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Abstract: The spread of natural fires is a complex issue, as its mathematical modeling needs to
consider many parameters. Therefore, the results of such modeling always need to be validated by
comparison with experimental measurements under real-world conditions. Remote sensing with
the support of satellite or aerial sensors has long been used for this purpose. In this article, we
focused on data collection with an unmanned aerial vehicle (UAV), which was used both for creating
a digital surface model and for dynamic monitoring of the spread of controlled grassland fires in the
visible spectrum. We subsequently tested the impact of various processing settings on the accuracy
of the digital elevation model (DEM) and orthophotos, which are commonly used as a basis for
analyzing fire spread. For the DEM generated from images taken during the final flight after the
fire, deviations did not exceed 0.1 m compared to the reference model from LiDAR. Scale errors in
the model with only approximal WGS84 exterior orientation parameters did not exceed a relative
accuracy of 1:500, and possible deformations of the DEM up to 0.5 m in height had a minimal impact
on determining the rate of fire spread, even with oblique images taken at an angle of 45◦. The results
of the experiments highlight the advantages of using low-cost SfM photogrammetry and provide an
overview of potential issues encountered in measuring and performing photogrammetric processing
of fire spread.

Keywords: photogrammetry; fire spread; unmanned aerial vehicle; structure from motion

1. Introduction

With the increasing frequency of prolonged droughts, wildfires in the wild pose a
threat to people, animals, property, and the environment. This is a global problem that
we will increasingly encounter due to climate change [1–3]. Knowledge of the spread of
fires in different environments can, therefore, be helpful, especially for rescue teams and
firefighters, who can adjust their operational scenarios based on them [4]. As natural fires
begin to occur in areas where they did not previously exist [5], it is appropriate to analyze
fire behavior through mathematical modeling, which should consider as many aspects of
this complex issue as possible. Among the most fundamental factors influencing the rate
of fire spread are fuel flammability and wind strength, but one should not forget about
its direction in combination with the terrain slope [6,7]. Mathematical models of natural
fires can be broadly divided into two groups: physical models, based, for example, on fluid
dynamics modeling, and empirical models, which try to simplify the time complexity of
physical models by using empirical laws of fire development [8]. In the last two decades,
various approaches have been taken to model fires, whether based on Bayesian modeling
principles [9], logistic regression [10], fuzzy systems [11], or maximum entropy [12].
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Empirical models can be developed and validated based on data obtained through
remote sensing techniques, occasionally including ground-based photogrammetry. In the
case of extensive fires, satellite sensors are mainly utilized [13], but when higher resolutions
are required, multispectral sensors on aircraft [14,15] or unmanned aerial vehicles (UAVs)
can also be employed [16,17]. The main advantage of UAVs is their high variability of
solutions, freedom of camera positions and orientations relative to the fire, lower costs
compared to manned aircraft, higher level of detail, and overall safety in monitoring the
progress or aftermath of natural disasters [18]. Disadvantages include the risk of collision
with low-flying aircraft, which may be involved, for example, in firefighting, and a short
flight time, often limited to a maximum of 45 min [19]. Image data from UAVs have also
been used in the empirical modeling of fire spread using the “by evolving surface curve”
approach [20,21], but the publications have only addressed the mathematical aspect of the
problem and not the collection and processing of underlying data, which brings several
challenges, especially for large image blocks.

If images from UAVs are to be utilized for validating mathematical models, they
need to be processed photogrammetrically. The processing method strongly depends on
the type of collected data and the camera network configuration. If only monoscopic
images are available, they must be accurately georeferenced, and a digital terrain model
must be available for the ortorectification of images and for correcting the position of
the fire front extracted from them [22]. Stereoscopic recordings from at least two known
camera positions do not require primary terrain knowledge; the entire 3D reconstruction
of the environment and the fire can be performed directly from a fixed pair of stereo
cameras [23], but the accuracy of 3D processing significantly decreases with increasing
distance from the measured object [24]. A system of multiple UAVs flying in designated
formations can provide greater rigidity to the entire camera network [19]. Since the visible
spectrum may be compromised, for example, by smoke obscuring the view of the fire front,
existing approaches often rely on the use of specialized UAV systems developed specifically
for this purpose, which include infrared sensors (thermal imaging) [25,26]. In terms of
georeferencing, it is advantageous if these systems are equipped with real-time kinematic
(RTK) or post-processing kinematic (PPK) technology [27] to avoid relying on ground
control points (GCPs) during measurement, which are generally difficult to measure during
a fire [28,29]. However, due to the high specificity of these systems, it is unclear as to what
extent more affordable UAVs, especially those without thermal imaging, can be used in
measuring fire development.

