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Abstract: Aerial robots (drones) offer critical advantages in missions where human participation
is impeded due to hazardous conditions. Among these, search and rescue missions in disaster-
stricken areas are particularly challenging due to the dynamic and unpredictable nature of the
environment, often compounded by the lack of reliable environmental models and limited ground
system communication. In such scenarios, autonomous aerial robots’ operation becomes essential.
This paper introduces a novel hierarchical reinforcement learning-based algorithm to address the
critical limitation of the aerial robot’s battery life. Central to our approach is the integration of a long
short-term memory (LSTM) model, designed for precise battery consumption prediction. This model
is incorporated into our HRL framework, empowering a high-level controller to set feasible and
energy-efficient goals for a low-level controller. By optimizing battery usage, our algorithm enhances
the aerial robot’s ability to deliver rescue packs to multiple survivors without the frequent need for
recharging. Furthermore, we augment our HRL approach with hindsight experience replay at the
low level to improve its sample efficiency.

Keywords: hierarchical reinforcement learning; long short-term memory networks; search and rescue
mission; energy-efficient path planning

1. Introduction

Aerial robots have become increasingly indispensable in various applications. One
of these applications is in search and rescue (SAR) operations, especially in post-disaster
scenarios where human intervention is often fraught with danger or impracticality. These
missions are typically conducted in environments with unpredictable environmental condi-
tions [1,2]. The foremost objective of SAR operations is the rapid location of targets and
the execution of critical follow-up actions, such as relaying information and delivering
essential supplies, all within a constrained timeframe. Employing aerial robots in SAR mis-
sions offers numerous benefits, including their swift deployment capabilities, cost-effective
maintenance, exceptional mobility, and the capacity to operate in areas where manual
intervention limits risks or requires rapid decision-making processes [3]. Challenges in-
clude navigation among numerous obstacles, efficiently locating and assisting survivors,
potential damage to ground system infrastructure, and limitations due to the aerial robot’s
battery capacity [4].

Path planning is a crucial component in these contexts, entailing the formulation
of an optimal trajectory from the origin to the destination while adhering to operational
constraints and mission objectives. Traditional path planning methods, such as grid-based
and graph-based algorithms (such as A* [5], artificial potential fields [6], and Dijkstra’s
algorithm [7]), have demonstrated efficacy in stable scenarios [8]. However, they often
struggle in the unpredictable and dynamic terrains characteristic of disaster zones, primarily
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due to limitations in real-time adaptability and autonomous decision-making in the face of
complex obstacles and environmental uncertainties.

With the advent of advancements in artificial intelligence (AI), particularly in machine
learning (ML) and reinforcement learning (RL) [9], new solutions have emerged to address
these challenges. RL, with its adaptability and learning-based approach [10], is particularly
suitable for dynamic and uncertain post-disaster environments. RL systems have shown
promise in dynamically adapting to changing terrains and unforeseen obstacles [11]. Deep
reinforcement learning (DRL) [12], which incorporates deep neural networks into RL, has
been explored for its effectiveness in complex and multifaceted scenarios [13,14]. Specifi-
cally, DRL’s application in aerial robot path planning has led to remarkable improvements
in multi-objective environments, such as navigating through disaster-stricken areas [15].

Aerial robots are constrained by limited flight duration, primarily due to their reliance
on battery power. Consequently, strategic planning of flight routes and scheduling recharge
stops become essential to ensure successful mission completion. Energy-aware naviga-
tion frameworks for aerial robots are designed to address this challenge. They focus on
providing efficient route planning that not only circumvents obstacles but also optimizes
battery usage, thereby enhancing the operational range and effectiveness of aerial robots
in various applications [16]. Bouhamed et al. [17] developed a framework utilizing the
deep deterministic policy gradient (DDPG) algorithm for aerial robot navigation. This
framework is designed to efficiently guide aerial robots to designated target positions while
maintaining communication with ground stations. Moreover, Imanberdiyev et al. [18] pro-
posed a methodology that focuses on monitoring critical aerial robot parameters, including
battery level, rotor condition, and sensor readings, for enhanced route planning. The ap-
proach involves dynamically adjusting the aerial robot’s flight path as necessary to facilitate
battery charging when needed. An autonomous aerial robot path planning framework
utilizing the DDPG approach was developed to train aerial robots by the authors of [19].
This framework enables aerial robots to effectively navigate through or above obstacles to
reach predetermined targets.

Despite these advancements, DRL models often struggle to manage multiple objec-
tives simultaneously, such as evading various targets and optimizing different objectives.
Managing several goals simultaneously often leads to complex and larger state spaces and
inefficiencies due to the conflicting nature of objectives. To overcome these challenges,
there is a need for distinct models for each objective [20,21]. Other frameworks, such as
meta-learning-based DRL and modular hierarchical DRL architectures, are suggested to
address the computational demands and recalibration needs in complex, multi-objective
scenarios [22].

Hierarchical reinforcement learning (HRL) can overcome these challenges of the rein-
forcement learning [23]. Inspired by human thinking on solving complex problems, HRL
not only breaks down the problem into sub-problems that are easier to handle but has the
ability to train multiple policies that are connected at different levels of temporal abstraction.
HRL offers a structured approach for tasks involving multiple objectives, by segmenting
decision-making into different layers [24]. Its application in aerial robot navigation has
included coordinating multi-objective missions, exemplified in recent studies where HRL
has been employed to optimize task allocation and path planning [25,26].

In addition, despite HRL’s advantages in managing complex tasks, HRL faces several
critical problems, including sparse rewards, long time horizons, and the effective transfer
of policies across different tasks. However, the most significant challenge is ensuring
that high-level policies assign feasible and well-defined tasks to low-level policies [27].
Inconsistent or poorly defined tasks can lead to inefficiencies and failure in task execution.
Algorithms like hierarchical proximal policy optimization (HiPPO) aim to address this by
jointly training all levels of the hierarchy and allowing continuous adaptation of skills even
in new tasks [28]. However, HiPPO itself faces challenges, including the complexity of
simultaneously training multiple levels of policies, the potential for increased computa-
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tional demands, and the difficulty in maintaining stability and convergence during the
training process.

To address this challenge, this paper proposes a novel method for aerial robot path
planning in SAR missions. Our work introduces a novel integration of adaptive long short-
term memory (LSTM) networks for real-time battery consumption prediction within a hier-
archical reinforcement learning framework. This integration offers several
unique advantages:

- The LSTM model assists the high-level policy in selecting feasible goals for the low-
level policy by predicting the battery requirements for each goal, ensuring that the
chosen goals remain within the robot’s energy constraints.

- Our model incorporates a bidirectional LSTM framework for accurate battery con-
sumption prediction. This dual-layer structure processes data sequences in both
forward and backward directions, enhancing the model’s ability to understand con-
text and sequence dynamics, thus providing more accurate predictions of energy
requirements for each target.

- By forecasting battery consumption for each target, the LSTM model informs the
high-level policy (HLC) within the HRL framework, enabling more informed and
energy-efficient goal selection. This model dynamically adjusts flight paths based on
real-time battery predictions, enhancing the robot’s effectiveness in complex, multi-
objective missions. By providing energy consumption forecasts, our framework
ensures mission completion without energy depletion, increases the overall success
rate of SAR operations, and avoids mid-mission energy shortages, thereby enhancing
mission success rates.

- The use of hindsight experience replay at the LLC level improves learning efficiency
and robustness in changing environments. This accelerates the convergence of learning
algorithms, enabling quicker adaptation to dynamic environments and reducing the
training time required for effective path planning.

- The proposed framework includes an adaptive mechanism that gradually reduces
reliance on LSTM predictions as the HLC learns from environmental interactions.
This transition enhances the HLC’s autonomy and efficiency in mission planning,
optimizing energy usage based on real-time learning and experiences.

