of 25

The current dataset annotation structure is described in Table 6.

Table 6. Dataset statistics of the full-scale images. Dataset statistics retrieved using DarkMark [40].

Class ID Class Name Count Images Avg Size Max Size Max Annotations

0 Bird 25.398 535 27× 26 188× 334 129

1 Flock 181 106 88× 67 247× 130 5

2 Small-flock 1.610 405 37× 30 176× 113 21

3 Empty images 58 58 3840× 2160 3840× 2160 1

- Total 27.189 1.104 - - -

The AMVRADIA dataset consists of 4 k (3840 × 2160) resolution images; however, in
order to utilize the full potential of our model, we made sure to tile every image, to stop the
model from resizing the images down to the network size, as mentioned in the previous
Figure 3. The tool used to apply the tiling to our dataset was DarkMark [40].

We divided the AMVRADIA dataset, Table 6, into two distinct datasets. The first
dataset, labeled “Initial Dataset”, contained only the tiles of every image from the initial
dataset. The second dataset, labeled “Augmented”, contained the tiles of every image,
alongside added zoom/crop augmentation. Our objective in segregating the dataset
depicted in Table 6 was to research and optimize it to determine the best capabilities for
our model performance using both the initial and augmented datasets.

3.1. Initial Dataset

Table 7 depicts the statistics of the initial dataset where no augmentations were em-
ployed. This methodology used only the tiled images, with no additional images.

Table 7. Dataset statistics of the tiled images without any augmentation. Dataset statistics retrieved
using DarkMark [40]. (Small-sized annotations are scaled to a minimum of 10 × 10).

Class ID Class Name Count Images Avg Size Max Size Max Annotations

0 Bird 22.360 4.422 28× 28 189× 294 63

1 Flock 193 150 76× 68 195× 115 3

2 Small-flock 1.466 885 38× 32 153× 119 10

3 Empty Images 6175 6175 640× 640 640× 640 1

- Total 24.019 11.632 - - -

3.2. Augmented Dataset

Table 8 depicts the statistics of the augmented dataset, where zoom/crop augmentation
was employed to increase the overall performance of our model.

We can observe in Table 8 that using random zoom/crop resulted in an increased count
of annotations, at the expense of smaller annotation sizes. In some cases, the annotations
became excessively small, rendering them nearly undetectable by the model. The negative
aspect of zoom/cropping is the blurriness caused after the augmentation. This distortion
results in a reduction of visible information within the images. This method will likely
reduce the overall accuracy during training; however, despite this drawback, it could serve
as a reasonable trade-off for enhancing the overall effectiveness of our detection models
during inference.



Drones 2024, 8, 259 18 of 25

Table 8. Dataset statistics of the tiled images using random zoom/crop augmentation. Dataset
statistics retrieved using DarkMark [40]. (No scaling was applied to the annotation sizes).

Class ID Class Name Count Images Avg Size Max Size Max Annotations

0 Bird 85,090 7095 16× 16 189× 294 123

1 Flock 581 409 49× 41 195× 115 5

2 Small-flock 4910 2108 22× 18 153× 119 18

3 Empty Images 6742 6742 640× 640 640× 640 1

- Total 90.581 16.354 - - -

4. Results

This section provides a detailed analysis of the results of the various experiments we
conducted to assess the performance of the various models on our AMVRADIA dataset.
This analysis included a comprehensive assessment of both the tracker and object detector
across multiple IoU (intersection over union) [41] thresholds using annotated video data
retrieved from footage using drones. Additionally, we examined the accuracy of our
count estimation algorithm based on the annotated video. Finally, we identified the best-
performing model for our use case, as well as others, in the tasks of object detection and
MoT (multi-object tracking) of small- to medium-sized detections.

4.1. Training Phase Datasets

During training, we made sure to split each dataset (initial/augmented) into three
different subsets: training, testing, and validation datasets. The split percentage of the
datasets was 70–30%. We split the training dataset into 70%, while the test and validation
datasets were both split into 15%. We made sure to split our datasets in an unbiased and
random manner, to avoid over-fitting or uncorrelated results.

