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Abstract: This work presents a minimum separation calculation for the integrated operation of
manned and unmanned aerial vehicles in an uncertain airspace environment. Different from tradi-
tional path-planning-based research, this study investigated the minimum safe separation distance
from a novel perspective of reachability analysis. The proposed computational method made use
of the Hamilton–Jacobi partial differential equation (HJPDE) to obtain the backward reachable tube.
Firstly, this work modeled the integrated operation in the UAS traffic management scenario, par-
ticularly focusing on the uncertainties. Then, a probabilistic reachability tube computation method
was derived. Next, this work calculated the safe separation distances based on reachability analysis
for three scenarios: a deterministic environment, an environment with relative position uncertainty,
and an environment with relative heading angle uncertainty. By calculating the reachable tubes for
a given response time, the worst-case minimum safe distances from the UAV’s perspective were
determined, and the quantitative patterns were summarized. The results in this work indicate that,
with an increase in the risk level and under the premise of a 1 s response time, the minimum safe
separation increases from 26.7 m to 30.0 m. Finally, the paper discusses the results, explaining their
rationality from both mathematical and physical perspectives.

Keywords: UAV; integrated operation; reachability analysis; minimum separation; uncertainty analysis

1. Introduction
1.1. Background

With the growing application of unmanned aircraft systems (UASs) [1], UASs play
an important role in the civil area of logistics delivery [2], search and rescue [3], and aerial
surveillance [4]. Especially with the development of urban air mobility (UAM) concepts [5],
the application of UASs in urban spaces is receiving increased attention. To integrate drones
and UASs into airspace, the Federal Aviation Administration commissioned the National
Aeronautics and Space Administration to conduct the UAS Traffic Management (UTM)
project, which involves a series of studies and flight tests [6]. Europe has also initiated a
similar project, called U-Space [7]. An essential objective of UTM and U-Space is to maintain
flight safety among UASs by keeping proper separation distances [8]. However, achieving
a safe transition from sparsely populated UASs in a single-mode operating environment to
a complex, large-scale, and mixed environment with various types of aircraft integrated
into the airspace presents a significant challenge due to differing UAS performances, a
range of sensors, and the absence of comprehensive operational guidelines and separation
standards [9].

Manned–unmanned teaming (MUM-T) has been long applied in the military field [10].
Military environments have more urgency and pose more communication issues to over-
come; hence, the precision, speed, and tireless productivity inherent in MUM-T systems
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make it adaptable for commercial use [11]. Recent progress in the development of UAM
vehicles and infrastructures is expanding the use of MUM-T, with the emphasis it places
on the use of autonomous systems, UASs, remotely piloted aircraft, and vertical takeoff
and landing (VTOL) aircraft. UTM systems are designed to integrate manned aircraft
vehicle (MAV) and unmanned aircraft vehicle (UAV) operations in the same airspace [12],
enhancing the safety and efficiency while ensuring minimal human intervention. However,
due to the different dynamic characteristics of MAVs and UAVs, the safety guarantee of an
MAV and a UAV is more complex than that between two UASs.

1.2. Related Work

A variety of methods have been applied to assess the flight safety in integrated
airspace [9,13]. A category of existing methods involves improving traditional path plan-
ning algorithms [14] to research the low-altitude collision avoidance problem, such as the
well-known A⋆ algorithm [15], the rapidly exploring random tree algorithm [16], and the
model predictive control algorithm [17]. Another category of existing methods is based on
traditional air traffic management collision models, such as the Reich model and Monte
Carlo modeling [18]. However, these methods are often based on experience and lack
mathematical and physical significance. Moreover, only a few studies have been conducted
under uncertainty. In [19], the authors stated that the location uncertainty or error of an
aircraft is a critical issue to ensure safety. A risk domain formulation was incorporated,
and the collision avoidance problem was solved by a sampling-based method [19] and the
reinforcement learning method [20].

Reachability analysis [21] presents a powerful tool for providing safety and goal satis-
faction guarantees to safety-critical autonomous systems under bounded disturbances. A
backward reachable set was computed numerically by solving Hamilton–Jacobi (HJ) partial
differential equations (PDEs) [22]. As a tool to solve the optimal control problem, HJ reacha-
bility has been applied to several vehicle-related scenarios such as automated vehicles [23],
maneuver sequence design [24], aircraft autolander [25], and aerial refueling [26]. In the
realm of UTM research, Chen proposed an operation model for platoons of unmanned
aerial vehicles flying on air highways [27]. In this work, each vehicle was modeled as a
hybrid system, and the reachability analysis method was utilized to guarantee the safety
and goal satisfaction for all mode transitions. Moreover, the uncertainty problem could be
addressed with probabilistic reachability analysis by formulating a stochastic continuous
system and solving the related stochastic differential equation (SDE) [28]. When consider-
ing an uncertain environment, a Brownian motion process was added to the deterministic
process [29], so that probability-based safety could be calculated with numerical approaches.
In [30], considering the uncertainties and randomness introduced by wind perturbations in
the aerial refueling process, probabilistic reachability was introduced to solve the docking
risk evaluation problem through computing the docking success probability.