This study aims to investigate energy-aware path planning for aerial robots tasked
with delivering supplies to multiple targets while avoiding obstacles. Path planning is
conducted over two hierarchical levels. An LSTM network first predicts the battery con-
sumption for each target, informing the high-level HRL policy’s goal selection. The selected
goal then guides the low-level navigational decisions, enabling the aerial robot to identify
efficient paths while avoiding obstacles. Additionally, the LSTM’s predictions assist the
RL algorithm in making energy-efficient decisions by forecasting battery consumption
for upcoming states. To address non-stationarity at the low level, we employ hindsight
experience replay in the low-level policy. In the HRL framework, a spectrum of RL algo-
rithms is strategically deployed to bolster the functionality of both the high-level controller
(HLC) and the low-level controller (LLC). Among these, the soft actor-critic (SAC) [29,30]
algorithm is known for its unparalleled adaptability and efficiency, rendering it an optimal
choice for navigating the complexities of aerial robot navigation within high-dimensional
continuous action spaces. The SAC algorithm is also celebrated for its incorporation of
entropy regularization, a feature that inherently promotes an exploratory stance. This
aspect is crucial as it guarantees a comprehensive exploration of the state space, thereby
facilitating the development of versatile strategies for aerial robot navigation. The off-policy
nature of SAC significantly enhances learning efficiency by leveraging past experiences, a
critical advantage in scenarios where real-time responsiveness is paramount. Therefore,
we incorporate the SAC into our HRL framework. We evaluate our algorithm’s efficiency
in an aerial robot tasked with delivering food to multiple survivors, focusing on energy
efficiency and optimizing time in paths that require obstacle avoidance.
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The rest of the paper is organized as follows: Section 2 contains the works that relate
to our paper, Section 3 presents the preliminary and problem formulation, and Section 4
introduces the proposed HRL method. In Section 5, the experiments and results are shown.
Section 6 brings the final remarks and proposes future work.

2. Background
2.1. Hierarchical Reinforcement Learning

HRL has suitable structures to address long-horizon tasks [31,32]. Primarily, these
structures are conceptualized either where multiple policies are hierarchically organized or
where singular policies are sequentially stacked. In classic architectures, a high-level policy
is typically trained over a set of predefined low-level policies, as seen in [33]. One example
is the Options framework [34], which involves learning to select and execute an ‘option’
until its termination condition is met. It essentially functions as a switch over these options.
However, this framework often necessitates prior domain-specific knowledge for the design
of options. Addressing this, the option-critic approach [35] presents a methodology for
jointly training a high-level policy.

Recent advancements in the Options framework include the incorporation of regular-
ization to facilitate the learning of multiple sub-policies [36]. Conversely, another structure,
exemplified by the FeUdal framework [37] and hierarchical reinforcement learning with
off-policy (HIRO) algorithms [29], primarily utilizes goal-conditioned rewards.

In these models, the high-level policy operates as a manager or planner, directing
the low-level policy toward the achievement of the provided sub-goals. The advantage
of these methods is their generic representation, obviating the need for domain-specific
customization. HIRO employs the state in the raw form to construct a parameterized
reward function. Subsequent works [38,39] have extended the concept of sub-goals to
latent spaces. This goal-conditioned approach has been effectively adapted to real-world
robotic applications [40] and has seen extensive exploration in domains beyond traditional
HRL [41,42]. However, the challenges associated with these algorithms, as highlighted
in [43,44], suggest opportunities for further refinement and development.

2.2. Hierarchical Reinforcement Learning in the Aerial Robot’s Battery Life

Battery life is a critical limitation for aerial robots, particularly in SAR missions where
prolonged operations are essential for mission success. HRL offers promising solutions for
managing battery life more effectively through its structured approach involving high-level
controllers (HLC) and low-level controllers (LLC). HRL frameworks dynamically adapt to
real-time changes in battery levels and environmental conditions, ensuring optimal energy
usage throughout the mission [45]. This hierarchical structure allows for the separate
optimization of different mission aspects, such as navigation and battery management,
leading to more efficient learning processes and enhanced overall performance.

By decomposing tasks, HRL accelerates the learning process, as sub-tasks can be
learned independently and in parallel, facilitating faster convergence to optimal poli-
cies [46]. This is particularly beneficial for real-time applications where rapid decision-
making is crucial. Additionally, the hierarchical structure enhances adaptability to changing
environments and mission requirements, allowing aerial robots to modify or relearn spe-
cific sub-tasks without necessitating an overhaul of the entire system, thereby improving
robustness [47].

Despite these advantages, several challenges arise when utilizing HRL for battery
management in aerial robot path planning. Synchronizing the actions of the HLC and
LLC to ensure cohesive and efficient battery management can be complex, especially in
dynamic environments [48]. Reliable prediction of battery consumption is crucial for
making informed decisions at both hierarchical levels as inaccurate predictions can lead
to suboptimal paths and mission failures. Furthermore, the credit assignment problem
in HRL complicates the learning process as feedback from actions taken by lower-level
agents affects overall mission outcomes and battery usage. This delayed feedback makes it



Drones 2024, 8, 283 5 of 27

difficult to accurately attribute outcomes to specific actions or decisions, requiring careful
coordination and fine-tuning [49].

Preventing battery depletion during missions is a primary challenge in HRL for aerial
robots. Ensuring that the UAV does not run out of battery mid-mission is essential for the
success of SAR operations. Proposed solutions include incorporating energy constraints
into the HRL framework where the HLC sets goals within the UAV’s energy capacity,
and the LLC optimizes actions to achieve these goals efficiently [50]. Dynamic recharging
strategies and energy-aware planning algorithms have also been suggested to proactively
manage battery levels [51].

However, challenges remain in accurately managing battery consumption, particularly
during the early training episodes, which can lead to suboptimal performance in real-world
missions. Integrating a battery consumption prediction method, such as using LSTM
networks, can address this issue. By predicting battery usage based on real-time data
and historical patterns, the LSTM model helps the HLC to set feasible goals [52]. This
integration not only enhances the overall efficiency and reliability of the HRL framework
but also increases the success rate and accelerates the convergence rate by ensuring that the
UAV operates within its energy constraints throughout the mission.

3. Problem Definition

This research addresses the multifaceted challenge of optimal path planning for aerial
robots in the critical context of post-disaster missions. The objective is to deploy an aerial
robot to deliver vital supplies to survivors whose locations are predetermined yet situated
in an uncertain post-disaster environment. The aerial robot is equipped with LIDAR for
obstacle detection, GPS for positioning, and IMU sensors to track velocity.

The goal is to design a path for the aerial robot that satisfies time efficiency, energy
consumption, and collision avoidance constraints. Furthermore, each successful delivery
results in a decrease in the aerial robot’s payload weight, a factor that introduces variables
affecting the aerial robot’s flight dynamics and energy efficiency. The problem formulation
is presented as follows:

Given a set of targets T = {≈1,≈2, ...,≈n}, the aerial robot must determine a path
P = {p1, p2, ..., pn}, where pi denotes the trajectory to target ≈i such that the total operational
cost C is minimized. The cost encompasses the combined metrics of time τ(P), energy E(P),
and the collision avoidance C(P), represented as a weighted sum in the objective function:

min
P

{ω1 · E(P) + ω2 · τ(P) + ω3 · C(P)} (1)

subject to the following constraints:

- Collision avoidance: Each trajectory segment pi must adhere to safe navigational
practices, as determined by onboard LIDAR and GPS data, to avoid collisions.

- Energy consumption: The energy function E(P) considers the variable weight due to
payload changes, as well as aerial robot-specific power consumption profiles.

- Time efficiency: The time function τ(P) is a measure of the temporal efficiency of each
trajectory, with a lower τ indicating a more desirable path.