4.2. Detector & Tracker Evaluation Method

Our evaluation methodology for both the detector and tracker was achieved by anno-
tating a video containing a large number of annotations with identifications. The target
object count in the video was 100 objects to track/detect. Our goal was to evaluate both the
detector and tracker using the annotated video and to extract various accuracy values.

We evaluated our tracker by counting the total correct tracks in between individual
frames, while at the same time counting any possible changes that occurred in the track’s ID.

Algorithmically, we began by initializing dictionary annotated track IDs as keys.
During inference, we fetched the annotations corresponding to each frame of the annotated
video. We then matched the specific track annotation IDs with the predicted track IDs based
on multiple IoU thresholds. If two track IDs across two or more frames were the same, then
these tracks were counted as correct; otherwise, if the track ID differed from the previous
frame, we registered this as a change. This approach is summarized in Algorithm 2

Each predicted track ID the same as the previous one was counted as a correct track.
If the track ID was not the same as the previous matched detection ID, then we counted
this as a changed track.



Drones 2024, 8, 259 19 of 25

Algorithm 2 Detection/Tracker Evaluator Optimized
1: Requires:
2: matched_dets: Dictionary, ▷ Annotation IDs as keys, Tracker Evaluators as values.
3: objectKey: STR, ▷ Current Annotation ID
4: det_id: INT, ▷ Current Detection ID
5: iou: FLOAT, ▷ Intersection over Union value
6: IOU_THRESHOLDS: LIST of FLOATs, ▷ Threshold values for evaluation
7: Returns:
8: matched_dets: Dictionary, ▷ Updated with evaluation results
9: procedure EVALUATOR(matched_dets, objectKey, det_id, iou, IOU_THRESHOLDS)

10: indices← [index for index, iou_thres in enumerate(IOU_THRESHOLDS) if iou ≥ iou_thres]
11: for index in indices do
12: if not matched_dets.contains(objectKey) then
13: matched_dets[objectKey]← new TrackerEvaluator()
14: end if
15: matched_dets[objectKey].track_total(index) ▷ Increment total count for the index
16: if matched_dets[objectKey].current_det_id == 0 then
17: matched_dets[objectKey].current_det_id← det_id ▷ Set detection ID
18: matched_dets[objectKey].track_correct(index) ▷ Mark as correct for index
19: else if matched_dets[objectKey].current_det_id == det_id then
20: matched_dets[objectKey].track_correct(index) ▷ Increment correct count
21: else
22: matched_dets[objectKey].track_changed(det_id, index) ▷ Track has changed
23: end if
24: end for
25: return matched_dets
26: end procedure

4.2.1. Detection Model Evaluation

The 2022 study [13] that was conducted utilizing the AMVRADIA 2022 dataset, as
described in Table 5, was evaluated with the models YOLOv4 and YOLOv4-tiny [42].
Table 9 describes the inference results of these two models and the underlying problems
that were later confirmed with the improvements of the current study’s dataset.

Table 9. YOLOv4 and YOLOv4-tiny evaluation results.

YOLO Model mAP (50) Average IoU (50)

YOLOv4 91.28% 65.10%
YOLOv4-tiny 85.64% 47.90%

On a similar scale to Table 2, we trained several models on the datasets labeled as
‘Initial’ and ‘Augmented’, and evaluated each model with its equivalent or opposite dataset.
Each model underwent evaluations with multiple mAP results based on an IoU threshold
vector. The IoU threshold vector spanned from 0.5 to 0.95 IoU, with intervals of 0.05. Our
assessment for each model was carefully examined to produce results with the highest
possible mAP and overall model performance we could achieve.

Table 10 illustrates the training and evaluation results under the split dataset for AMVRA-
DIA. The ‘Model Name’ column refers to the models we used for training/evaluation. ‘Repre-
senting Dataset’ refers to the dataset used to train the corresponding model. Finally, the
columns ‘Evaluated under Initial’ and ‘Evaluated under Augmented’ refer to which of the
two datasets, described in Sections 3.1 and 3.2, the model was evaluated on.