The benefit of reachability analysis is that the method provides a mathematical proof
and calculation of a set (called a “reachable set”) where all states within it could reach or
avoid another set of states (called a “target set”) in a specified time horizon with appropriate
inputs despite any disturbances. Different from Monte Carlo simulations, reachability
analysis considers all the possible states [22].

1.3. Motivation

Considering the fact that few methods have been applied to address the separation
problem in uncertain integrated airspace, in this work, the reachability analysis method
was studied. The motivation of this work was to calculate the safe distance between the
aircraft by computing the reachable set, given the dynamic characteristics of an MAV and a
UAV. By analyzing the computed results of reachable sets in different scenarios, the safe
separation distances and the minimum LOS resolution time were concluded. A mid-air
collision can be avoided if the separation distance is guaranteed. First, the related dynamic
equations of an MAV and a UAV are given, and the problem formulation is derived. Then,



Drones 2024, 8, 278 3 of 21

the improved procedure of reachability analysis is introduced, and the target set and
unsafe set are illustrated according to the integrated operation scenario. Then, a case study
in integrated airspace of three different scenarios including deterministic and stochastic
situations is conducted. Based on the calculation results, quantity analysis is conducted,
and the minimum safe separation is obtained. Finally, the discussion section explains the
results from both a mathematical and physical perspective.

Our contributions are summarized as follows:

• Differing from collision avoidance path planning methods, this work calculated the
minimum safe separation for the integrated operation of manned and unmanned
aerial vehicles from the perspective of reachability analysis.

• In the reachability analysis, this work considered uncertainties in the relative position
and relative heading angle, computing probabilistic reachable tubes by calculating the
expectation of the value function for different probabilities.

• By calculating the envelope boundaries under heading angles, this work determined
the minimum safe separation and analyzed the results from both mathematical and
physical perspectives.

The reminder of this paper is organized as follows: Section 2 presents the problem
formulation of this work, including the research objective, reachability analysis formulation,
and continuous dynamic systems modeling. Section 3 presents the solution method of the
problem formulation, especially the stochastic reachability computing method. In Section 4,
the numerical simulation and deep analysis are presented, including the quantitative
results of three different scenarios; then, a discussion of the quantified results is presented
in Section 5. Finally, Section 6 concludes the paper and sketches out potential directions for
future work.

2. Problem Formulation
2.1. Problem Statement

This paper focuses on the problem setting where an MAV and UAV are cruising in mid-
air with the intent to avoid conflict between them. As a problem of flight safety guarantee,
this work formulated the relative position of the two aircraft as a differential equation.
The aircraft’s positions were determined by its state and action, and the relative distance
was determined by their time-variant coordinates. Depending on whether uncertainties
are taken into account, the relative differential equations take the form of an ordinary
differential equation (ODE) or an SDE, namely,

ẋ = f (t, x, u), x ∈ Rn (1)

or
ẋ = f (t, x, u) + σ(x(t), t)dB(t), x ∈ Rn (2)

where x and u are the state and input of the system, respectively. B(t) is a Brownian motion
process of appropriate dimension. The drift term f and the diffusion term σ(x(t), t)dB(t)
represent the deterministic component and the probabilistic component of the system
evolution, respectively. The objective of the problem is to ensure a safe separation and
relative minimum LOS resolution time between the MAV and UAV, in order to avoid a
loss-of-separation (LOS) event, namely,

∃t ∈ [0, T], ∥xMt − xUt∥ ⩽ DMU (3)

where T denotes the interest time period, and xMt and xUt are the locations of the MAV and
UAV at time t, respectively. DMU is the minimum separation of the two aircraft to ensure
safety [19].

To achieve this goal, a set of states needs to be calculated in which at least one LOS
event would occur no matter what action the UAV took to avoid the unsafe situation.
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2.2. Reachability Analysis Formulation

Reachability analysis has been studied since the 1990s. As introduced above, based on
the characteristics of dynamic system and optimal control theory, it has been successfully
applied in the safety assessment problem of vehicles. In reachability analysis, the most
commonly used approach is backward reachable set calculation [22]. In this work, a
backward reachable set is defined as a set that satisfies

B(t) = {x ∈ Rn : ∃uM ∈ UM(t), ∀uU ∈ UU(t), ζ(0; x, t, uU , uM) ∈ D(t)} (4)

where UM(t) and UU(t) denote the feasible set of strategies for an MAV and a UAV, re-
spectively. ζ(s; x, t, uU , uM) are the trajectories of the relative dynamic equation starting
from state x at time t to state at time s under control uU and uM, in which t ∈ [T, 0].
D(t) represents the unsafe set of states, called the “target set”, which should be achieved
or avoided.