Images captured in the visible spectrum can be effectively processed using computer
vision techniques supported by Structure from Motion (SfM) and Multi-View Stereo (MVS)
to create a relatively accurate and detailed point cloud. The origins of SfM can be traced
back to more than 40 years ago [30], but its usage was boosted when the Scale Invariant
Feature Transform (SIFT) [31] was proposed to fully automate the image matching part
of SfM. In the last years, new approaches based on deep-learning have extended the ca-
pability of SIFT-like detectors and descriptors to be significantly more robust to extreme
illumination changes, difficult radiometric changes, and extreme viewpoints [32]. Owing
to the effective combination of these algorithms, it is possible to fully automatically orient
images, even from non-metric cameras [33]. There is various photogrammetric software
available on the market that utilize different SfM strategies—incremental [34], hierarchi-
cal [35], and global [36]. Some of the most well-known software includes Metashape
Professional by Agisoft LLC (St. Petersburg, Russia,) (agisoft.com, accessed on 20 February
2024), RealityCapture by Capturing Reality (Bratislava, Slovakia) (capturingreality.com,
accessed on 20 February 2024), Pix4Dmapper by Pix4D (Prilly, Switzerland) (pix4d.com,
accessed on 20 February 2024), iTwin Capture Modeler by Bentley Systems (Exton, PA,
United States) (bentley.com, accessed on 20 February 2024), or 3DFZephyr by 3Dflow
(Verona, Italy) (3dflow.net, accessed on 20 February 2024). These software packages always
include advanced MVS algorithms, which allow for the detailed reconstruction of a wide
range of scanned surfaces [37], albeit with varying quality of results [38]. This quality
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can be significantly influenced not only by surface texture but also by available lighting
conditions [39]. The best results with this method are achieved on surfaces with a clear
granular texture, and since MVS algorithms are based on principles of stereo photogram-
metry, the accuracy of 3D reconstruction heavily depends on the baseline ratio. Although
algorithms can reliably identify matches between images with very short baselines, the
intersection angle of the rays determining the depth is too small, and the depth accuracy
significantly deteriorates [40]. Therefore, it is necessary to find a suitable compromise in
the position and orientation of the cameras relative to the surface being scanned during
imaging. Images taken from nearly identical positions can reduce the quality of the result-
ing point clouds due to small intersection angles and, consequently, a low depth reliability.
However, short baselines can also cause the failure of relative image orientation during
bundle adjustment [41]. Small intersection angles can lead to bundle instability, reduce the
reliability of 3D scene reconstruction, or even prevent iterative solution convergence [42,43].

A separate challenge for photogrammetric processing is the multi-epoch analysis of dy-
namic phenomena, such as landslides [44], mining activities [45], and natural disasters [46].
Photogrammetry is primarily used for measuring static objects, and motion typically occurs
only relative to the camera and the scene. When the position or shape of an object within
the scene changes, the method of so-called 4D or time lapse photogrammetry [47,48] needs
to be employed, which requires simultaneous imaging of the scene with two or more
cameras. Essentially, this does not necessarily mean recording a video; what is crucial is
synchronizing image recordings collected at a predefined frequency, such as in time-lapse
or interval shooting mode. In monitoring fires, this approach allows not only for modeling
the spread of burnt ground surface but also for capturing the 3D shape of the flames
themselves [25]. However, UAVs equipped with two cameras are more expensive, so in this
article, we decided to present the possibility of 4D photogrammetric measurement with a
low-cost off-the-shelf UAV equipped with only one camera, which also distinguishes our
study from other works.

In the scientific literature, the term 4D photogrammetry is often mentioned even in
cases where a dynamic phenomenon is not monitored but where two or more epochs are
compared over a certain time interval [49–51]. Simultaneous photogrammetric measure-
ments using a single camera, which serves both for 3D surface modeling and for monitoring
a dynamic phenomenon, present so many challenges that we decided not to focus on the
mathematical modeling of the spread of fire. Instead, we concentrated on the processing,
evaluation, and statistical analysis of a series of images acquired by the UAV in a specific
configuration as part of a case study on mapping the spread of fire. Specific configurations
include both the use and non-use of ground control points during the bundle adjustment of
the camera network, as well as the use of approximate external orientation elements from
UAVs without RTK/PPK systems for georeferencing the image block.

The basic photogrammetric processing that aimed at creating orthophotos necessary
for monitoring fire spread is outlined in Section 3. The analysis of the results and further
tested variants, which suggest the usability of UAVs for SfM processing without GCPs or
RTK/PPK systems, is more detailed in Section 4.

2. Materials and Methods

The measurements were conducted in the Lešt’ area south of the town of Zvolen in
central Slovakia (Figure 1) during a training session of firefighters, who ensured the safety
of the experiment and ignited the fire itself. To prevent the uncontrolled spread of the
grassland fire, a control line was first burned around the specific location (Figure 2).
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Figure 1. Location of the testing site in central Slovakia (left) and details of the meadow used for
the experimental controlled fire in highlighted yellow region with red point corresponding to the
displayed ETRS89 coordinates (right) (source: google.com/maps, accessed on 25 February 2024).
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Figure 2. Burned control line from the eastern side of the specific location—wider view including
numbers of GCPs and a yellow box (left) to which the detailed image from UAV (right) pertains.