The results provided in Table 10 present a significant increase between each model.
However, in the case of YOLOv7x, there was an evident reduction in the overall mAP
compared to using YOLOv7. This was likely due to a complexity issue caused by using a
larger-sized model or due to its inability to detect small-sized detections. For YOLOv8, this
was not the case, as there was an increase in overall mAP from YOLOv8 to YOLOv8x. This
shows that certain models may behave differently with unique or challenging datasets.



Drones 2024, 8, 259 20 of 25

Table 10. The evaluation results of multiple models trained and evaluated under the split AMVRADIA
dataset. (The mAP percentages colored red correlate to the lowest value in that column produced
based on the corresponding model, whereas the green percentages represent the highest value).

Evaluated under Initial Evaluated under Augmented

Model Name Representing Dataset mAP (50%) mAP (75%) mAP (50–95) mAP (50%) mAP (75%) mAP (50–95)

YOLOv7 [18] Initial 72.38% 45.17% 41.67% 43.51% 23.73% 23.60%
YOLOv7 Augmented 92.37% 78.32% 64.86% 82.14% 53.05% 50.31%
YOLOv7x [18] Initial 75.16% 47.56% 44.44% 44.38% 24.10% 24.29%
YOLOv7x Augmented 90.40% 77.41% 63.60% 82.04% 53.04% 49.80%

YOLOv8 (m) [19] Initial 84.69% 65.57% 57.82% 58.38% 36.45% 35.32%
YOLOv8 (m) Augmented 92.80% 82.35% 70.18% 82.07% 56.69% 52.66%
YOLOv8x [19] Initial 85.72% 66.92% 58.25% 61.49% 37.36% 36.75%
YOLOv8x Augmented 94.13% 84.36% 70.15% 79.73% 53.19% 50.54%

YOLOv8x-p2 [19] Initial 89.84% 77.83% 63.82% 63.98% 43.13% 40.22%
YOLOv8x-p2 Augmented 95.69% 89.88% 75.88% 87.56% 64.92% 58.24%

4.2.2. Tracking Model Evaluation

This subsection includes the evaluation results extracted from our object detection and
tracker evaluator Algorithm 2 using the best-performing models based on mAP from our
previous evaluation results, Table 10. For our tracker and object detection evaluator, we
used the best performing tracking model described in Table 4.

The results described in Table 11 highlight the significant impact of utilizing models
that prioritized the detection of small objects. Notably, YOLOv8x-p2 with the augmented
dataset emerged as the top-performing model, demonstrating superior performance to
the rest of the evaluated models. Interestingly, however, YOLOv8x was slightly behind
YOLOv8x-p2, nearly matching the performance of the model using the p2 module.

Table 11. Object detection and tracker evaluation results for each best-performing detection model.
The NMS IoU was set to 0.5 IoU. The green text represents the best-performing model. The red text
represents the worst-performing model. The lifespan we used for each track to be estimated as a
count was 2 s.

Detection. Model mAP (50%) mAP (75%) mAP (50–95) Estimated Count

yolov7 Initial 64.97% 68.11% 0.55 IoU 34.47% 37.67% 73
yolov7 Augmented 74.25% (74.33% 0.55 IoU) 42.33% 42.08% 79
yolov7x Initial 69.42% (70.35% 0.55 IoU) 37.68% 38.38% 73
yolov7x Augmented 71.27% (72.54% 0.55 IoU) 42.82% 42.70% 78

yolov8 Initial 71.96% 35.37% 40.30% 64
yolov8 Augmented 84.33% 50.04% 52.07% 63
yolov8x Initial 71.75% 40.85% 42.10% 63
yolov8x Augmented 91.48% 58.82% 55.03% 60

yolov8x-p2 Initial 71.02% 43.18% 43.99% 64
yolov8x-p2 Augmented 91.89% 58.82% 56.24% 65

- - - Target Estimated Count: 100

While YOLOv7 augmented appears to display a slight increase in the overall mAP
compared to YOLOv7x Augmented in Table 10, there was a small increase in the overall
mAP when evaluating the precision of the detector and tracker, Table 11. If our goal was to
take advantage of the best possible results for our estimation count algorithm, using the
yolov8x-p2 detection model with the augmented dataset was the best approach.