Intuitively, a backward reachable set is the set of states from which the system can
reach a target at exactly time 0, while a backward reachable tube represents the set of states
from which the system can reach or avoid a target within a duration of |t| [31]. Therefore,
in this case, rather than a backward reachable set, the backward reachable tube merits
further consideration, because the unsafe set should be avoided at all times during the
flight period. A backward reachable tube can be defined as

T (t) = {x ∈ Rn : ∃uM ∈ UM(t), ∀uU ∈ UU(t), ∃s ∈ [T, 0], ζ(s; x, t, uU , uM) ∈ D(t)} (5)

which means regardless of the UAV’s maneuvers, there is always at least one scenario in
which an LOS event would occur.

As shown in Figure 1, trajectories originating from states inside the backward reachable
set may cross the target set within the time horizon, while the state at the exact time 0 is
located outside the target set. So, according to the definitions, the desired set, in this work
called the “safe tube”, can be denoted as D(t) = ∁RnT (t).

Figure 1. Illustration of a target set, a backward reachable set, and a backward reachable tube.

2.3. Continuous Dynamic Systems Formulation

In this work, to simplify the problem, it is assumed that the MAV and UAV are flying
within a layered airspace structure [32], as shown in Figure 2. The airspace is divided
into several parts with each part having a constant altitude; hence, the flight height of the
aircraft does not change during the cruising period.

The following two-dimensional kinematic model was used to characterize the dynamic
properties of the two aircraft [19].

ẋi = vi · cos(ψi)
ẏi = vi · sin(ψi)
ψ̇i = aψi

i = M, U (6)
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in which vU and vM are the velocities of the UAV and MAV, respectively, and are considered
as constants in this work. ψU and ψM denote the two aircrafts’ headings and are driven by
angular velocities aψU and aψM .

Figure 2. A concept of layered airspace in a low-altitude urban environment.

As shown in Figure 3, the velocities and positions of the UAV and MAV are defined
within their respective body frames. Similarly, their relative positions include distances in
two directions as well as the heading difference. Without loss of generality, by setting the
origin of the relative position coordinate system at the center of the UAV and aligning the
x-axis direction with the velocity direction of the UAV, the relative position relationship
between the two aircraft can be solved in a rotating coordinate system. The relative dynamic
equations are  ẋr

ẏr
ψ̇r

 =

aψU yr − vU + vM cos ψr
−aψU xr + vM sin ψr

aψM − aψU

 (7)

in which xr, yr, and ψr denote the relative position and heading, respectively, as illustrated
in the figure. The proof of Equation (7) can be found in [33], which utilized the knowledge
of Lie algebra in SE(2).

Figure 3. Illustration of the relative position of a UAV and an MAV.
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3. Solution Methods

In this section, the level-set method is introduced to solve the reachability problem,
starting with the analysis of deterministic scenarios, and then, incorporating uncertainty
factors to analyze stochastic scenarios.

3.1. Level-Set Method

Level-set methods are a collection of numerical algorithms for solving a particular
class of partial differential equations. Questions of reachability for continuous and hy-
brid systems can be formulated as optimal control or game theory problems. The safety
separation problem addressed in this paper could be formulated as a differential game.
Equation (1) can be rewritten in the following Isaacs partial differential equation form:

ẋ = f (t, x, uU , uM), x ∈ Rn (8)

Fromthe perspective of the UAV, it is necessary to consider the worst-case scenario,
where the actions of the UAV drive it away from the set of unsafe states, while the actions
of the MAV drive the UAV towards the set of unsafe states. So in Equation (8), the input
uU is considered as the control keeping the system safe, and the input uM consists of
disturbances, which are trying to make the system unsafe.

As has been proved in Figure 1, the viscosity solutions of the Hamilton–Jacobi partial
differential equation (HJPDE) can be linked to the results of the reachability problem.
Computation of the backwards reachable set or tube is normally encoded as a terminal-
value HJPDE [34]. The level-set method assumes that the avoid set T (t) for the reachability
problem is closed and can be represented as the zero sub-level set of a bounded and
Lipschitz continuous function l : Rn → R:

T (t) = {x : l(x) ≤ 0} (9)

Therefore, to solve the backward reachable tube problem in Equation (5), it is necessary
to solve the following:

max
uU∈UU(t)

min
uM∈UM(t)

min
t∈[T,0]

l(x(t)) s.t

ẋ = f (t, x, uU , uM)

T (t) = {x : l(x) ≤ 0}

(10)