- Safety: The safety function C(P) is a measure of the aerial robot’s adherence to collision
avoidance throughout the mission, with higher values indicating safer operations.

- Battery constraint: The trajectory must be completed without the need for recharging,
imposing a natural limit on the length and complexity of the path.

The optimization problem is not a convex optimization problem due to the non-
linear nature of the energy and safety functions and the discrete nature of collision
avoidance constraints.

To achieve this, drawing from the insights gathered through a thorough literature
survey and recognizing the inherent advantages of hierarchical approaches, we propose
to address the problem by leveraging goal-conditioned HRL. One of the main challenges
in the context of HRL is based on the high level assigning goals for the low level, which
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is primarily due to the potential for the HLC to assign unattainable goals [53]—because
they are implausible or beyond the capabilities of the LLC. In instances where the HLC
requests an unattainable goal, the LLC tends to persist in its efforts until a timeout is
reached, incurring a notable cost in terms of interactions with the environment. This issue
is particularly noticeable during the initial stages of training as the HLC may frequently
select unattainable goals without accounting for the associated resource costs [54]. Based on
our mission, a pivotal challenge for unfeasible goals emerges in the context of battery-level
feasibility for goal attainment. This challenge is intricately linked to the HLC capacity
to set realistic and achievable goals, given the aerial robot’s limited battery life. While
the aerial robot’s targets are predetermined and accessible, ensuring that the aerial robot
can reach these targets without exhausting its battery reserves is critical. This necessitates
the integration of a battery consumption model within the HLC, capable of accurately
estimating the power requirements for reaching each delivery target and returning to the
recharge station.

To overcome these challenges in this paper, we propose an approach using goal-
conditioned HRL, integrated with an external pretrained LSTM-based battery consumption
prediction for energy-aware decision-making. Given that LSTM has the potential to predict
the battery consumption model of the aerial robot based on current states for subsequent
states, it aids the LLC in making better decisions for the next action. This is based on the
battery consumption predictions, enabling more energy-efficient decision-making.

Additionally, goal-conditioned HRL systems face the challenge of non-stationarity
at the low level. This challenge arises as the high-level controller adjusts goals, which
can shift the landscape that the low-level controller must navigate, affecting its ability to
maintain consistent policy performance [55]. To mitigate it, the framework utilizes the
hindsight experience replay (HER), which addresses the low-level policy’s non-stationarity
arising from goal changes dictated by the HLC. This adaptation assists the HLC in refining
its decision-making process, based on previous failures to achieve feasible goals, thereby
enhancing its ability to set more attainable goals for the low level. The schematic algorithm
of the proposed method is illustrated in Figure 1.
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3.1. Goal-Conditioned Markov Decision-Making

In formulating the RL problem, we should formalize it by leveraging the principles
of Markov decision processes (MDPs) [56]. By adhering to the constructs of MDPs, we
can articulate the RL problem with precision and clarity, thereby facilitating its systematic
analysis and resolution within the domain of decision-making under uncertainty. In HRL
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settings, the MDP [13] is typically augmented with a set of goals G. This augmentation is
pivotal to aligning the MDP with goal-oriented tasks.

The goal set G changes the standard MDP into a goal-conditioned MDP. This new
framework mixes objectives with the state space directly. It leads to a focused decision-
making process. Now, the agent’s actions respond to both the environment and specific
goals. In this version, we consider a tuple (S, A, G, P, R, γ) where S represents the state
space; A signifies the action space; G encompasses the set of goals that guide the agent’s
policy; P : S × A × G → S is the transition probability function, dictating the state evo-
lution; R : S × A × G → R is the goal-dependent reward function; and γ is the discount
factor, indicating the value of future rewards.

3.2. Soft Actor-Critic Algorithm

In this section, we introduce the foundational principles and mathematical under-
pinnings of the SAC algorithm, a cornerstone of our proposed HRL framework. SAC,
an advanced off-policy algorithm in the domain of deep reinforcement learning, excels
in managing complex and high-dimensional control tasks. It is particularly lauded for
its ability to strike a harmonious balance between exploration and exploitation, achieved
through the incorporation of entropy into the reward optimization process. This attribute is
crucial for navigating continuous action spaces with a high degree of efficiency and sample
economy. Moreover, adding an entropy term to the objective function helps ensure that
policies do not become overly deterministic too quickly. This encourages exploration and
helps avoid premature convergence to suboptimal policies, enhancing stability. The entropy
term promotes sufficient exploration of the policy space, which is critical for navigating
the complex and non-convex optimization landscape effectively [57,58]. The SAC objective
function for the policy π is given by:

J(π) =
T

∑
t=0

E(st ,at)∼ρπ
[r(st, at) + αH(π(· | st))] (2)

where ρπ denotes the state-action distribution under policy π, r(st, at) is the reward func-
tion, α stands for the temperature parameter controlling the trade-off between reward and
entropy, and H signifies the entropy of the policy.

The core components of SAC, instrumental in operationalizing its objectives, are the
action-value function Q(st, at), the state-value function V(st), and the policy π(at | st),
governed by which are defined as follows:

Q(st, at) = r(st, at) + γE(st+1∼p)[V(st+1)]

V(st) = Eat∼π

[
Q(st, at)

[
αlogπ(at |st)

] (3)

The policy is updated by minimizing the expected KL divergence to a target policy,
effectively adjusting the policy toward actions that maximize the expected sum of rewards
and entropy. The optimization of these components is achieved through iterative updates,
leveraging stochastic gradient descent and experience replay for efficient learning.

SAC’s introduction of the entropy term into the optimization objective ensures a more
exploration strategy than traditional reinforcement learning algorithms. By dynamically
adjusting the policy to encourage exploration, SAC mitigates the risk of premature con-
vergence to suboptimal policies and enhances the algorithm’s adaptability to diverse and
unpredictable environments.

In operationalizing SAC, neural networks Qθ(st, at) and πϕ(at | st) are employed to
represent the action-state value function Q(st, at) and policy π(at | st), respectively. The
iterative refinement of these entities is facilitated through minibatch sampling from the
experience replay buffer. Furthermore, the introduction of a target network for both Q(st, at)
and π(at | st) enables soft updates, markedly enhancing the stability of the learning process.
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The optimization of SAC’s framework is governed by two distinct loss functions, tailored to
refine the critic and actor networks. Critic network and actor network losses are given by:

JQ(θ) = E(st, at)∼D

[
1
2
(
Qθ(st, at)− Q̂(st, at)

)2
]

Jπ(ϕ) = Est∼D,at∼πϕ

[
log πϕ(at | st)− 1

α Qθ(st, at)
] (4)

in which
Q̂(st, at) = r(st, at) + γEst+1∼p

[
Vψ(st+1)

]
(5)

4. Methodology

In this section, we outline the methodology. Initially, we investigate the LSTM battery
prediction, followed by the elucidation of our HRL framework and its integration into
the system.

4.1. LSTM Battery Prediction

Predicting battery consumption accurately is critical for optimizing the aerial robot’s
path planning and mission execution. LSTM networks, known for their ability to capture
long-term dependencies and temporal patterns in sequential data [59], are particularly effec-
tive for this task. Recent advancements in LSTM applications, such as those demonstrated
by [60,61], highlight their effectiveness in energy consumption prediction.