Drones 2024, 8, 259 21 of 25

4.3. Analytics & Visualization

In our five-layered model ORACLE, we implemented various analytics extraction and
visualization algorithms that used the tracks retrieved from the post-detection or tracking
layers. Nearly all of the algorithms we implemented utilized the ID from the tracks.

1. Object count estimation: Our object count estimation algorithm leverages the IDs
from the tracks of each detection. We estimate the total count in a video by tracking the
lifespan of all tracked detections with the same ID. This method involves initializing
a total lifespan to count a track and display the detection with the color green. Our
objective is to count the IDs that remain active on the screen for over 2 s (equivalent
to 60 frames in a 30 fps video).Based on the best-performing model provided in
Table 11, we evaluated our object count estimation algorithm over several seconds
(lifespans) to count a track. Figure 15 depicts the decrease in the total estimated counts
detected in the annotated video. The dotted horizontal line represents the target count
of the annotated video, whilst the polylines represent the total estimated count for
different lifespans.

Figure 15. Estimation count of the objects in the annotated video per life span of the tracks, us-
ing three different models YOLOv7x (Normal), YOLOv7x (Augmented), YOLOv8x (Augmented),
and YOLOv8x-p2 (Augmented). (The results differed from the previously retrieved results due to
improvements in the code, Table 11).

In Figure 15, we can observe the estimated count results of three individual models all
trained under the augmented dataset. Increasing the seconds to count a track from 0
or higher subsequently decreased the total Estimated Count. To achieve equilibrium
and determine the optimal point for estimating the total count of wildlife, we needed to
utilize a model capable of high-accuracy inference. The most optimal scenario would
involve ORACLE predicting a total Estimated Count of 100 with a total lifespan of
0.0 s to count a track; however, this means that both the object detection and tracking
models would need to be 100% accurate, which is realistically not possible.
False positive detections, or even miss-tracks, pose a common challenge in estimating
the total count of wildlife, which is essentially considered noise. The predicted
Estimated Count closest to the target was similar for the two models: YOLOv8x
(93 estimated count) and YOLOv8x-p2 (90 estimated count) for 0.5 s. Furthermore,
YOLOv7x trained on normal and augmented datasets produced an overestimated



Drones 2024, 8, 259 22 of 25

count compared to YOLOv8x. Meanwhile, YOLOv7x Augmented estimated the
highest count compared to the rest of the models, proving the existence of a large
count of false positive detections or miss-tracks. Therefore, YOLOv7x was an inferior
candidate compared to the YOLOv8x models.

2. Tracked Object Visualization: This method was primarily implemented to visualize
the tracked object in a small static box containing the detection in the image, with
an added zoom. We also implemented it in cases where an ID was lost and found in
between frames, and the box displayed a black background with its ID. If the lifespan
of a non-visible detection on the screen expires, it will no longer be present and will be
replaced by a new detection with the next smallest ID from the last one. An example
of this algorithm in action is displayed in Figure 16, showing a visualization of tracks
with static boxes and added zoom sorted by the ID. In addition, the image displays
information such as the Estimated Wildlife Count in the top left corner.

Figure 16. A visualization example of our five-layered model displaying advanced object detection,
tracking, object count estimation, and track cisualization.

5. Conclusions

Our objective was to automate the task of surveying remote and inaccessible environ-
ments, without relying on manual labor. We initiated the process by securely retrieving
footage suitable for training or evaluating detection models. However, merely employ-
ing object detection techniques falls short in comprehensively “surveying” a remote area
and extracting valuable analytics. Thus, during the course of this study, we devised a
sophisticated model titled ORACLE (optimized rigorous advanced cutting-edge model for
leveraging protection of ecosystems). ORACLE not only performs various AI tasks related
to computer vision, but also automates the task of surveillance and facilitates the extraction
of valuable analytics.