The UAV measurement was conducted in March 2019. The day temperature reached
8 ◦C, and the west wind was of variable speed (1–5 m/s). For image data collection, the UAV
DJI Mavic 2 Pro was used with camera parameters listed in Table 1. Since the used UAV
did not have an RTK or PPK system, georeferencing was performed using 8 GCPs (Figure 2,
left), marked with black and white targets, whose coordinates were determined using GNSS
Trimble R6 equipment by the RTN (Real-time Network) measurement method in the SKPOS
observation service with a spatial accuracy of ±0.05 m in the ETRS89 coordinate system,
followed by transformation into the state coordinate system S-JTSK (EPSG: 5514) and the
Bpv height system. We used a relatively high number of GCPs to increase control over
the entire experiment and to ensure the possibility of further testing of photogrammetric
processing. GCPs were not distributed throughout the whole field as we did not plan to
fly the UAV further than 500 m from the takeoff point, located at the southern end of the
location at point 201. The distance limit was also defined in the UAV settings. The flight
altitude was set to the maximum legislatively permitted height of 120 m above ground level.

google.com/maps
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Table 1. Parameters of the Hasselblad L1D-20c camera integrated into the DJI Mavic 2 Pro.

Camera Parameter Value

Image sensor size 13.13 × 8.76 mm
Image sensor resolution 5472 × 3648 pixels

Pixel size 2.4 µm
Focal length 10.26 mm
Shutter type Electronic rolling shutter

Aperture f/2.8 to f/11

The collection of image data consisted of 3 flights, performed manually with an oblique
axis of capture (45◦ from nadir). It is important to emphasize that the priority of the entire
operation was not photogrammetric measurement but firefighter training, in which we
participated as observers and collected experimental data alongside. The simulated fires
initially had difficulty igniting and were started in various locations and grassy areas. There
was not enough time to plan and execute a separate automated flight with nadir images in
multiple strips with predefined overlap in this specific location, and the flight was carried
out manually immediately after placing all the targets. During the first flight, the meadow
was already burning. The following are the details of the 3 flights that were conducted
simultaneously during a single 20-min mission:

• The first flight (Figure 3) was conducted during attempts to ignite the meadow and
waiting for suitable wind conditions—the aim was to create a cohesive block of images
to which images from the subsequent monitoring flight could be later aligned.

• The second flight (Figure 4) monitored the development of the fire itself at an interval
of 2 s between images while the UAV gradually moved along the fireline—the goal
was to automatically align the images with the first flight and to project them onto a
model from the third flight.

• The third flight (Figure 5) was conducted immediately after the fire to map the entire
burned area and create a 3D model of the surface without grassland cover.
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Figure 3. Flight at the beginning of the fire ignition—camera network configuration (left) and an
example of an oblique image (right).

In Figure 3, the image block from the first flight consisted partially of two strips. This
was due to capturing images even during the return to the starting fire, intended to increase
the robustness of the camera network. All three flights were conducted consecutively
without interruption. During this 20 min mission, approximately 8 hectares of grassland
burned. The oblique angle of capture (45◦) was chosen in all cases because it is often
advantageous to capture fires slightly from the side during monitoring, which can partially
eliminate areas obscured by smoke and provide a better overview of the overall situation.
The aim was also to verify the suitability of using only oblique images in generating a
digital surface model, onto which images from the monitoring flight were subsequently
projected. In addition to the primary goal of creating orthophotos for fire spread analysis,
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several other tests were conducted (Section 4), the results of which indicate the potential
use of low-cost UAV systems in this area, even in the absence of GCPs.
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example of an oblique image from the UAV (right).

3. Photogrammetric Processing

The main experiment was photogrammetrically processed using the Structure from
Motion (SfM) principles in Agisoft Metashape Professional software, version 2.1.0, by
Agisoft LLC, St. Petersburg, Russia. For creating orthophotos, the processing procedure
consisted of steps graphically depicted in Figure 6.

During this main photogrammetric processing, ground control points were always
used to ensure increased geometric accuracy of the image blocks. However, aside from
creating orthophotos, we were also interested in the impact of excluding GCPs from the
processing, as GCPs may not be available when processing archival records. For this reason,
we decided to conduct several tests, discussed in Section 4, Analysis of the results.

Further details on the individual steps of the main experiment required for producing
orthophotos are as follows:
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1. Processing of images from the 3rd flight—significant features in the surface texture
were automatically detected based on the SIFT algorithm, matched using the Nearest
Neighbor approach, and then matches were geometrically verified with epipolar
geometry using random sample consensus (RANSAC) [52]. The model coordinates
of tie points and the elements of the interior and relative orientation of images were
adjusted during bundle adjustment, resulting in a reconstructed 3D scene. Georefer-
encing was also performed as part of SfM using manually measured GCPs. Detailed
surface reconstruction based on MVS algorithms, and a generated 3D model (Figure 7),
were also conducted.

2. Processing of images from the 1st flight—identical to the 3rd flight, with the difference
that fixed elements of the interior orientation obtained from the camera calibration
on images from the 3rd flight were used during image orientation. This step was
necessary due to the reduced reliability of the results from the 1st flight caused by
high grass cover—similar problems are also described in [53].