Our proposed model for battery consumption prediction incorporates a bidirectional
LSTM (Bi-LSTM) framework, as illustrated in Figure 2. A Bi-LSTM layer is a neural network
architecture that extends the traditional LSTM networks by introducing a dual structure to
process data sequences in both forward and backward directions simultaneously [62]. This
bidirectional approach allows the network to capture temporal dependencies from both
past (backward) and future (forward) states, thereby enhancing its ability to understand
context and sequence dynamics.
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Each Bi-LSTM comprises two separate LSTMs, each processing the data in opposite
directions—one forward and one backward—with their respective parameters and hidden
states, which are then concatenated at each time step that leads to a more robust representa-
tion of temporal sequences. Bi-LSTM layers are particularly effective in tasks where the
context of the entire sequence is crucial for accurate predictions [63]. The incorporation of
two Bi-LSTM layers in our LSTM architecture enhances the model’s capacity to capture
and interpret complex temporal dependencies in sequential data. The first Bi-LSTM layer
effectively captures immediate, short-term temporal patterns, while the subsequent layer,
receiving the output of the first, can discern more abstract, higher-level temporal relation-
ships in the data. This ability makes the model particularly suited for complex sequential
modeling tasks where understanding both past and future contexts is vital [64].

The input layer includes aerial robot-specific operational parameters including aerial
robot velocity (v), payload weight (PW), historical battery measurements (Bhi

), current
battery level (Bc), and the position of the aerial robot. These parameters heavily influence
battery consumption in aerial robot operations. It is important to note that our analysis does
not consider flight and environmental conditions, like motor efficiency and wind, and it is
assumed that the altitude is constant. Additionally, the model’s scope is limited to cruising
phases of aerial robot operation, excluding aspects of takeoff and landing maneuvers.

Following Bi-LSTM layers, a dropout layer is designed to counteract overfitting. The
dropout rate serves as a hyperparameter, adjustable during the model’s validation phase
for optimal performance tuning. After the data pass through the dropout layer, they are
then processed by a dense layer. This dense layer serves to further interpret the features
extracted by the bidirectional LSTM layers and to consolidate the information into a form
that is suitable for output prediction. This dense layer uses a ReLU activation function and
has 128 cells.

The output layer uses a linear activation function to predict the upcoming battery
level and determines the battery requirements necessary for reaching each target. Each of
the LSTM layers contains 128 hidden cells. The input data are processed in time windows
of a length of 20, and they are matched with the TC, which ensures the model’s predictions
are synchronized with the HLC updates.

Regarding the mathematical formulation of the proposed LSTM model, we define
an input vector Xt in RN for each time instant t, which includes N key inputs. The aerial
robot’s energy consumption at a time t is represented as Et ∈ R. Our goal is to develop a
predictive function F(·) that can accurately predict energy consumption across a specified
time window. The core of our analysis involves minimizing the total squared differences
between the actual (Et) and predicted (Êt = F(Xt)) energy consumption. This objective,
aimed at enhancing the accuracy of energy usage predictions for aerial robot operations, is
formalized by optimizing the function ∑t∈T

(
Et − Êt

)2, ensuring F accurately predicts Et
from Xt.

For this problem, the mean squared error (MSE) is employed as the loss function
and the Adam optimizer is selected as an optimizer. The hyperparameters are shown in
Table 1. The hyperparameters were chosen based on the minimum averaged MSE as these
parameters were identified to yield optimal results during the 5-fold cross-validation phase.

Table 1. Hyperparameters for the LSTM model.

Parameter Value

Hidden units per layer 128
Learning rate 0.001

Batch size 128
Number of epochs 50

Dropout rate 0.5
Optimizer Adam

Input features Battery level, velocity, distance, time duration, position
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4.2. Proposed Hierarchical Reinforcement Learning Framework
4.2.1. Goal-Conditioned Hierarchical Reinforcement Learning

This framework employs a two-level policy structure where the HLC, represented
as πHLC, determines goals based on the environmental state and the LLC, represented as
πLLC, scores actions to achieve these goals. The HLC is responsible for setting feasible
goals for the LLC. One important difference between the HLC and LLC learning process is
that the LLC generates transitions (gt, st, at, rt, st+1) at every single time step through the
primitive aerial robot actions, while the transitions of HLC (Gt, st, pt, rt, Gt+Tc , st+Tc) are
produced over a slower time scale through a sequence of goal selections.

The HLC is tasked with the strategic selection of intermediate objectives, referred to
as feasible goals (Gt), based on the agent’s current environmental state (st). These goals
are set within the domain of the goal space G, which, in our study, includes locations of
multiple targets.

Transition dynamics in the HRL framework are critical. They define how the agent
moves from one goal to the next. Mathematically, this transition is represented as:

gt+1 = πHLC(st+1), f or t ≡ 0 (mod Tc) (6)

Equation (6) denotes the transition mechanism from one high-level goal to the next,
occurring at intervals of c time steps. Here, c represents the frequency of updates from the
HLC, indicating how often the high-level goals are reassessed and potentially altered based
on the evolving state of the environment.

Between these transition points, the high-level goal adaptation function, η
(

st, gt, s{t+1}

)
comes into play, defined as:

η(st, gt, st+1) = ∆ f (st, gt)− ∆ f (st+1, gt) (7)

where ∆ f represents the differential mapping from the state-goal pairs to the goal space G.
The LLC πLLC undertakes the execution of these high-level objectives by generating a

sequence of actions at in response to the current state st and high-level goal gt. The efficacy
of these actions is evaluated based on the feedback from the environment, encapsulated
in the reward signal r(st, at). The LLC performs immediate goal-conditioned actions at
based on the current state st and the goal Gt, with actions optimized at every time step.
The low-level policy aims to achieve the set goals within the c-step timeframe, guided by
an intrinsic reward function. This process will continue until the target is reached or one
of three scenarios occurs: either an obstacle collision occurs or the aerial robot is unable
to reach the target within a predefined maximum number of time steps or the aerial robot
reaches the required charge for the goal.

HLC and the LLC receive rewards separately while interacting with the environment.
The HLC receive extrinsic reward from the environment for choosing the best goal based on
its states for the LLC. The LLC receive intrinsic rewards conditioned by the goal specified
by the HLC. The HLC optimizes policy πHLC to select goals Gt based on the state sT ,
aiming to maximize a combination of expected cumulative rewards and policy entropy.
The reward rtHLC for the HLC incorporates factors like mission success and the feasibility
of goals considering the predicted battery consumption. The reward function for πHLC
is formulated to accumulate rewards over a fixed interval of c time steps. Equation (8)
describes the reward function for the HLC. It accumulates the rewards over c time steps,
with γ representing the discount factor, a measure of the importance of future rewards.

RHLC(st, gt) =
c−1

∑
i=0

γir(st+i, at+i) (8)
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The primary goal of the high-level policy is to optimize the expected cumulative
reward, which is expressed as:

G(πHLC) = E

[
∞

∑
t=0

γtRHLC(st, gt)

]
(9)

In contrast, the low-level policy aims to achieve the set goals within the c-step time-
frame, guided by an intrinsic reward function. This function is designed to maximize the
expected return related to the achievement of the intermediate goals:

G(πLLC) = E

[
c

∑
t=0

γtRLLC(st, gt, st+1)

]
(10)

4.2.2. Soft Actor-Critic for Proposed Hierarchical Reinforcement Learning Augmented with
LSTM Battery Prediction

In this framework, we employ the off-policy RL algorithm SAC to train policies at
both the HLC and LLC. The SAC optimizes the policy for selecting targets that maximize
mission success and efficiency at the HLC layer and that are operatively focused. Also, the
LLC employs SAC to optimize the aerial robot’s navigation toward the chosen targets and
manage specific tasks efficiently.

The HLC is responsible for making decisions on selecting reachable targets, consid-
ering states and the predicted battery for each target from the LSTM. The LSTM model
predicts battery consumption for different targets to help the HLC policy choose feasible
goals for the LLC. The LSTM’s predictions are integrated into the HLC framework as
part of the state information, aiding the HRL model in making more informed decisions,
especially during the early stages of training when it has not yet learned to effectively
predict battery usage.