This study delved deeper into the advancement of wild bird surveillance with the
assistance of drones. Our previous study [13] focused on the development of a dataset
capable of detecting small-sized objects using YOLOv4 [42] and YOLOv4-tiny. During
inference, we achieved a total of 91.28% mAP with our previous dataset. However, this
study advanced even further in the task of object detection, by significantly improving both
the quality and quantity of the dataset.

In our new dataset, named after our project name, the AMVRADIA dataset, we
achieved a peak accuracy of 95.96% (evaluated under 50% IoU), as depicted in Table 10,
using a large-scale model that prioritized small- to medium-sized detections, YOLOv8x-



Drones 2024, 8, 259 23 of 25

p2 [19]. Moreover, we improved this study’s quality using tracking techniques, with the
assistance of the Deep OC-SORT [39] algorithm under the OS Net model [36].

Since tracking is a process that goes hand-in-hand with object detection, we evaluated
both detection and tracking models on the same scale, to show a robust correlation of
our evaluation results, as depicted in Table 11. This evaluation methodology proved the
technicality and impact of the performance of our tracks using several detection models. It
also proved how the detection layer is the basis of our surveillance model ORACLE and its
overall performance.

In addition to the detection and tracking layers, which facilitate robust data extraction,
we implemented and presented various algorithms for information extraction and visual-
ization. Among these, the primary algorithm was our object count estimation algorithm
(referenced as Item 1. While the implementation of this algorithm may appear straight-
forward, its accuracy is heavily dependent on the performance of both the detection and
tracking layers.

Finally, this study concluded with the use of high-level state-of-the-art detection
and tracking models that facilitate the task of data extraction from drone footage. We
optimized and fine-tuned both of these techniques to a state of near-perfect accuracy. We
not only evaluated the models but also developed algorithms capable of extracting valuable
information, such as a wildlife estimation counts.

6. Future Work

This work introduced the ORACLE model and highlighted its capabilities. However,
there is considerable room for improvement and additional features that could be imple-
mented. As of the time of writing, we have already begun our efforts to expand our model
and focus on the task of data collection for wildlife surveillance using drones. One task we
have set our sights on is to leverage state-of-the-art language models and generate captions
for each individual detection additionally.

The impact of avian influenza on Dalmatian pelicans in 2022 was a severe disaster [7].
Our goal is to observe the wildlife and the environment of the Amrakikos Gulf in Greece
and conserve it in the long run with the assistance of our model ORACLE. Additionally,
our study aimed to estimate colony sizes using ORACLE’s data collected across multiple
seasons and to apply machine learning techniques [43] to observe irregularities or states in
colony sizes based on environmental impacts.

As of the time of writing, we have upgraded our hardware and resources. We obtained
a high-end industrial-grade DJI drone capable of capturing thermal imagery. Due to this,
we have set our sights on detecting information such as the observable temperature of
each detection. This will allow us to classify if a bird, such as Dalmatian pelicans, could
be carrying diseases like influenza [44]. Finally, the AMVRADIA dataset is single-domain,
meaning it is limited to a single environment. However, the Amvrakikos Gulf consists of
several islets containing wildlife. Our future plan is to expand the dataset into a multi-
domain dataset, thereby increasing both its variety and quantity. As of the time of writing,
surveillance is prohibited due to the nesting and breeding season of the wildlife of the
Amvrakikos Gulf. The breeding season lasts from the start of January till the end of June [5].
Therefore, we are unable to retrieve more data during this period.

Author Contributions: Conceptualization, P.K.; methodology, P.K., D.M. and C.S.; software, D.M. and
P.K.; validation, and P.K.; data collection, D.M.; writing—original draft preparation, D.M., C.S. and
P.K.; writing—review and editing, D.M. and P.K.; supervision, P.K. and C.S.; project administration,
C.S. and P.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received funding from the project “Research and development advanced
computational techniques for remote monitoring of wild poultry to prevent the spread of avian in-
fluenza using drones and other devices” submitted in Priority Axis 3 “Research and Implementation”,
of the financing program “Physical Environment & Innovative actions 2022” of the Green Fund.