The max and min in Equation (10) refer to the optimization operation on the Lipschitz
continuous function l, because from the perspective of the UAV, it is desirable for l(x) to
be as large as possible so that fewer x satisfy l(x) < 0. Conversely, from the perspective
of the MAV in the worst situation, it is desirable for l(x) to be as small as possible so that
more x will satisfy l(x) < 0. The evolution of the backwards reachable set is accomplished
by solving

∂

∂t
ϕ(x, t) + min

[
0, H

(
x,

d
dx

ϕ(x, t)
)]

= 0 (11)

where ϕ(x, t) is an implicit surface representation of the finite time backwards reachable
set with a terminal condition

ϕ(x(0), 0) = l(x(0)) (12)

H denotes the Hamiltonian, where

H(x, p) = max
uU∈UU(t)

min
uM∈UM(t)

pT f (t, x, uU , uM) (13)

and
pT = ∇ϕ(x, t) (14)

The solution approach was proven in [35].
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3.2. Deterministic Backward Reachable Analysis

First, the simplified scenario without uncertainty was considered, and the relative
backward reachable tube was computed. The relative location between the two aircraft
was formulated as a deterministic equation in Equation (7).

3.2.1. Target Set

The target set in reachability analysis represents the terminal situation l(x(0), 0) in
solving the HJPDE. In this case, the target set denotes the unsafe set when an LOS would
occur. As described in Equation (3), the target set can be defined as

D(t) = {X :
√
(x2

r + y2
r ) ≤ DMU for ∀ψr} (15)

3.2.2. Hamiltonian Function Calculation

Based on Equations (3) and (13), the Hamiltonian function can be derived. Let x1 = xr,
x2 = yr, x3 = ψr, and uU = aψU , uM = aψM ; then, it can be obtained as below:

H(x, p) = max
uU∈UU(t)

min
uM∈UM(t)

pT f (t, x, uU , uM)

= max
aψU∈UU(t)

min
aψM∈UM(t)

(−p1vu + p1vM cos ψr + p2vM sin ψr+

p1aψU yr − p2aψU xr + p3aψM − p3aψU )

= −p1vu + p1vM cos ψr + p2vM sin ψr+

aψU max|p1yr − p2xr − p3| − aψM max|p3|

(16)

in which the subscript max represents the upper bound of the angular velocities of the two aircraft.

3.2.3. Algorithm Steps

The HJPDE in the form of Equation (11) can be solved using the level-set toolbox de-
veloped by Mitchell [34]. The Initial-State-Constrained Backward Reachable Tube (ISCBRT)
algorithm proposed in this work aims to terminate the computing procedure when the
bound of the backward reachable tube arrives at the given initial relative state. Based on
the toolbox, the pseudocode of the algorithm is shown below.

The output of Algorithm 1 is the backward reachable tube T (t) and the maximum
2-norm value of distance max ||D||2. T (t) represents the unsafe set of states in which there
is a possibility for an LOS event to happen in specific circumstances. T (t) represents the
minimum safe time for the UAV to escape the LOS event, and the safe terminal time Tsa f e
represents the minimum response time of the UAV. So, if the minimum responding time of
the UAV is given, the safe separation distance can be determined by repeating Algorithm 1.

Algorithm 1 Calculate the safe LOS resolution time based on the ISCBRT

Input: Initial relative state X0, Unsafe set D(t), Safe terminal time Tsa f e
1: Set the computing state space S , grid size N, and time step size ∆t
2: Set the relative Hamiltonian function H(x, p) and partial function αi(x) = max

p
| ∂H(p)

∂pi
|

for HJPDE computing.
3: T (t) = D(t), t = 0, i = 0
4: while X0 ̸∈ T (t) or H(x, p) ̸= 0 and t < Tsa f e do
5: Solve the HJPDE (11) at the backward computation time t+ = −i × ∆t
6: Let x = 0 to obtain T (t) = ϕ(0, t)
7: Let i+ = 1
8: end while
9: Calculate the slice isosurfaces of the specific dimensions.

10: Calculate the maximum 2-norm value of distance max ||D||2 among all the isosurfaces.
Output: Backward reachable tube T (t), maximum 2-norm value of distance max ||D||2.
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3.3. Stochastic Backward Reachable Analysis with Location Uncertainty
3.3.1. Solution of the Probabilistic Backwards Reachable Tube

Consider a controlled stochastic process in the form of (2), and let ρ ∈ [0, 1] and t ≤ T.
Then, the backwards reachable tube under the probability of success ρ can be denoted
as [36]

T (t)ρ = {x ∈ Rn : ∃uM ∈ UM(t), ∀uU ∈ UU(t), ∃s ∈ [T, 0],P[ζ(s; x, t, uU , uM) ∈ D(t)] > ρ} (17)

For the initial condition states in T (t)ρ, the probability that there exists at least one
trajectory that reaches set D(t) during the time horizon |t| is ρ. To solve the probability
problem, the expectation should be computed rather than being an implicit surface in a
particular situation. The expected pay-off is optimized over all possible further realizations
of the Wiener process [37]:

ϕ(x, t) = E

[
sup
uU

inf
uM

ϕ(x + ∆ f (x, uU , uM) + ξ, t + ∆t)

]
(18)

In Equation (18), ξ represents a process with Gaussian distribution. Figure 4 illustrates
a 10-s standard Brownian process with a standard deviation σ =

√
∆t.