3. Processing of images from the 2nd flight—the UAV moved alongside the fire line, but
its movement was not continuous, and sometimes it remained stationary in one place.
Here, a significant problem arose with a series of images taken from one position
during monitoring. For reliable processing using SfM, it is necessary that baselines
exist between adjacent images, meaning that the projection center of the camera
changes its position in space; otherwise, the angle of intersection of determining rays
at a given point becomes too small, and scene reconstruction is unstable. Essentially,
this might not be a problem; in photogrammetry, it is often recommended to take
images from one camera position for a higher degree of redundancy, however, when
there are too many such images, combined with the RANSAC algorithm, it may cause
failure in image orientation. Therefore, it was necessary to divide the images from
the 2nd flight into 13 subgroups, within which the images were oriented separately
(Table 2). Subgroup 13 contained only images where the camera changed its position
(dynamic flight), and there was no problem orienting them directly with the images
from the 1st flight. In groups 1 to 12, images created from almost static UAV positions
were then included (Figure 8). In groups 1 to 12, the closest moving images from
group 13 (according to overlap) were always added to ensure that the respective scene
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had reconstructible 3D geometry. If the reconstruction failed in one calculation, it was
repeated until RANSAC found a solution for the relative orientation of the images
that satisfied the largest number of already matched tie points, which, in some cases,
included up to 5 repeated calculations.

4. Sequential relative orientation of partial image blocks 1 to 12 with block 13 connected
to the 1st flight. Subsequently, all blocks were merged using the “Merge chunks”
function in the Agisoft Metashape software into one common image block, which
contained 40 images from the 1st flight (mapping) and 290 images from the 2nd flight
(monitoring). This was possible since all image blocks were in the same reference
coordinate system.

5. Import of the 3D model from the 3rd flight into the merged image block from the 1st
and 2nd flights.

6. Creation and export of orthoimages from the 2nd flight (monitoring) based on the 3D
model from the 3rd flight (Figure 9).
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Figure 7. Digital surface model from the 3rd aerial survey after the burning of the entire meadow,
containing approximately 0.5 million triangles.

Table 2. Overview of image blocks.

Flight Subset Images in Block Static/Moving
Camera Purpose

1 (before fire) - 40 Moving Main image block

2

1 14 Static Monitoring
2 9 Static Monitoring
3 37 Static Monitoring
4 28 Static Monitoring
5 10 Static Monitoring
6 18 Static Monitoring
7 31 Static Monitoring
8 13 Static Monitoring
9 6 Static Monitoring

10 5 Static Monitoring
11 38 Static Monitoring
12 6 Static Monitoring
13 76 Moving Monitoring

3 (after fire) - 28 Moving 3D model
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Figure 9. Example of orthorectified images at intervals of 60 s, showing the change in camera
perspective during dynamic fire monitoring.

During the orientation of the images, conventional settings recommended by the
software developers were used (Table 3). High accuracy settings mean that the images
were inputted into the keypoint detection process in their original resolution. The results
from the orientation of the images and georeferencing of individual projects are presented
in Table 4. It is worth noting that the reference coordinates of the GCPs were included in
the bundle adjustment during the orientation of all image blocks, which helped to prevent
potential deformations of the image blocks.
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Table 3. Settings for image alignment process in Agisoft Metashape Professional.

Accuracy Generic Preselection Key Point Limit Tie Point Limit

High Yes 40,000 per image 10,000 per image

Table 4. Statistics from the photogrammetric processing of image blocks.

Flight Images Tie Points
Tie Points RMS

Reprojection
Error [pix]

GCPs
X RMSE

[m]

GCPs
Y RMSE

[m]

GCPs
Z RMSE

[m]

GCPs RMS
Reprojection

Error [pix]

1 (before fire) 40 112,627 0.75 0.08 0.11 0.10 0.57
1 + 2 (monitor.) 331 165,025 1.23 0.03 0.05 0.03 0.42

3 (after fire) 28 64,666 0.94 0.02 0.04 0.05 0.36

The next step was the orthorectification of 290 images from the monitoring flight based
on the 3D surface model (Figure 9). These were exported automatically from the Agisoft
Metashape software environment.

The exported orthoimages were subsequently vectorized and used to create a compre-
hensive overview of the fire spread—for clarity, at a sparser interval of 8 s (Figure 10). As
the visibility of the fire front was complicated by dense smoke in many orthoimages, vector-
ization was performed manually using the CAD software MicroStation V8i SELECTseries
10, version 08.11.09.910 by Bentley Systems, Exton, PA, United States.
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Figure 10. Result of manual vectorization of fire spread at an 8 s interval. In the background is an
orthophoto mosaic of the burned meadow from the last flight.

From Figures 9 and 10, it is evident that during the movement of the UAV, some parts
of the fire momentarily moved out of the camera’s field of view. The goal was always
to orient the camera towards the fire so that approximately half of the image captured
the meadow without smoke, enabling the images to be oriented relative to each other
(Figure 11). However, for the purposes of the experiment, this deficiency was negligible.
The distribution of the curves also reveals locations along the road where firefighters
gradually established additional fire points to ignite the entire meadow progressively.
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represent those for which no match was found.

4. Analysis of the Results

The accuracy of the resulting orthoimages is influenced by several factors. One of the
most important factors is the accuracy of determining the elements of the interior, relative,
and exterior orientation of images because this ultimately affects the accuracy of generating
digital surface models and orthoimages.

However, the accuracy of detecting the fire boundary in orthoimages should not be
overlooked either. Since only one camera is used in the proposed approach to monitor the
fire’s development, it is not possible to model the shape of flames, and they are incorrectly
projected onto the reference model due to central projection. Ideally, the fire front should be
evaluated at points of contact with the terrain; however, this is rarely clearly visible due to
smoke and flames being pushed forward by the wind and often low above the terrain. This
would require a very low UAV flight altitude, bringing safety complications. Therefore, for
the reasons stated above, we vectorized the rear part of the fire boundary (Figure 10), that
is, the area that had already been burned.