Data Availability Statement: Data not available for this study.



Drones 2024, 8, 259 24 of 25

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Mazumdar, S. Drone Applications in Wildlife Research—A Synoptic Review. In Environmental Informatics: Challenges and Solutions;

Paul, P.K., Choudhury, A., Biswas, A., Singh, B.K., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 237–257. [CrossRef]
2. Han, Y.G.; Yoo, S.; Kwon, O. Possibility of applying unmanned aerial vehicle (UAV) and mapping software for the monitoring of

waterbirds and their habitats. J. Ecol. Environ. 2017, 41, 21. [CrossRef]
3. Naeher, S.; Geraga, M.; Papatheodorou, G.; Ferentinos, G.; Kaberi, H.; Schubert, C.J. Environmental variations in a semi-enclosed

embayment (Amvrakikos Gulf, Greece)–reconstructions based on benthic foraminifera abundance and lipid biomarker pattern.
Biogeosciences 2012, 9, 5081–5094. [CrossRef]

4. Das, N.; Padhy, D.N.; Dey, N.; Mukherjee, A.; Maiti, A. Building of an edge enabled drone network ecosystem for bird species
identification. Ecol. Inform. 2021, 68, 101540. [CrossRef]

5. Crivelli, A.J.; Hatzilacou, D.; Catsadorakis, G. The breeding biology of the Dalmatian Pelican Pelecanus crispus. Ibis 1998,
140, 472–481. [CrossRef]

6. Alain, C.; Catsadorakis, G.; Hatzilacou, D.; Naziridis, T. Pelecanus crispus Dalmatian Pelican. Soc. Prot. Prespas Conserv. Res. Dep.
BWP Update 1997, 1, 149–153.

7. Alexandrou, O.; Malakou, M.; Catsadorakis, G. The impact of avian influenza 2022 on Dalmatian pelicans was the worst ever
wildlife disaster in Greece. Oryx 2022, 56, 813. [CrossRef]

8. Coluccia, A.; Fascista, A.; Sommer, L.; Schumann, A.; Dimou, A.; Zarpalas, D. The Drone-vs-Bird Detection Grand Challenge at
ICASSP 2023: A Review of Methods and Results. IEEE Open J. Signal Process. 2024, 1–15. [CrossRef]

9. Hong, S.J.; Han, Y.; Kim, S.Y.; Lee, A.; Kim, G. Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial
Vehicle Imagery. Sensors 2019, 19, 1651. [CrossRef]

10. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
[CrossRef]

11. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of
the Computer Vision–ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 21–37.

12. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

13. Mpouziotas, D.; Karvelis, P.; Tsoulos, I.; Stylios, C. Automated Wildlife Bird Detection from Drone Footage Using Computer
Vision Techniques. Appl. Sci. 2023, 13, 7787. [CrossRef]

14. T’Jampens, R.; Hernandez, F.; Vandecasteele, F.; Verstockt, S. Automatic detection, tracking and counting of birds in marine video
content. In Proceedings of the 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA),
Oulu, Finland, 12–15 December 2016; pp. 1–6. [CrossRef]

15. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
16. Betancourt, I.; McLinn, C. Teaching with the Macaulay Library: An Online Archive of Animal Behavior Recordings. J. Microbiol.

Biol. Educ. 2012, 13, 86–88. [CrossRef] [PubMed]
17. Wah, C.; Branson, S.; Welinder, P.; Perona, P.; Belongie, S. The Caltech-UCSD Birds200-2011 Dataset. In Advances in Water

Resources-ADV WATER RESOUR; California Institute of Technology: Pasadena, CA, USA, 2011.
18. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object

Detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver,
BC, Canada, 18–22 June 2023; pp. 7464–7475. [CrossRef]

19. Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Nano; Kwon, Y.; Michael, K.; Xie, T.; Fang, J.; imyhxy; et al. ultralytics/yolov5:
v7.0-YOLOv5 SOTA Realtime Instance Segmentation. 22nd of November. Available online: https://zenodo.org/records/7347926
(accessed on 2 February 2024).