Figure 4. An illustration of a Brownian process.

The stochastic differential game in the form of (2) can be interpreted in Itô’s sense [28].

ϕ(x + ∆ f (x, uU , uM) + ξ, t + ∆t) ≈
ϕ(x, t) + ϕt(x, t)∆t + ϕx(x, t)∆x+
1
2

(
ϕxx(x, t)∆x2 + ϕtt(x, t)∆t2 + 2ϕxt(x, t)∆x∆t

)
+

O(∆3)

(19)
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Let ϕ(x, t) be the viscosity solution of the stochastic HJPDE, it can be obtained that

∂

∂t
ϕ(x, t) + min

[
0, H

(
x,

d
dx

ϕ(x, t)
)]

+
1
2

Tr
[

σ(x, t)σT(x, t)
d2

dx2 ϕ(x, t)
]
= 0 (20)

3.3.2. Indicator Function Design

In the solution of a probabilistic backwards reachable tube problem, the signed distance
function rather than a zero-level contour of the value function 1D [36] is utilized, because
the maximum objective of the probability is 1. In the context of the avoidance problem,
the aim of the solution is to drive the system away from the unsafe set. So, the terminal
condition of the LS function is then equal to zero for all states that are inside the initial set
D , and all other states are equal to one, as shown in Equation (21).

1D(x) =
{

0 x ∈ D := Distance(x) ≥ 0
1 x ̸∈ D := Distance(x) < 0

(21)

The term “distance” denotes the signed distance from the unsafe target. As in Ref. [38],
to overcome the difficulty cased by the discontinuity of the indicator functions when solving
the viscosity solutions of HJPDE, a regularized version of 1D(x) is considered.

1DR(x) = min(1, max(0,
1
ϵ

Distance(x) ≥ 0)) (22)

Usually, the smoothing factor ϵ is set related to the grid size of the state space. The
origin and regularization of the indicator function are shown in Figure 5a,b, respectively.

(a) (b)

Figure 5. Indicator function. (a) Original indicator function. (b) Regularized indicator function.

Combining the values defined in Equations (18) and (22), the probability backwards
reachable tube can be approximated by solving Equation (20) in the form of the HJPDE.
The errors in approximation were studied in [36].

4. Numerical Simulation Results

In this section, the numerical simulations of the deterministic and stochastic backward
reachable tube are described, and the results are discussed.

4.1. Simulation Settings

As discussed in the above section, the key to solving the backward reachable tube
problem and implementing the ISCBRT algorithm lies in solving the HJPDE using the
level-set method. The simulations analyzed herein were conducted with the level-set
method toolbox developed by Mitchell [28]. The correctness and flexibility of the toolbox
has been proven in several research works. The main parameters in the level-set method
toolbox include the grid structure, estimation time horizon, dynamic system constraints,
and the related Hamilton function.
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The research objective of this paper is to use Equation (8) for the deterministic envi-
ronment and Equation (2) for the stochastic environment. The simulation parameters of
the dynamic system are shown in Table 1.

Table 1. Settings of the dynamic system parameters in the simulation.

Parameter Description Value

DMU Radius of LOS event 5 m
VU Constant velocity of UAV 5 m/s
VM Constant velocity of MAV 20 m/s

UU(t) Bound of UAV angular velocity 2 rad/s2

UM(t) Bound of MAV angular velocity 1 rad/s2

In Table 1, the flight dynamic differences between the UAV and MAV are considered.
The UAV exhibits greater agility but slower speed, whereas the MAV possesses higher
velocity but inferior agility. Note that for an MAV flying at a low altitude, especially
emerging vehicles such as electric vertical takeoff and landing aircraft (eVTOL), 20 m/s
could be a reasonable speed.

4.2. Deterministic Backward Reachable Analysis

The deterministic backward reachable tube was computed based on the parameters
in Table 1. In this case, the state space was set as R3 = [−40, 40]× [−40, 40]× [0, 2π], in
which ψr is a periodic dimension. The grid size was set to be δx = [0.3, 0.3, 0.06] in three
dimensions. According to the ISCBRT algorithm described in Section 3.2.3, the simulation
time horizon was set to be 3 s, as the term ∂

∂t ϕ(x, t) tends to be 0 as the simulation time
increases. The computation result is shown in Figure 6. The simulations were conducted
using Matlab R2020b with an Intel i5-13500H CPU @ 2.60 GHz and 32 GB RAM on a
Windows 11 operating system.