The individual aspects are explained in more detail in the following subsections.

4.1. The Reliability of Image Orientation

The reliability of the relative and exterior orientation of images depends on both the
configuration of the camera network (levels of overlap and intersection angles between
determining rays) and the accuracy of measuring GCPs on the images and in the reference
coordinate system. However, the accuracy of relative orientation is also closely related to
camera self-calibration and thus the determination of interior orientation elements. This can
be complicated, especially when capturing surfaces with inappropriate texture, including
grassy vegetation. During the detection and pairing of features, incorrect correspondences
may be assigned, ultimately leading to unreliable camera calibration and relative orientation
of images. This was also evident in the processing of the first aerial survey, as shown in
Table 5.
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Table 5. Interior orientation elements for flight 3 and flight 1 without GCPs. The focal length f, as
well as the image coordinates of the principal point cx, cy, can be converted from pixels to mm using
the known pixel size on the sensor (2.4 µm). The coefficients of radial distortion K1, K2, K3 and the
tangential distortion P1, P2 of the Brown distortion model are dimensionless.

Parameter Flight 1 Flight 3 Difference [%]

f [pix] 4939.29 4298.16 −14.9
cx [pix] −55.58 22.17 350.7
cy [pix] −691.08 12.56 5603.1

K1 0.000441 −0.008228 105.4
K2 0.017576 0.036370 51.7
K3 −0.023303 −0.043687 46.7
P1 0.002480 0.001253 −97.9
P2 −0.001990 −0.002049 2.9

Extreme differences in the elements of interior orientation (Table 5—especially cx, cy)
also manifested in the deformations of the image block from the first aerial survey when
GCPs were intentionally not used in the bundle adjustment (BA) (Table 6) to show the
impact of incorrect matches in the grass texture (as a test variant). Compared to flight 3,
significantly larger residuals were achieved after 3D affine transformation into the reference
coordinate system, when GCPs were inactive during BA, even though the camera network
configuration was similar in both flights. This indicates significant deformations in the
camera network after the relative orientation of images. Therefore, all projects aiming to
produce orthoimages (Table 4) were computed with a pre-calibrated camera and fixed
interior orientation elements obtained from the processing of the third flight with active
GCPs during BA. Burnt grass without stems, which would change their appearance in the
image with changes in perspective, evidently belongs to suitable textures for processing
using SfM, justifying data collection for 3D modeling post-fire.

Table 6. Statistics from experimental photogrammetric processing with various image orientation
settings.

Flight GCPs
in BA

Precalib.
Camera Images Tie

Points

Tie Point
RMS

Reprojection
Error [pix]

GCPs X
RMSE

[m]

GCPs
Y RMSE

[m]

GCPs Z
RMSE

[m]

GCPs RMS
Reprojection

Error [pix]

1 (before fire) NO NO 40 111,123 0.73 0.38 0.27 0.35 0.43
1 (before fire) YES NO 40 112,738 0.75 0.08 0.11 0.10 0.57

1 + 2 (monitor.) NO YES 331 237,373 0.85 0.22 0.26 0.05 0.62
3 (after fire) NO NO 28 63,934 0.50 0.20 0.14 0.10 0.32
3 (after fire) YES NO 28 64,666 0.94 0.02 0.04 0.05 0.36

Regarding the accuracy of determining the elements of the exterior orientation of
images in the final project used for orthoimage creation (Table 4—Flight 1 + Flight 2), it
can be evaluated based on the results of bundle adjustment and the reprojection errors
on GCPs. GCPs were measured on all visible images—for example, point No. 203 was
measured on 106 images. On most images, there were simultaneously at least three GCPs.
The reprojection error on GCPs did not exceed 1.7 pixels on any image, with an average
pixel size on the ground (GSD), considering the oblique imaging axis, of 0.045 m.

4.2. The Reliability of the Digital Surface Model

The accuracy of image orientation directly affects the accuracy of the digital surface
model. The images from the final flight after the fire with active GCPs during bundle adjust-
ment were used to create the final 3D model used for orthorectification of images. However,
we were interested in the impact that the orientation of images with inactive GCPs during
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BA and different camera network configurations would have on the model’s accuracy. The
absence of the need to establish GCPs would open the door to using archival and amateur
records from low-cost UAVs without RTK and PPK. For this purpose, three models were
generated:

• From the final flight with active GCPs during BA (Figure 12 on the left),
• From the final flight with inactive GCPs during BA (Figure 12 on the right and Fig-

ure 13),
• From the side monitoring flight with inactive GCPs during BA (Figure 14).
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Figure 12. Vertical deviations of the photogrammetric 3D model of the burned meadow from ALS
point cloud—GCPs active (left) and inactive (right) during bundle adjustment (BA). Gray color
represents values outside the range of ±0.5 m.
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Figure 14. Vertical deviations of the photogrammetric 3D model created solely from the side monitor-
ing flight compared to the ALS point cloud. The gray color represents values outside the range of
±1.0 m.