The critic loss function for the HLC using SAC is defined as:

LHLC
Q (θHLC) = E(Gt ,st ,pt ,rtHLC ,Gt+Tc ,st+Tc∼DHLC)

[
1
2

(
QθHLC (st, Gt)− Q̂HLC

t

)2
]

(11)

where QHLC
t = rHLC

t + γHLCE[Vθ−HLC
(st+Tc)

]
, and DHLC is the replay buffer for HLC, con-

taining transitions over a slower time scale through sequences of goal selections. Moreover,
the actor loss function for the HLC is given by:

LHLC
π (ϕHLC) = E(st∼DHLC)

[ [
log

(
πϕ HLC(Gt | st)

)
− 1

α
Q

θHLC
(st, Gt)

]]
(12)

The LLC is tasked with implementing objectives delineated by the HLC, operating
autonomously to fulfill these specified goals. It is presumed that the goals set by the HLC
are optimal, guiding the LLC’s policy to adapt its actions toward efficient goal achievement.
The LLC’s primary responsibility includes navigating the aerial robot toward its objectives
while managing its battery efficiently and navigating around obstacles, embodying a direct
application of the high-level strategy to operational actions. The HLC objectives for the LLC
persist until the LLC either fulfills these objectives or encounters conditions that necessitate
an alternative approach, as mentioned before.

We enhance the decision-making process of the LLC by integrating LSTM-based pre-
dictions of battery consumption into the actor network’s objective function. This integration
allows the LLC to make more informed decisions that not only aim to achieve operational
objectives but also optimize for energy efficiency. The key idea is to leverage the LSTM’s
capability to predict the battery consumption associated with different actions in given
states, thus enabling the aerial robot to prefer actions that are energy efficient. The LLC
optimization incorporates LSTM predictions to adjust actions for energy efficiency and LLC
Objective Function integrates the LSTM’s prediction of battery consumption, adjusting the
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SAC objective to balance mission success, policy entropy, and predicted battery efficiency.
Thus, the LLC actor loss function is defined as:

LLLC
π (ϕLLC) = E(gt ,st)∼DLLC

[[
αlog

(
. πϕLLC (at | st, gt)

)
− QθLLC (st, at, gt) + λ · LSTMcost(at ,st)

]]
(13)

where LSTMcost(at ,st)
represents the predicted battery consumption cost for acting at in

state st, predicted by the LSTM. λ is a weighting factor that balances the importance of
energy efficiency (battery usage optimization) against other objectives within the LLC’s
loss function. This formulation explicitly integrates LSTM-based predictions into the LLC’s
objective function, allowing for the aerial robot to make informed decisions that optimize
both operational objectives and energy efficiency.

Critic loss for LLC is defined as follows:

LLLC
Q (θLLC) = E(st ,at ,gt ,rt ,st+1)∼DLLC

[(
rt + γE

[
Vθ−LLC

(st+1, gt)
]
− QθLLC (st, at, gt)

)2
]

(14)

The architecture and hyperparameters of the proposed hierarchical reinforcement
learning model are detailed in Table 2.

Table 2. Proposed hierarchical reinforcement learning hyperparameters.

Parameter Value

Learning rate (HLC, LLC) 0.0001, 0.0003
Actor/Critic L2 regularization factor 0.00001

Batch size 64
Replay buffer size 1,000,000
Discount factor (γ) 0.99

Target update interval 5
τ 0.005

Actor network 2 layers (256 units each)
Critic network 2 layers (256 units each)

Temperature parameter (α) Start with 0.2
Activation function ReLU

4.2.3. Switching Mechanism in the HLC

In our proposed framework, the HLC initially leverages LSTM predictions for battery
consumption to inform its goal-setting and decision-making processes. This reliance on
LSTM outputs facilitates early-stage learning, enabling the HLC to make informed decisions
with limited experience. As the HLC interacts more with the environment, it starts learning
from the environment experiences. It gradually understands the dynamics of battery
consumption in relation to various actions and environmental conditions. With increasing
knowledge, the reliance on the LSTM estimator decreases.

Therefore, as training progresses, our framework incorporates an adaptive switching
mechanism that dynamically adjusts the reliance on LSTM predictions based on their accu-
racy compared with the model’s internal decision-making processes. The HLC gradually
transitions to a more autonomous decision-making model when its internally generated
predictions or decisions consistently exhibit lower errors compared with the LSTM’s predic-
tions. This transition underscores the HLC’s capability to internalize and surpass the LSTM
model’s predictive accuracy through continuous learning, ultimately achieving enhanced
autonomy and efficiency in mission planning and execution.

This shift is governed by comparing the temporal difference (TD) error, δTD, against
the LSTM prediction error δLSTM = 1

N ∑N
i=1 Bi

est − Bi
C where N is the number of instances

or episodes considered for the evaluation, Bi
est is the LSTM model’s predicted battery level

for the ith instance, and Bi
C is the corresponding currently observed battery level. The policy

switch occurs when δTD < δLSTM and x episodes have passed.
The TD error is defined as δTD = rt + γV(st+1)− Q(st, at). Here, rt is the reward at

a time t; V(st+1) is the value function of the next state, estimated by the critic network,
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representing the expected return; Q(st, at) is the action-value function output by the critic
network for the current state-action pair, indicating the expected return of taking action
in the state; and γ is the discount factor, weighing the importance of future rewards. This
adaptive mechanism ensures that the HLC enhances its autonomy and efficiency in mission
planning, optimizing energy usage based on real-time learning and experiences.

4.3. Proposed HRL Modeling
4.3.1. HLC Network

The state space of the HLC is designed to navigational and operational metrics,
essential for optimizing aerial robot mission strategies. We define the state space SHLC as:

SHLC = [D, θ, Bc, PW , v, Best] (15)

where D quantifies the Euclidean distances to each mission target and the recharge station
from the aerial robot’s current coordinates, enhancing route planning efficacy, and θ repre-
sents the bearings from the aerial robot to these points of interest, crucial for directional
guidance. In addition, the current battery level Bc, and the payload weight PW ,, directly
influence the aerial robot’s flight dynamics and energy consumption. The aerial robot’s
velocity vector v =

(
vx, vy, vz

)
and the predicted battery requirements Best for reaching

each target, as predicted by the LSTM model, complete the state space definition, facilitating
informed, energy-efficient decision-making.

The action space AHLC for the HLC is defined as:

AHLC = [T , ∆BHLC] (16)

where T denotes the selection action for the next target point, and ∆BHLC specifies the
anticipated battery charge required to reach the selected target. This action space enables
the HLC to dynamically choose between progressing toward mission targets or recharging,
contingent upon the current operational state and energy requirements. In addition, to
enhance the reliability of our proposed framework, we incorporate a safety margin into the
battery consumption prediction model. This safety margin accounts for uncertainties, such
as unexpected maneuvers to avoid obstacles, which might impact the aerial robot’s energy
consumption. After the initial 1000 episodes of training, this safety margin is manually
adjusted based on observed performance and environmental interactions.

The reward function for the HLC, RHLC = ∑4
i=1 Ri, is designed to encapsulate this

layer’s objectives, promoting actions that enhance mission success while conserving energy
and ensuring safety:

Target Achievement Reward (R1): The primary component of the HLC’s reward func-
tion is designed to incentivize the selection of reachable targets and efficient
resource utilization:

R1 = RH1 − (w1 · D + w2 · Best)− Dt (17)

where RH1 represents the base reward for targeting a new goal. De is the Euclidean distance
to the selected target, and Best denotes the predicted battery usage to reach the target.
Moreover, w1 and w2 are scaling factors that adjust the influence of distance and battery
usage on the reward. Dt is a traveled distance by the aerial robot, which helps choose the
optimal path. In scenarios where a target is deemed not reachable due to goal feasibility, a
high penalty of RH2 is applied to discourage the selection of targets.

Successful Delivery Reward (R2): Upon successful delivery of a payload to a target,
the HLC is awarded a significant reward (R2 = RH3 ) for each target.