Figure 6. The result of the deterministic backwards reachable tube.

In Figure 6, the red part denotes the backward reachable tube, and the green part
represents the unsafe set in which an LOS event may occur. This implies that if the
initial relative states of the two aircraft are within this red isosurface, there is a potential
for entering an unsafe set within the estimated 3-s time horizon. The two-dimensional
projections of the isosurface in the x − ψr and y − ψr directions are shown in Figure 7.
It should be noted that the green part, which denotes the unsafe part, is not drawn in
the projection.
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(a) (b)

Figure 7. Two-dimensional projection of the isosurface in deterministic scenarios. (a) 2D projection of
the isosurface in the x − ψr directions. (b) 2D projection of the isosurface in the y − ψr directions.

4.2.1. Influences of the Heading Angle

It is noted that the tube differs depending on the initial heading angle. Figure 8a–d
illustrate the slices of the heading angles of 0, 90◦, 180◦, and 270◦. It can be seen that the
tubes are extended from the unsafe set, and the extent is in the opposite direction to the
initial heading angle. For example, in Figure 8a, the backwards reachable tube is extended
in the negative x direction, which means that when two aircraft are heading in the same
direction, if the UAV is in front of the manned aircraft (xr < 0), it is very likely to enter an
unsafe set.

(a) (b)

(c) (d)

Figure 8. Slices of the deterministic backwards reachable tube at different heading angles. (a) ψr = 0.
(b) ψr = 90◦. (c) ψr = 180◦. (d) ψr = 270◦.
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In the numerical computation, limited by the precision of the grid division, not every
heading angle can obtain a closed slice surface. Figure 9 presents closed slice surfaces for
all valid heading angles within the range of 0 to 360◦.

Figure 9. The results of the deterministic backwards reachable tube.

It can be observed that the slices of the backwards reachable tube rotate rotate as
the heading angle turns. To determine the safety separation of the MAV and UAV, the
maximum safety distances of each heading angle are calculated, that is, the maximum
2-norm value of the slice surface boundaries. The minimum safety distances related to the
heading angles are shown in Figure 10.

Figure 10. Sensitivity of the minimum safety distance to the effect of the heading angle.

The maximum unsafe distances varied with the heading angles. The largest value
was obtained at ψr = 180◦, with a value of Dmin = max Ds = 26.7 m. This implies that the
worst-case scenario would be two aircraft flying towards each other. The safety separation
should be beyond the maximum unsafe distances among all the heading angles; so, it
can be concluded that the safety separation is 26.7 m given the minimum response time
Tsa f e = 3.0 s.
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4.2.2. Influences of the Safe Time

Under the premise of the research conclusions from the previous section, the effect of
the minimum response time on the minimum safe distance was determined. By repeating
the computing process in Section 4.2.1, the quantitative relationship was concluded, as
shown in Figure 11.

Figure 11. Sensitivity of the minimum safety distance to the effect of the minimum safe time.

The conclusions in Figure 11 clearly prove that, as the response speed increases, the
minimum safe distance or separation between the two aircraft continues to decrease.

4.3. Stochastic Backward Reachable Analysis

In this section, the uncertainty of the positions and heading angles of the MAV is
discussed. Whether in centralized or decentralized air traffic management systems [39],
there is always uncertainty in the situational awareness of a UAV relative to an MAV. For
example, in a centralized scenario, errors might stem from system latency, while in the
decentralized scenario, errors could originate from onboard sensors.

4.3.1. Analysis with Position Uncertainty

It is assumed in this work that the related position in the x and y directions follows a
Gaussian distribution. It can be described as

x̃r(t) = xr(t) + ∆xr(t)

ỹr(t) = yr(t) + ∆yr(t)
(23)

in which ∆xr(t) ∼ N (0, σ2
x(xr, t)), ∆yr(t) ∼ N (0, σ2

y (yr, t)). So, combined with Equation (7),
Equation (2) can be rewritten as Equation (24). ẋr

ẏr
ψ̇r

 =

aψU yr − vU + vM cos ψr
−aψU xr + vM sin ψr

aψM − aψU

+

σx(xr, t)
σy(yr, t)

0

dB(t) (24)

The simulation parameters were set, as shown below in Table 2, while the dynamic
system parameters were the same as those in Table 1. The indicator function was designed
as in Equation (22), and the smoothing parameters were ϵ = 1

δx , in which δx denotes the
grid size of the x dimension.
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Table 2. Settings of the uncertain parameters in the simulation.