For the last two models, approximate elements of the exterior orientation from the
EXIF data were also removed to rely solely on automatically detected tie points on the
images for the entire relative orientation solution. To verify the accuracy of the 3D models,
they were compared with classified point clouds obtained by using airborne laser scanning
(ALS), the results of which are freely available for the entire territory of the Slovak Republic
(zbgis.skgeodesy.sk, accessed on 10 August 2023). The provider of these data is the Geodesy,
Cartography, and Cadastre Authority of the Slovak Republic (ÚGKK SR). The reference data
from aerial laser scanning were collected in March 2019, during the non-growing season.
The vertical accuracy of the point cloud is higher than 0.1 m (www.geoportal.sk/sk/zbgis/
lls/, accessed on 29 February 2024). The comparison was conducted in CloudCompare,
version 2.13, provided under general public license (www.cloudcompare.org, accessed on
15 September 2023) based on the calculation of Hausdorff distances in the Z-axis direction.

The bare ground class from the ALS point cloud served as the reference model. The
red differences in the northeastern parts of the territory in both models in Figure 12 are
caused by unburned vegetation beyond the control line. From the comparison, it is evident
that the accuracy of the 3D model used for the orthorectification of images (Figure 12 on the
left) was at a level no worse than ±0.1 m in height. Considering that the target resolution
of the orthoimages was also at the level of 0.1 m, we can consider the achieved model
accuracy to be sufficient. In the model with inactive GCPs during BA (Figure 12 on the
right), height deviations of the model were up to 0.5 m, and even that was only in areas
with a low image overlap in the southern part of the territory (Figure 13).

Archival records of fires from UAVs usually do not include separate flights for terrain
modeling. Therefore, we attempted to reconstruct the surface of the meadow solely from
the side flight originally intended for dynamic fire monitoring—specifically, it was flight
No. 2 (blocks 1 to 13) in Table 2. During image alignment, we did not use fixed elements
of interior orientation obtained from the final flight, as was the case in previous scenarios.
Since the resulting point cloud logically exhibited the largest errors in areas covered by

zbgis.skgeodesy.sk
www.geoportal.sk/sk/zbgis/lls/
www.geoportal.sk/sk/zbgis/lls/
www.cloudcompare.org
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variable flames and smoke, outliers were filtered out from the point cloud before generating
the 3D model based on reliability parameters. The resulting 3D model showed significantly
larger deformations compared to the final flight; hence, the color range of deviations in
Figure 14 is enlarged to ±1.0 m. In the northern part without GCPs, deviations even
exceeded 1 m. As the UAV’s position at the side flight ended at point 205, the northern
part was modeled based on images with a very short baseline (Figure 7—blocks 9, 10, 11,
and 12), and inaccuracies in relative image orientation might have been more pronounced
here. However, in the main part of the area of interest defined by GCPs, despite smoke and
flames, the height deviations of the model did not significantly exceed 0.5 m.

However, the absence of GCPs and an RTK/PPK system can lead to changes in scale
in addition to various deformations of image blocks and models. The accuracy of GNSS
implemented in low-cost UAVs is typically approx. 1 m, which is sufficient for stabilizing
the UAV above the terrain. From the perspective of photogrammetric processing, the
influence of exterior orientation accuracy on the scale of the model decreases with the
extent of the image block. For example, if the image block has a length of 500 m, with a
1 m error, the relative error would be 1:500, which may be acceptable, especially for slower
fire spread rates, such as in our case (~2 m/s). We experimentally verified this assumption
by georeferencing the final project (with all images) using only approximate elements of
exterior orientation directly from the UAV deck and then comparing the control lengths
measured between GCPs on the output orthophotomosaic (Figure 15). The influence of the
scale change was even smaller, reaching only approximately one-thousandth of the original
length in the longitudinal direction of the area.
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approximate onboard coordinates of projection centers in the WGS84 coordinate system. All lengths
(green values) between GCPs (white numbers) were shorter than they should be.

For practical purposes, it is essential to note that to determine relative changes between
images, a 3D model generated from an image block without GCPs may be sufficient,
georeferenced solely based on approximate GNSS coordinates of projection centers from
the EXIF data of images. Moreover, if there is also an available current digital surface model
from ALS in the area, the step of photogrammetric modeling may be entirely omitted, and
the images can be projected directly on the ALS model.

4.3. The Reliability of Orthoimages

Due to the oblique camera axis at a 45◦ angle, height deviations of 0.5 m achieved in
the previous section would lead to an erroneous projection with a horizontal shift of the
texture by approximately 0.5 m as well. The impact of this deficiency on determining the
rate of fire spread is illustrated in Figure 16.
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Figure 16. Visualization of the impact of orthoimages generated at 2 s intervals from vertically
displaced 3D models on the accuracy of determining relative changes, from which the rate of fire
spread is calculated.

If the deformation of the 3D model were vertically negative, meaning that the surface
model would be located below the actual terrain, there would be an artificial increase in
speed due to the central projection. The acceptability of the achieved error would then
depend not only on the level of deformation of the model but also on the distance from
the camera’s projection center to the reference surface onto which the textural information
is projected. At a flight height of 120 m and a maximum vertical deformation of the 3D
model of 0.5 m, by applying basic trigonometry, we would conclude that the difference in
the determined speed using a 3D model is negligible and reaches approximately the ratio
between the vertical deformation of the model and the flight height above the terrain (a ratio
of 0.5 m/120 m corresponds to an error in speed determination of approximately 0.4%).