20. Li, J.; Liang, X.; Wei, Y.; Xu, T.; Feng, J.; Yan, S. Perceptual Generative Adversarial Networks for Small Object Detection. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 16 June
2017; pp. 1951–1959. [CrossRef]

21. Hassan, S.; Mujtaba, G.; Rajput, A.; Fatima, N. Multi-object tracking: A systematic literature review. Multimed. Tools Appl. 2023,
83, 43439–43492. [CrossRef]

22. Milan, A.; Schindler, K.; Roth, S. Challenges of Ground Truth Evaluation of Multi-target Tracking. In Proceedings of the 2013
IEEE Conference on Computer Vision and Pattern Recognition Workshops, Portland, OR, USA, 23–28 June 2013; pp. 735–742.
[CrossRef]

23. Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft
COCO: Common Objects in Context. arXiv 2014, arXiv:1405.0312.

24. Kisantal, M.; Wojna, Z.; Murawski, J.; Naruniec, J.; Cho, K. Augmentation for small object detection. In Proceedings of the
Conference: 9th International Conference on Advances in Computing and Information Technology, Sydney, Australia, 21–22
December 2019.

http://doi.org/10.1007/978-981-19-2083-7_14
http://dx.doi.org/10.1186/s41610-017-0040-5
http://dx.doi.org/10.5194/bg-9-5081-2012
http://dx.doi.org/10.1016/j.ecoinf.2021.101540
http://dx.doi.org/10.1111/j.1474-919X.1998.tb04609.x
http://dx.doi.org/10.1017/S0030605322001041
http://dx.doi.org/10.1109/OJSP.2024.3379073
http://dx.doi.org/10.3390/s19071651
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.3390/app13137787
http://dx.doi.org/10.1109/IPTA.2016.7821031
http://dx.doi.org/10.1128/jmbe.v13i1.382
http://www.ncbi.nlm.nih.gov/pubmed/23653794
http://dx.doi.org/10.1109/CVPR52729.2023.00721
https://zenodo.org/records/7347926
http://dx.doi.org/10.1109/CVPR.2017.211
http://dx.doi.org/10.1007/s11042-023-17297-3
http://dx.doi.org/10.1109/CVPRW.2013.111


Drones 2024, 8, 259 25 of 25

25. Bożko, A.; Ambroziak, L. Influence of Insufficient Dataset Augmentation on IoU and Detection Threshold in CNN Training for
Object Detection on Aerial Images. Sensors 2022, 22, 9080. [CrossRef] [PubMed]

26. Gilg, J.; Teepe, T.; Herzog, F.; Wolters, P.; Rigoll, G. Do We Still Need Non-Maximum Suppression? Accurate Confidence Estimates
and Implicit Duplication Modeling with IoU-Aware Calibration. arXiv 2023, arXiv:2309.03110.

27. Charette, S. Darknet/YOLO. April 2022. Available online: https://github.com/hank-ai/darknet (accessed on 2 February 2024).
28. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic

Differentiation in PyTorch. In Proceedings of the NIPS 2017 Workshop on Autodiff, Long Beach, CA, USA, 28 October 2017.
29. Mpouziotas, D.; Mastrapas, E.; Dimokas, N.; Karvelis, P.; Glavas, E. Object Detection for Low Light Images. In Proceedings of the

2022 7th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference
(SEEDA-CECNSM), Ioannina, Greece, 23–25 September 2022; pp. 1–6. [CrossRef]

30. Kirk, D. NVIDIA CUDA software and GPU parallel computing architecture. In Proceedings of the 6th International Symposium
on Memory Management, Montreal, QC, Canada, 21–22 October 2007; Volume 7, pp. 103–104. [CrossRef]

31. Yi, R.; Cao, T.; Zhou, A.; Ma, X.; Wang, S.; Xu, M. Boosting DNN Cold Inference on Edge Devices. In Proceedings of the 21st
Annual International Conference on Mobile Systems, Applications and Services, Helsinki, Finland, 18–22 June 2022. [CrossRef]

32. Akyon, F.C.; Onur Altinuc, S.; Temizel, A. Slicing Aided Hyper Inference and Fine-Tuning for Small Object Detection. In
Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October 2022;
pp. 966–970. [CrossRef]

33. Charette, S. DarkHelp, C++ Wrapper Library for Darknet 24 June 2022. Available online: https://github.com/stephanecharette/
DarkHelp (accessed on 2 February 2024).