Parameter Value

σx(xr, t) 1 m/
√

s
σy(yr, t) 1 m/

√
s

The probability of the backwards reachable tube of P = 0.6 is shown in Figure 12.
The isosurfaces indicate that, starting from the initial states within this set, there is a 0.8
probability of inevitably entering the unsafe state set within 1 s. However, it should be
noted that, unlike the results under deterministic scenarios, initial states outside of this set
may also have the potential to enter the unsafe set.

Figure 12. The result of the stochastic backwards reachable tube with position uncertainty when
P = 0.8.

Similarly, the 2D projections of the isosurface in the x − ψr and y − ψr directions are
shown in Figure 13.

(a) (b)

Figure 13. Two-dimensional projection of the isosurface with position uncertainty. (a) 2D projection
of the isosurface in the x − ψr directions. (b) 2D projection of the isosurface in the y − ψr directions.
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It can be seen that compared to the deterministic scenarios, the shape of the backwards
reachable tube under uncertain conditions is more curved and narrow. Moreover, the extent
of its influence is broader, due to the positional uncertainties that increase the likelihood
of the tube extending in various directions. Therefore, to conduct the computation in the
limited state space, the simulation time was limited to 1 s, which was less than that in the
deterministic backward reachable analysis.

Figure 14a–d show the slices with different probabilities of different heading angles.
In [20], the risk domain at the risk level α of a random variable X was defined as a set
D ∈ Rd that satisfies

Pr(X ∈ D) ≥ 1 − α (25)

Therefore, in Figure 14a–d, the risk domain is inside the enclosed area. As the level
of risk increases, the area enclosed by the tube’s envelope decreases. In the numerical
computations, the value of the value function was obtained by summing the deterministic
part represented by the first two terms with the probabilistic part represented by the third
term in Equation (20). So, the impact of the probability on the envelope was primarily
derived from the third term.

(a) (b)

(c) (d)

Figure 14. Slices of the stochastic backwards reachable tube with different probabilities of the relative
position. (a) ψr = 0. (b) ψr = 90◦. (c) ψr = 180◦. (d) ψr = 270◦.

The minimum safe distances of different risk levels related to the position uncertainty
are shown in Figure 15. It can be concluded that the minimum safe separation increases
with the increase in the risk level. Specifically, the largest safe separation is 30.0 m given
the minimum response time Tsa f e = 1.0 s under a risk level of α = 0.1.
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Figure 15. Sensitivity of the minimum safety distance to the effect of the heading angle under
position uncertainties.

4.3.2. Analysis with Heading Angle Uncertainty

In this section, the relative heading angle ψr follows a Gaussian distribution. It can be
described as  ẋr

ẏr
ψ̇r

 =

aψU yr − vU + vM cos ψr
−aψU xr + vM sin ψr

aψM − aψU

+

 0
0

σψr (xr, t)

dB(t) (26)

In this simulation, the standard variance in the relative angle was set as
σψr = 0.3 rad/

√
s. The result of the stochastic backwards reachable tube with a prob-

ability of P = 0.8 is given below in Figure 16, and the projection figures are given in
Figure 17a,b.

Figure 16. The result of the stochastic backwards reachable tube with heading angle uncertainty
when P = 0.8.
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(a) (b)

Figure 17. Two-dimensional projection of the isosurface with heading angle uncertainty. (a) 2D
projection of the isosurface in the x − ψr directions. (b) 2D projection of the isosurface in the
y − ψr directions.

Similarly, the envelope of the tube varied with the initial relative heading angles. The
slices of the tube with different risk levels are shown in Figure 18a–d.

(a) (b)

(c) (d)

Figure 18. Slices of the stochastic backwards reachable tube with different probabilities of relative
heading angles. (a) ψr = 0. (b) ψr = 90◦. (c) ψr = 180◦. (d) ψr = 270◦.
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It can be observed that the overall shape of the result tube is consistent, and the
trend of expansion is similar to that discussed in the previous section. As the level of risk
increases, the envelope of the set continues to expand. This is because the influence of the
uncertain terms is relatively minor compared to the deterministic terms.

The minimum safe distances of different risk levels related to the heading angle
uncertainty are shown in Figure 19. In this scenario, the minimum safe separation between
two aircraft also occurs when the relative heading angle is 180◦. When the risk level is at its
minimum of α = 0.1, the minimum separation is 29.7 m.

Figure 19. Sensitivity of the minimum safety distance to the effect of the heading angle under heading
angle uncertainty.

5. Discussion and Future Work
5.1. Discussion

Based on the results obtained from the numerical computations described in the
previous section, a comparison can be made between the minimum separations under
deterministic and uncertain scenarios, as shown in Table 3. The data for the deterministic
scenario were extracted from Figure 11.