The demonstration of the impact of model deformations on the orthorectification of
images achieved in our experiment is illustrated in Figures 17 and 18.
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Figure 18. Detail of the orthoimage rectified based on the 3D model from the post-fire flight (left) and
the deformed model generated from the side monitoring flight (right). Differences in the position of
the green markers against the background texture are visible in the images. Deviations reached a
maximum of 0.3 m, which corresponds to the vertical deviation of the model in the corresponding
area in Figure 14.

5. Discussion and Conclusions

In this study, we focused on the photogrammetric collection and SfM processing of
images in the visible spectrum obtained using UAV for the purpose of reconstructing
the spread of grassland fire. One advantage of the proposed approach is the use of only
one low-cost off-the-shelf UAV and simultaneous data collection not only for mapping of
the burned area but also for monitoring the development of the fire itself.

One of the main complications of photogrammetric measurement and processing
is the georeferencing of collected data. In experimental measurements under controlled
conditions, the use of GCPs is straightforward, and in our case, it allowed for greater
control over the results of the measurements. Currently, GCP measurement during a fire in
uncontrolled conditions can be fully replaced using UAVs with RTK or PPK technology,
with a position accuracy of the camera projection center at the level of 0.05 m. However,
if the goal was only to monitor the speed of the fire spread, approximate elements of
the exterior orientation from the UAV’s onboard system without RTK/PPK could also be
sufficient for georeferencing. Although these elements have an absolute position accuracy
of 1 m, for larger image blocks, e.g., 500 m, such accuracy would cause a relative change
in the scale of the entire block of at most 1:500, which may be acceptable because other
factors, especially flame detection accuracy, have a more significant impact on the accuracy
of determining the fire front speed.

A different situation arises when processing archival amateur recordings. These
recordings are often in the form of videos rather than images, so even approximate elements
of the exterior orientation from EXIF/XMP data would not be available. This complication
can only be addressed by subsequent GCP measurements in the field after the fire, with
precise selection of measured elements that can be clearly identified in the images (such as
buildings, solitary tree trunks, etc.). Another complication could be the lower resolution
of images from archival videos. One way to test this effect on the data obtained during
this study would be to resample the original 20 MP images to a lower resolution (e.g., full
HD) and crop them to a 16:9 ratio (1920 × 1080). However, adding another experiment
would go beyond the originally intended scope of this study, and we will consider it in
future work.

In an ideal scenario, the fire front should be monitored at the point where it meets the
terrain. However, obtaining such a camera perspective is usually impossible. The UAV
would need to fly directly ahead of the fire and at a relatively low altitude above the terrain
to avoid smoke and flames, which could compromise monitoring safety. Additionally,
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evaluating the flames themselves is not suitable, as they have a spatial shape and would
be incorrectly projected due to the central projection. Furthermore, the size of the flames
is variable over time. Instead, it is preferable to analyze the already burned area behind
the flames, where there is a relatively high contrast between the burnt surface and the fire.
However, visibility in this area may also be impaired due to smoke, which can only be
addressed by using thermal cameras operating in the infrared spectrum with wavelengths
of 1.4–3 µm, 3–5 µm, or 8–14 µm [54]. Processing infrared images using SfM introduces
additional complications, especially in automatic keypoint detection, as these images often
have a significantly lower resolution than conventional visible-spectrum images [55]. In this
case, it is, therefore, advisable to use a combination of sensors—use visible-spectrum images
for image alignment and subsequently project infrared images with a lower resolution,
collected simultaneously from the same UAV, onto the 3D model.

An example of the use of photogrammetric measurements in verifying mathematical
models of fire spread can be found in the Supplementary Materials in the form of a
previously unpublished video. Specifically, it concerns 80 s of the fire, from which we had
images at 5 s intervals. On each image, the boundary of the fire was manually segmented
(red curve). Based on these segmented curves, we searched for optimal values for several
parameters in our model, such as wind direction and the influence of curvature, terrain
slope, and wind size. The optimal values were then used in the fire reconstruction (blue
curve). Contour lines are indicated in green, and the blue arrow on the top right indicates
the current wind direction for the given interval.

Nevertheless, the aim of this study was not to analyze the fire spread itself; that task
should be handled by fire experts and mathematicians specialized in this field. However,
since the reliability of their conclusions directly depends on the reliability of the real-world
data collected in the field, our goal was primarily to highlight the photogrammetric aspect
of the experiments. From the presented data, it is evident that despite various complica-
tions, low-cost SfM photogrammetry can provide interesting results for the validation or
correction of mathematical models of fire spread, even with images in the visible spectrum.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/drones8070282/s1, Video S1: Example of fire propagation modeling.
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from the Technical University of Zvolen for organizing the action with controlled fire and inviting the
authors to its documentation.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gill, A.M.; Stephens, S.L.; Cary, G.J. The worldwide “wildfire” problem. Ecol. Appl. 2013, 23, 438–454. [CrossRef] [PubMed]
2. Pechony, O.; Shindell, D.T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl.