34. Chen, R.; Guo, Y.; Zheng, H.; Jiang, H. A Comprehensive Approach for UAV Small Object Detection with Simulation-based
Transfer Learning and Adaptive Fusion. arXiv 2021, arXiv:2109.01800.

35. Cossio, M. Augmenting Medical Imaging: A Comprehensive Catalogue of 65 Techniques for Enhanced Data Analysis. arXiv 2023,
arXiv:2303.01178.

36. Zhou, K.; Yang, Y.; Cavallaro, A.; Xiang, T. Omni-Scale Feature Learning for Person Re-Identification. arXiv 2019, arXiv:1905.00953.
37. Zhou, K.; Yang, Y.; Cavallaro, A.; Xiang, T. Learning Generalisable Omni-Scale Representations for Person Re-Identification. arXiv

2019, arXiv:1910.06827.
38. Wei, L.; Zhang, S.; Gao, W.; Tian, Q. Person Transfer GAN to Bridge Domain Gap for Person Re-identification. In Proceedings of

the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 16–20 June 2017;
pp. 79–88. [CrossRef]

39. Maggiolino, G.; Ahmad, A.; Cao, J.; Kitani, K. Deep OC-SORT: Multi-Pedestrian Tracking by Adaptive Re-Identification. arXiv
2023, arXiv:2302.11813.

40. Charette, S. DarkMark C++ GUI Tool for Darknet-Code Run. 2019–2023. Available online: https://www.ccoderun.ca/darkmark/
(Accessed on 2 February 2024).

41. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection over Union. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

42. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,
arXiv:2004.10934.

43. Paolanti, M.; Romeo, L.; Felicetti, A.; Mancini, A.; Frontoni, E.; Loncarski, J. Machine Learning approach for Predictive
Maintenance in Industry 4.0. In Proceedings of the 2018 14th IEEE/ASME International Conference on Mechatronic and
Embedded Systems and Applications (MESA), Oulu, Finland, 2–4 July 2018; pp. 1–6.

44. Beyit, A.; Meki, I.; Barry, Y.; Haki, M.; El Ghoutoub, A.; Hamma, S.; Abdelwahab, N.; Doumbia, B.; Benane, H.; Daf, D.; et al.
Avian influenza H5N1 in a great white pelican (Pelecanus onocrotalus), Mauritania 2022. Vet. Res. Commun. 2023, 47, 2193–2197.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s22239080
http://www.ncbi.nlm.nih.gov/pubmed/36501781
https://github.com/hank-ai/darknet
http://dx.doi.org/10.1109/SEEDA-CECNSM57760.2022.9932921
http://dx.doi.org/10.1145/1296907.1296909
http://dx.doi.org/10.1145/3581791.3596842
http://dx.doi.org/10.1109/ICIP46576.2022.9897990
https://github.com/stephanecharette/DarkHelp
https://github.com/stephanecharette/DarkHelp
http://dx.doi.org/10.1109/CVPR.2018.00016
https://www.ccoderun.ca/darkmark/
http://dx.doi.org/10.1007/s11259-023-10100-6
http://www.ncbi.nlm.nih.gov/pubmed/36930249

	Introduction
	Materials and Methods
	YOLO Models and Their Performance
	ORACLE-Five-Layered Model for Advanced Object Detection & Tracking
	Image Tiling
	Model Fine-Tuning
	Multi-Object Tracking Models
	Tools & Equipment

	AMVRADIA Dataset
	Initial Dataset
	Augmented Dataset

	Results
	Training Phase Datasets
	Detector & Tracker Evaluation Method
	Detection Model Evaluation
	Tracking Model Evaluation

	Analytics & Visualization 

	Conclusions
	Future Work
	References