Table 3. Comparison of the minimum safety separation in deterministic and uncertain scenarios,
given the response time of 1 s.

Scenario Minimum Safety Separation

Deterministic 16.1 m
σx = σx = 1 m/

√
s, α = 0.1 30.0 m

σx = σx = 1 m/
√

s, α = 0.2 28.8 m
σx = σx = 1 m/

√
s, α = 0.3 28.1 m

σx = σx = 1 m/
√

s, α = 0.4 27.4 m
σψr = 0.3 rad/

√
s, α = 0.1 29.7 m

σψr = 0.3 rad/
√

s, α = 0.2 28.4 m
σψr = 0.3 rad/

√
s, α = 0.3 27.5 m

σψr = 0.3 rad/
√

s, α = 0.4 26.7 m

The consideration of uncertainty increases the minimum separation because measure-
ment errors in the position or heading angle can potentially lead to initial states that are
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not within the unsafe set, guiding the two aircraft into a unsafe set. From the results, the
overall trends across the three scenarios are similar, with the differences in details being
less than 10%.

From the perspective of mathematics, the computation of the uncertainty reachable
tube consists of two parts: the calculation of the drift term and the diffusion term, which
represents the deterministic component; and the probabilistic component of the system’s
evolution, respectively. Since the deterministic equations are the same, the drift terms
across the three scenarios are identical, resulting in similar shapes of the reachable sets. The
differences are primarily determined by the diffusion terms, which are solutions based on
Gaussian distributions; thus, different probabilities lead to disparities in the outcomes.

From a physical perspective, as airborne sensors advance, the errors in the distance and
heading angle become less significant compared to the deterministic kinetic characteristics
of the two aircraft; hence, they do not exert a substantial impact on the overall trend.

Furthermore, it is important to note that this study is based on the worst-case scenario
from the perspective of a UAV, which is assumed to avoid unsafe events as much as
possible, whereas the opposite MAV is considered to have a tendency towards unsafe
events. However, in actual operations, the interaction between two aircraft is not a zero-
sum game. Based on situational awareness, all participants in air traffic will strive to
prevent mid-air conflicts. Therefore, the results of this study are conservative.

5.2. Limitations and Future Work

Considering that this research was entirely based on numerical simulations, as future
work, a hardware-based [40] actual flight test could be conducted to validate the conclusions
of this work. Another limitation of this work is that both obstacles and wind are valid
disruptions in manned and unmanned aircraft scenarios. In the future, obstacles and
wind will be incorporated as certain or stochastic disturbance terms in the HJPDE into the
reachability analysis and separation estimation research.

6. Conclusions

In this study, the problem of calculating the reachable tube of unsafe events during the
integrated operation of an MAV and a UAV was established as an optimization problem of
the viscosity solutions of the HJPDE. Then, a backward calculation based on the Hamilton–
Jacobi partial differential equation was derived to obtain the initial unsafe set that the UAV
needs to avoid, given the response events and unsafe sets. In addition, the level-set method
was utilized to solve the value function of the optimal problem.

Secondly, the problem of calculating the initial unsafe set under both deterministic
and uncertain scenarios was considered. Specifically, in uncertain scenarios, the relative
positions and relative heading angles of the two aircraft were modeled using a Brownian
model or a Gaussian distribution model, respectively. By computing the expectation of the
value function in the form of an HJPDE, the unsafe envelopes for a specific risk level were
obtained. Therefore, a conservatively biased minimum separation distance was obtained,
leading to the quantification of the safety risk assessment results. The result shows that
with the increase in the risk level, the minimum safe separation increases.

Finally, the calculation results under different uncertainties and risk levels were dis-
cussed, explaining the rationality and similarity of the backward reachable set from both
mathematical and physical perspectives. The next steps of this work primarily include
considering the calculation of the minimum separation distance for the integrated operation
of manned and unmanned aerial vehicles in cooperative scenarios, as well as the design of
UAV maneuver control laws under different risk levels.



Drones 2024, 8, 278 20 of 21

Author Contributions: M.W.: methodology, software, writing—original draft preparation, visualiza-
tion; R.L.: project administration, funding acquisition, supervision, writing—review and editing; S.T.:
methodology, writing—original draft, funding acquisition. All authors have read and agreed to the
published version of the manuscript.

Funding: The work was supported by the Research Foundation for Youth Scholars of Civil Aviation
Management Institute of China (Grant Number: KYXM20246706CW) and Civil Aviation Administra-
tion of China Safety Capacity Building Project (Grant Number: [2023]140 and [2023]133).

Data Availability Statement: The data will be provided by the authors under request.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

HJPDE Hamilton–Jacobi partial differential equation
ISCBRT Initial-State-Constrained Backward Reachable Tube
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