Acad. Sci. USA 2010, 107, 19167–19170. [CrossRef] [PubMed]
3. Wang, Z.; Chappellaz, J.; Park, K.; Mak, J.E. Large variations in Southern Hemisphere biomass burning during the last 650 years.

Science 2010, 330, 1663–1666. [CrossRef] [PubMed]
4. Van Hees, P. Validation and verification of fire models for fire safety engineering. Procedia Eng. 2013, 62, 154–168. [CrossRef]

https://www.mdpi.com/article/10.3390/drones8070282/s1
https://www.mdpi.com/article/10.3390/drones8070282/s1
https://doi.org/10.1890/10-2213.1
https://www.ncbi.nlm.nih.gov/pubmed/23634593
https://doi.org/10.1073/pnas.1003669107
https://www.ncbi.nlm.nih.gov/pubmed/20974914
https://doi.org/10.1126/science.1197257
https://www.ncbi.nlm.nih.gov/pubmed/21127215
https://doi.org/10.1016/j.proeng.2013.08.052


Drones 2024, 8, 282 19 of 20

5. Artés, T.; Oom, D.; De Rigo, D.; Durrant, T.H.; Maianti, P.; Libertà, G.; San-Miguel-Ayanz, J. A global wildfire dataset for the
analysis of fire regimes and fire behaviour. Sci. Data 2019, 6, 296. [CrossRef] [PubMed]

6. Lopes, A.M.G.; Sousa, A.C.M.; Viegas, D.X. Numerical simulation of turbulent flow and fire propagation in complex topography.
Numer. Heat Transf. Part A Appl. 1995, 27, 229–253. [CrossRef]

7. Boboulos, M.; Purvis, M.R.I. Wind and slope effects on ROS during the fire propagation in East-Mediterranean pine forest litter.
Fire Saf. J. 2009, 44, 764–769. [CrossRef]

8. Sullivan, A.L. Wildland surface fire spread modelling 2009, 1990–2007. 1: Physical and quasi-physical models. Int. J. Wildland Fire
2009, 18, 349–368. [CrossRef]

9. Dickson, B.G.; Prather, J.W.; Xu, Y.; Hampton, H.M.; Aumack, E.N.; Sisk, T.D. Mapping the probability of large fire occurrence in
northern Arizona, USA. Landsc. Ecol. 2006, 21, 747–761. [CrossRef]

10. Syphard, A.D.; Radeloff, V.C.; Keuler, N.S.; Taylor, R.S.; Hawbaker, T.J.; Stewart, S.I.; Clayton, M.K. Predicting spatial patterns of
fire on a southern California landscape. Int. J. Wildland Fire 2008, 17, 602–613. [CrossRef]

11. Semeraro, T.; Mastroleo, G.; Aretano, R.; Facchinetti, G.; Zurlini, G.; Petrosillo, I. GIS Fuzzy Expert System for the assessment
of ecosystems vulnerability to fire in managing Mediterranean natural protected areas. J. Environ. Manag. 2016, 168, 94–103.
[CrossRef] [PubMed]

12. West, A.M.; Kumar, S.; Jarnevich, C.S. Regional modeling of large wildfires under current and potential future climates in
Colorado and Wyoming, USA. Clim. Change 2016, 134, 565–577. [CrossRef]

13. Li, Z.; Nadon, S.; Cihlar, J.; Stocks, B. Satellite-based mapping of Canadian boreal forest fires: Evaluation and comparison of
algorithms. Int. J. Remote Sens. 2000, 21, 3071–3082. [CrossRef]

14. Li, Y.; Vodacek, A.; Kremens, R.L.; Ononye, A.; Tang, C. A hybrid contextual approach to wildland fire detection using
multispectral imagery. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2115–2126. [CrossRef]

15. Stow, D.A.; Riggan, P.J.; Storey, E.J.; Coulter, L.L. Measuring fire spread rates from repeat pass airborne thermal infrared imagery.
Remote Sens. Lett. 2014, 5, 803–812. [CrossRef]

16. Ambrosia, V.G.; Wegener, S.S.; Sullivan, D.V.; Buechel, S.W.; Dunagan, S.E.; Brass, J.A.; Stoneburner, J.; Schoenung, S.M.
Demonstrating UAV-acquired real-time thermal data over fires. Photogramm. Eng. Remote Sens. 2003, 69, 391–402. [CrossRef]

17. Sherstjuk, V.; Zharikova, M.; Sokol, I. Forest fire-fighting monitoring system based on UAV team and remote sensing. In
Proceedings of the 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 24–26
April 2018; pp. 663–668. [CrossRef]

18. Gomez, C.; Purdie, H. UAV-based photogrammetry and geocomputing for hazards and disaster risk monitoring—A review.
Geoenviron. Disasters 2016, 3, 23. [CrossRef]

19. Afghah, F.; Razi, A.; Chakareski, J.; Ashdown, J. Wildfire monitoring in remote areas using autonomous unmanned aerial vehicles.
In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Paris, France, 29 April–2 May 2019; pp. 835–840. [CrossRef]

20. Ambroz, M.; Balažovjech, M.; Medl’a, M.; Mikula, K. Numerical modeling of wildland surface fire propagation by evolving
surface curves. Adv. Comput. Math. 2019, 45, 1067–1103. [CrossRef]
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