Mission Efficiency Bonus (R3): To further incentivize the completion of the mission
with minimal energy expenditure, an additional bonus (R3 = RH4 ) is awarded if all targets
are served without the need for recharging.



Drones 2024, 8, 283 14 of 27

Recharging Decision Component (R4): The HLC’s decision to recharge the aerial
robot’s battery is also factored into the reward function:

R4 =


RH5 Aerial robot recharges when critically low on battery.

−RH7 Aerial robot fails to recharge when critically low on battery.
−RH8 aerial robot recharges unnecessarily.

(18)

4.3.2. LLC Network

The state space of the LLC, denoted as SLLC, encapsulates the aerial robot’s operational
parameters necessary for executing navigational tasks toward predefined goals. Formally,
we define SLLC as:

SLLC =
[
D, θ, vx, vy, vz, Li, BHLC, Bc

]
(19)

where D represents the aerial robot’s distance to the target from GPS coordinates; θ denotes
the orientation toward the goal; vx, vy, vz are the velocity components from the IMU, Li
encapsulates the lidar data for obstacle detection; BHLC is the predicted battery required to
reach the goal from HLC; and Bc is the current battery.

The LLC leverages environmental data acquired through LIDAR distance sensors,
characterized by a scan angle range of π radians. the horizontal plane is monitored
using seven sensors, with an angular resolution of π/6 radians between adjacent rays.
The lidar range consider 50 m. This configuration ensures a detailed spatial awareness,
facilitating the aerial robot’s ability to navigate complex environments by detecting and
avoiding obstacles.

The LLC’s action space is meticulously defined to accommodate precise control over
the aerial robot’s navigational and energy management strategies. The action space, de-
noted as ALLC, is normalized to a range of −1 to 1 for both speed adjustments and yaw
angle modifications

[
av, aψ

]
.

The LLC is responsible for the execution of navigation and operational tasks. The
intrinsic reward function for the LLC, RLLC = ∑7

i=1 Ri, is designed to encourage efficient
path execution and safe navigation:

Proximity to Target Reward (R1): This reward increases as the aerial robot moves
closer to the target, encouraging the reduction in the distance to the goal, using the differ-
ence in distances between consecutive states, defined as:

R1 = d(st)− d(st+1) (20)

where d(st) is the distance to the target from the current state and d(st+1) is the distance to
the target from the next state.

Target Reach Reward (R2): A reward (R2 = RL1) given when the aerial robot reaches
the target where RL1 is a large positive value.

Efficient Path Penalty (R3): A constant penalty (R3 = −RL2) for each time step taken
to encourage time efficiency in reaching the target where RL2 is a small positive constant.

Energy Efficiency Reward (R4): This reward encourages energy-efficient navigation,
given by

R4 =
(BC − BHLC) · (Best − Bc)

Btotal
(21)

where BHLC is the battery at the target from high-level, Best and Bc are the predicted values
from LSTM for the state and current battery level, and Btotal is the total battery capacity.

Battery Threshold Penalty (R5): A penalty (R5 = RL3 ) is considered if the battery level
(BC) falls below a certain threshold where RL3 is a penalty reward.

Obstacle Avoidance Penalties (R6 and R7): A safety zone penalty (R6 = RL4) is ap-
plied when entering the safety zone around obstacles to encourage maintaining a safe
distance. Moreover, a substantial collision penalty (R7 = RL5 ) for colliding with obstacles is
considered, with RL5> RL4 to reflect the higher severity of collisions.
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4.4. Hindsight Experience Replay

One of the challenges in deploying HRL for aerial robot navigation is the non-
stationary nature of the environment, which stems from dynamic changes in the goals
set by the HLC. These changes can cause the optimal policy to shift over time, making it
difficult for the LLC to consistently achieve its assigned goals.

To address this challenge, we incorporate HER into our framework. HER is particu-
larly adept at mitigating the effects of non-stationarity by allowing the LLC to learn from
both successful and unsuccessful attempts, effectively turning failures into valuable learn-
ing opportunities. HER enables the LLC to reinterpret previously unsuccessful attempts at
reaching a goal as successful outcomes toward alternative goals, fostering adaptive learning
from every mission scenario. This approach enhances the LLC’s capability to adjust its strat-
egy in response to changing environmental conditions and mission parameters, ensuring
continuous improvement in the operational efficiency and decision-making process

To implement it, we begin with the LLC, denoted here as Algorithm LLC, and ensure
the replay buffer DLLC is initially empty. At the onset of each episode, an initial state s0 and
a goal g are randomly selected from their respective spaces, S and G. During the episode,
spanning environment steps t = Tc, the LLC engages with the environment to produce
transitions (gt, st, at, rt, st+1).

Upon completion of these steps, HER examines the sequence of states traversed, repre-
sented as ζ = {s0, s1, ..., sT}. Utilizing this sequence, HER proceeds to populate the replay
buffer DLLC with each transition (st, at, rt, st+1), alongside the initial goal G. In a subse-
quent step, HER enriches the dataset by appending additional transitions (st, at, r′t, st+1),
each associated with a new goal g′ ∈ ϕ where ϕ =

[
g′1, g′2, ..., g′m

]
consists of m novel goals

selected uniformly from the encountered states ζ = [s0, s1, ..., sT ].
This enhancement process allows HER to offer the LLC agent augmented rewards

rt
′ = r(st, at, g′) for each new goal g′, irrespective of the original goal G’s achievement

status. Therefore, HER boosts the LLC agent’s efficiency in learning and its capability to
successfully attain goals, broadening the agent’s exposure to a variety of potential scenarios.

When the aerial robot fails to reach its designated goal due to battery exhaustion, HER
recalibrates the learning objective based on the actual operational outcome. It identifies
the furthest point e1 reached within the battery’s capacity as a new achievable goal g1

′.
This relabeling process includes updating the experience tuple to reflect the current battery
Bc and correlating it with the traveled distance Dt. In instances where the aerial robot’s
mission is compromised due to an inability to successfully navigate around obstacles, HER
adapts by selecting the point of failure e2 as a new goal g′2. For scenarios where the aerial
robot does not fulfill its objective within the allocated number of steps, HER intervenes by
marking the endpoint reached within the step constraint E as the revised goal g′3.

5. Experimental Setup and Results

In our study, we conducted an experimental analysis to assess the performance of
our proposed hierarchical reinforcement learning framework. Our evaluation is twofold:
initially, we verified the accuracy of the pre-trained LSTM model, followed by an assess-
ment of our HRL approach’s effectiveness. We compare our model’s performance against
standard soft actor-critic and soft actor-critic augmented with HER models and hierarchical
actor-critic (HAC) [65] to showcase the improvements our framework offers.

5.1. Simulation Environment and Setup

Simulations were performed using MATLAB 2023, leveraging a preconfigured aerial
robot model from Simscape within the UAV Toolbox. This setup allowed us to accurately
replicate the flight dynamics and battery consumption of aerial robots in a simulated
400 × 400 × 50 m environment. The aerial robot’s start point is set constant, and the
recharging station is located at the starting position. Missions tasked the aerial robot with
reaching randomly placed survivor positions in each trial, flying at speeds up to 20 m/s.
Details on the aerial robot model can be found in Table 3.
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Table 3. Parameters of the aerial robot employed in simulations.

Parameter Value

Planar dimensions 12.5 m × 8.5 m
Battery capacity 7.6 × 3 Ah

Mass 1.2726 kg
Propeller diameter 0.254 m
Motor max torque 0.8 Nm
Motor max power 160 W

In our simulation framework, we consider the aerial robot’s height constant during
the mission to simplify the problem to a 2-dimensional space. This assumption allows us to
focus on optimizing horizontal navigation and battery consumption without the added
complexity of 3-dimensional movement.

5.2. Performance of LSTM Predictor

In this section, we detail the outcomes of our experiments with the LSTM-based model
for predicting battery consumption. Our goal is to demonstrate the model’s predictive
accuracy using the dataset [66]. The dataset contains energy usage data for 100 commercial
aerial robots; these data were documented over 195 test flights. These flights varied in
terms of payload, velocity, and elevation. Data collection encompassed distinct attributes,
capturing details from the aerial robot’s current battery, GPS, and IMU. We selected the
parameter set that minimized the average mean squared error (MSE), identifying it as the
optimal hyperparameter for our model.

Table 4 provides the hyperparameters and corresponding evaluations. Based on the
results of Table 4, our analysis selected the hyperparameter set with a 0.5 dropout rate,
a 0.001 learning rate, and a batch size of 128 due to its predictive accuracy, as evidenced
by the lowest average RMSE and average MSE. Figure 3 shows the performance and
validation of the LSTM based on the corresponding optimal hyperparameters. It illustrates
the performance of the proposed LSTM architecture in data prediction.
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Table 4. Analysis of hyperparameters and their impact on model performance.

Dropout Learning Rate Batch Size Average MSE Average RMSE

0.2 0.001 128 5.523 45.324

0.2 0.0001 128 5.796 47.256

0.5 0.001 128 5.404 43.195

0.5 0.0001 128 5.631 44.237

0.5 0.01 128 6.884 59.462

Figure 4 presents the LSTM model’s performance in comparison to the ground truth
data, focusing on the actual aerial robot battery consumption without accounting for
wind effects. The evaluation of the model’s accuracy was based on the MSE between the
predicted and actual battery levels. The results reveal that the LSTM model achieves high
precision on the testing dataset, exhibiting a minimal discrepancy of just 4.503 watts from
the true energy consumption.
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5.3. Training Result

To evaluate the efficacy of our proposed algorithm in aerial robot path planning, we
designed a simulation framework within a MATLAB environment, encompassing a spatial
domain of 400 × 400 × 50 m. The simulation environment is dynamically configured for
each training episode, with the aerial robot’s initial position randomly chosen from the
environment’s corners. This setup is further complicated by the presence of 20 cylindrical
obstacles randomly distributed across the space, each with a 7 m radius and a 50 m height,
to mimic navigational challenges. Also, the aerial robot should deliver variable payloads
(25, 25, 50, 75 g) to four randomly positioned targets.

The high-fidelity simulated environment generates a large and diverse set of training
samples by replicating various scenarios. To enhance the robustness and generalization of
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our model, we employ domain randomization techniques, systematically varying aspects
such as target locations.

To ensure learning and convergence, we set the maximum number of training episodes
to 10,000, with each episode capped at 500 time steps. The hierarchical decision-making
process is governed by a temporal goal-setting interval (Tc) of 20 steps to strike a balance
between goal feasibility and computational time.

In all simulated environments, we assume that the aerial robot’s battery is sufficiently
charged to complete deliveries to all targets without the need for interim recharging
provided the operation is executed with energy efficiency. In all the environments, a safety
margin of 0.5 around each obstacle is considered.

Our comparative analysis, illustrated in Table 5, Figures 5 and 6, positions our algo-
rithm against SAC, SAC integrated with HER, and HAC with SAC. Uniformity across trials
was maintained by considering three random seeds for each algorithm. Figure 5 illustrates
the cumulative average reward, with solid curves representing the mean performance and
shaded areas highlighting the variability across different seeds. This graph underscores
the superiority of our algorithm, showcasing its excellence in convergence efficiency and
path planning effectiveness. The distinct advantage of our algorithm is attributed to a
multifaceted approach:

Table 5. Comparison of success and collision rates at 2000, 5000, and 10,000 episodes for proposed
HRL, HAC, SAC, and SAC augmented HER.

Metric/Training Phase Proposed HRL HAC+SAC SAC SAC+HER

Success rate (%)—After 2000 episodes 62.5 56.8 40.1 52.4

Success rate (%)—After 5000 episodes 83.1 72.3 54.2 68.4

Success rate (%)—After 10,000 episodes 92.4 84.7 62.2 79.3

Collision rate (%)—After 2000 episodes 22.8 27.1 31.4 24.2

Collision rate (%)—After 5000 episodes 11.7 15.4 19.2 17.4

Collision rate (%)—After 10,000 episodes 5.2 8.1 13.5 9.3
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Figure 6. Comparison of success rates after 10,000 episodes across different algorithms during the
training phase.

Hierarchical Task Decomposition: Simplifying the complex aerial robot path planning
into a structured hierarchy of sub-tasks expedites the learning process. This strategic seg-
mentation allows for quicker adaptation and efficient resolution of navigational challenges.

LSTM-Enhanced Goal Setting: Integrating LSTM networks enables dynamic and
realistic goal setting by the high-level policy, considering the aerial robot’s state and
immediate environmental context. This not only accelerates convergence but also minimizes
the risk of mission failure by ensuring that goals are both relevant and attainable.

Stability through Hindsight Experience Replay: The incorporation of HER plays a
crucial role in enhancing the stability of the low-level controller amidst the dynamic goal
adjustments from the high level. By reinterpreting past experiences under new goals,
HER enables the low-level controller to maintain a consistent learning trajectory, thus
significantly bolstering stability and ensuring robustness against the variability in high-
level goal setting.

Adaptive Goal Flexibility: HER also aids in adapting the aerial robot’s behavior to
sudden changes in goals, ensuring that the learning process remains unaffected by the high-
level policy’s dynamic decisions. This adaptability is crucial for maintaining performance
consistency across varied and unpredictable scenarios.

Training results show a higher success rate, accelerated convergence, and enhanced
stability in aerial robot path planning tasks compared with established benchmarks.

Figure 7 shows the energy efficiency of our proposed method in the training environ-
ment in comparison to other methods. The LSTM-based prediction model anticipates future
battery requirements, so our system can make informed decisions that optimize energy use.
The hierarchical structure of our framework enables control over aerial robots’ missions.
This allows for mission planning that inherently prioritizes energy efficiency, from the
macro selection of mission objectives to the micromanagement of in-flight maneuvers. The
integration of HER into our framework enhances the aerial robot’s ability to learn from past
experiences, including previous energy expenditures. This learning process fine-tunes the
aerial robot’s decision-making, steering it toward more energy-efficient strategies over time.
Moreover, by adapting to the outcomes of past missions, our system continuously refines its
understanding of energy-optimal behaviors. A critical aspect of our system’s design is the
frequent update mechanism within the hierarchical decision-making process. By adjusting
goals and paths at regular intervals based on real-time data and predictive insights from
the LSTM model, the aerial robot can make corrections to its flight plan that avert inefficient
energy use. This dynamic adaptability reduces the likelihood of scenarios that necessitate
regular recharges, ensuring that the aerial robot’s energy reserves are utilized for prolonged
operational periods.
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5.4. Test Result and Discussion

After training in the training environment, we tested the proposed algorithm against
benchmark algorithms and algorithms in the literature, including, SAC, SAC integrated
with HER, and HAC in the following environments to evaluate the performance of the pro-
posed algorithm. All test environments have the same dimensions as the
training environment.

To evaluate the performance of each algorithm in the test environments, for each
environment and algorithm, we observed the following performance metrics: the success
rate, which represents the aerial robot’s ability to successfully deliver to all the targets after
2000 episodes; the collision rate, which indicates instances where the aerial robot collides
with an obstacle; and the average rewards. Additionally, since the primary focus of this
paper is path planning, we primarily illustrate the paths generated by the proposed method.
Table 6 presents the results for each environment, comparing our proposed method to other
algorithms in terms of success rate, collision rate, and average rewards.

Environment 1: In this scenario, the aerial robot maneuvered through 50 cylindri-
cal obstacles, while delivering uniform payloads of 25 g to each of the three targets and
there was no need to recharge. The path generated by the proposed HRL is shown in
Figure 8. The proposed HRL algorithm recorded a success rate of 90.1%. This level of
performance highlights the algorithm’s exceptional ability to navigate through densely
populated obstacle spaces with robust obstacle avoidance and energy management capa-
bilities. Additionally, a lower collision rate of 8.1% attests to its precision in ensuring safe
navigation. The average reward metric further underscores the overall mission efficiency
of the algorithm. Notably, the proposed HRL algorithm maintains a high success rate even
in environments laden with a greater number of obstacles, whereas other methods exhibit
a more pronounced decline in success rates. Moreover, it gives the lowest loss rate among
the compared methods.

Environment 2: In this scenario, the aerial robot maneuvered through 30 cylindrical
obstacles while delivering uniform payloads of 25 g to each of the three targets. As the
obstacle density decreased in the second environment, the proposed HRL algorithm not
only maintained but also improved its success rate to 95.3%. This improvement reflects the
algorithm’s adaptability to varying environmental complexities, showcasing an enhanced
ability to optimize routes and manage payloads effectively. The collision rate further
dropped to 3.5%, indicating an even more pronounced advantage in navigating with safety
and precision. The generated path by the proposed method in Environment 2 is shown in
Figure 9.
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Environment 3: In this configuration, the experiment incorporated 30 cylindrical
obstacles, maintaining a uniform payload and featuring five targets.

Table 6. The comparative analysis of performance across test environments 1, 2, 3, and 4 for the
proposed algorithm versus SAC, HAC, and SAC augmented with HER.

Environment Proposed HRL SAC HAC+SAC SAC+HER

SR (%)

E 1 90.1 59.2 81.1 75.4

E 2 95.3 64.1 85.5 82.2

E 3 93.6 61.7 82.2 79.7

E 4 89.4 55.4 76.6 71.2

CR (%)

E 1 8.1 24.6 9.4 12.3

E 2 3.5 16.4 5.2 5.6

E 3 3.8 17.2 5.8 5.8

E 4 6.4 22.1 8.2 6.1

AR

E 1 26.7 15.90 24.33 21.37

E 2 28.43 18.21 25.61 23.25

E 3 46.48 30.78 41.50 39.15

E 4 62.32 38.51 56.62 54.14
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The introduction of more targets presented a more complex challenge, yet the proposed
HRL algorithm continued to excel with a 93.6% success rate. This environment tested
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the algorithms’ capacity to manage additional mission objectives without compromising
efficiency or safety. The proposed HRL’s success in this scenario emphasizes its effective
goal prioritization and energy utilization strategies, crucial for handling multiple objectives.
The generated path by the proposed method in Environment 3 is shown in Figure 10.
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Environment 4: Similar to Environment 3, this setting encompassed 30 cylindrical
obstacles with a uniform payload distribution, yet with an increased target count of 7. The
proposed HRL algorithm achieved an 89.4% success rate, the highest among the compared
methods, demonstrating its resilience and strategic planning prowess in highly complex
scenarios. Although the success rate saw a slight decline from previous environments, the
algorithm’s consistent performance in terms of both collision rate and average rewards
highlighted its robustness and the effectiveness of its hierarchical decision-making frame-
work. The generated path by the proposed method in Environment 4 is shown in Figure 11.
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Based on Table 6, the proposed HRL method consistently achieves higher success
rates across all test environments, highlighting its robustness and efficiency. Specifically,
it achieves a success rate of 90.1% in Environment 1, significantly outperforming SAC
(59.2%), HAC+SAC (81.1%), and SAC+HER (75.4%). This trend continues in Environment
2 with a success rate of 95.3% and in Environments 3 and 4 with success rates of 93.6%
and 89.4%, respectively. These results demonstrate the method’s superior adaptability and
effectiveness in varied and complex scenarios.

Our method also exhibits lower collision rates compared with the benchmark algo-
rithms. In Environment 1, the collision rate is 8.1%, compared with SAC (24.6%), HAC+SAC
(9.4%), and SAC+HER (12.3%). This improvement persists across all environments, with
collision rates of 3.5% in Environment 2, 3.8% in Environment 3, and 6.4% in Environment
4. These results underscore the method’s effectiveness in ensuring safe navigation and
obstacle avoidance.

The average rewards achieved by our method are significantly higher in all test
environments. For instance, in Environment 1, the average reward is 26.7, compared with
15.90 for SAC, 24.33 for HAC+SAC, and 21.37 for SAC+HER. This trend continues with
rewards of 28.43 in Environment 2, 46.48 in Environment 3, and 62.32 in Environment
4. Higher average rewards indicate more efficient path planning and energy utilization,
validating the advantages of our HRL framework with LSTM-based battery prediction.
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Across all test environments, the proposed HRL algorithm consistently outperformed
SAC, HAC+SAC, and SAC+HER in success rate, collision avoidance, and average rewards.
This superior performance can be attributed to the algorithm’s integration of LSTM-based
energy consumption prediction, adaptive goal setting, and an advanced learning mech-
anism that dynamically optimizes path planning and energy management in real time.
The success rates of our algorithm diminished less compared with the other models under
testing. Furthermore, our results indicate that our proposed algorithm achieved faster
convergence with fewer steps required, an essential factor in time-sensitive SAR operations.

In reinforcement learning literature, achieving a success rate of approximately 90% in
dynamic and obstacle-rich environments is considered highly effective, and as the results
show, the effectiveness of our approach is evident [56]. The integration of LSTM for energy
prediction and HER for enhanced learning efficiency significantly contributes to the high
performance of our method. Our approach not only demonstrates superior adaptability
and efficiency but also maintains robustness across varied scenarios, which is crucial for
practical applications in search and rescue missions.

6. Conclusions

This study presents a hierarchical reinforcement learning framework, enhanced with
a long short-term memory-based battery consumption prediction model, for optimizing
aerial robots’ operations in post-disaster scenarios. The integration of LSTM into the
HRL framework has been a pivotal advancement, enabling more accurate battery usage
predictions and improving decision-making processes at both high and low levels of the
control hierarchy.

Our experimental results, obtained through simulations using MATLAB 2023 and a
combination of Simscape and UAV Toolbox, demonstrate the superiority of our proposed
framework over traditional HRL and benchmark soft actor-critic architectures. The LSTM-
augmented HRL model exhibited improvements in mission success rates, energy efficiency,
and adaptability to environmental changes, particularly in scenarios involving variable
payloads and increased obstacle density. These enhancements are crucial for aerial robots’
operations in disaster-stricken areas where efficient resource management and flexible
response to unforeseen challenges are essential.

Furthermore, the proposed framework showed a marked increase in endurance and
operational efficiency, with aerial robots capable of longer flight times and reduced bat-
tery consumption. This efficiency is vital in emergency scenarios where extended aerial
robot operation can be critical for successful mission outcomes. Additionally, the frame-
work demonstrated superior collision avoidance and path planning capabilities, further
underscoring its applicability in complex and unpredictable environments.
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Abbreviations

Acronym Full Form
AI Artificial Intelligence
Bi-LSTM Bidirectional Long Short-Term Memory
DDPG Deep Deterministic Policy Gradient
DRL Deep Reinforcement Learning
GPS Global Positioning System
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HER Hindsight Experience Replay
HiPPO Hierarchical Proximal Policy Optimization
HLC High-Level Controller
HRL Hierarchical Reinforcement Learning
IMU Inertial Measurement Unit
LiDAR Light Detection and Ranging
LLC Low-Level Controller
LSTM Long Short-Term Memory
MDP Markov Decision Process
ML Machine Learning
RL Reinforcement Learning
SAC Soft Actor-Critic
SAR Search and Rescue
UAV Unmanned Aerial Vehicle
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