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Abstract: With the rapid development of the Internet of Things, the Internet of Vehicles (IoV) has
quickly drawn considerable attention from the public. The cooperative unmanned aerial vehicles
(UAVs)-assisted vehicular networks, as a part of IoV, has become an emerging research spot. Due to
the significant limitations of the application and service of a single UAV-assisted vehicular networks,
efforts have been put into studying the use of multiple UAVs to assist effective vehicular networks.
However, simply increasing the number of UAVs can lead to difficulties in information exchange and
collisions caused by external interference, thereby affecting the security of the entire cooperation and
networking. To address the above problems, multiple UAV cooperative formation is increasingly
receiving attention. UAV cooperative formation can not only save energy loss but also achieve syn-
chronous cooperative motion through information communication between UAVs, prevent collisions
and other problems between UAVs, and improve task execution efficiency. A multi-UAVs cooperation
method based on arithmetic optimization is proposed in this work. Firstly, a complete mechanical
model of unmanned maneuvering was obtained by combining acceleration limitations. Secondly,
based on the arithmetic sine and cosine optimization algorithm, the mathematical optimizer was
used to accelerate the function transfer. Sine and cosine strategies were introduced to achieve a global
search and enhance local optimization capabilities. Finally, in obtaining the precise position and
direction of multi-UAVs to assist networking, the cooperation method was formed by designing the
reference controller through the consistency algorithm. Experimental studies were carried out for
the multi-UAVs’ cooperation with the particle model, combined with the quadratic programming
problem-solving technique. The results show that the proposed quadrotor dynamic model provides
basic data for cooperation position adjusting, and our simplification in the model can reduce the
amount of calculations for the feedback and the parameter changes during the cooperation. Moreover,
combined with a reference controller, the UAVs achieve the predetermined cooperation by offering
improved navigation speed, task execution efficiency, and cooperation accuracy. Our proposed
multi-UAVs cooperation method can improve the quality of service significantly on the UAV-assisted
vehicular networks.

Keywords: arithmetic sine cosine optimization; consistency theory; cooperation; unmanned aerial
vehicles; vehicular networks
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1. Introduction

With the popularization and application of the fifth-generation wireless communica-
tions (5G), the Internet of Things (IoT) has become one of the key development technologies
in the field of communication. Its vast connectivity and flexible operability have laid a solid
foundation for intelligent transportation systems [1]. As an important component of the
IoT, the Internet of Vehicles (IoV) has gradually played a driver assistant role for intelligent
vehicular networks. Many current intelligent vehicular applications, such as autonomous
driving, path planning, traffic control, etc., have high requirements for real-time informa-
tion of vehicles [2,3]. Vehicles need to transmit information collected by onboard sensors,
such as vehicle speed, distance from nearby objects, and the surrounding environment,
to the network through roadside units for processing to achieve overall planning of the
vehicular networks [4,5]. Although significant progress has been made in the research and
application of vehicular networks, there are still many challenges to be faced. In practical
situations, vehicles have the characteristic of high-speed movement, and the surrounding
traffic environment is particularly complex. Therefore, the connection of vehicular networks
is easily affected by environmental factors. Some applications that require high real-time
performance, such as high-precision 3D map navigation, rely heavily on reliable network
connections [6]. However, the large size of vehicles and traffic environments often make
the network face fragile wireless network connections, leading to deteriorating vehicular
networks connectivity [7]. Real-time vehicular networks services require high computing
power and low latency communication, which require the support of many roadside units.
However, when encountering unexpected weather environments, traffic overload caused
by public activities, or temporary severe traffic congestion, a fixed network architecture
and edge servers are used, which are distributed rigidly and located fixedly; cannot meet
the dynamic access needs of vehicles; and have high costs, insufficient practicality, and
insufficient security [8,9].

The emergence of unmanned aerial vehicles (UAVs) has influenced the development
of many related fields [10]. Due to their good mobility, transmission, and computing
capabilities, UAVs [11,12] can help vehicular networks achieve information interactions
under special circumstances and provide some cutting edge computing services for ground
vehicles [13,14]. The fact is that traffic problems do not always occur in a particular location
but change with the flow of people. For example, when a vehicle is involved in a vehicle
accident, traffic congestion may occur. Most vehicles gather in one location, which can
cause congestion in the vehicular networks and cause trouble for applications with high
real-time application. Due to various traffic accidents, traditional fixed-edge servers are
difficult to cover all locations in the city. Therefore, a dynamic network edge server is an
effective solution.

However, a single UAV has significant limitations in providing services to the vehicular
networks, including a small detection range, slow information transmission, and unstable
transmission network. Therefore, multiple UAVs can serve as aerial base stations or routers,
jointly providing services to the vehicular networks, greatly improving the quality of
UAV-assisted vehicular network services [15]. Many scholars have conducted research on
multi-UAV-assisted vehicular networks [16–19]. However, simply increasing the number
of UAVs may lead to difficulties in information exchange and conflicts caused by external
interference, thereby affecting the security of the entire cooperative network.

Researchers believe that formation control collaboration among multiple UAV net-
works during task execution can solve the problems [20]. The use of UAVs for cooperative
formation can effectively improve the task execution efficiency of multiple UAVs, save
energy loss, and enable synchronous and cooperative motion through information com-
munication between UAVs. At the same time, when all UAVs work together instead of a
single UAV, it enhances the adaptability of UAV cooperative formation to the surrounding
environment. Therefore, how to effectively collaborate on multiple UAVs formation has
become a problem that needs to be solved [21,22].
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Another problem in UAV cooperative formation control is that each UAV must ac-
celerate differently in both magnitude and potentially in direction if the movement of the
reference frame includes a rotational component. This ultimately leads to high position
errors when a UAV with limited dynamic capabilities is used.

Efforts have been carried out in recent years. Ju Shuang et al. [23] proposed a coop-
erative control method of a multi-UAV network based on the sliding mode, which made
the multi-UAV network converge to the desired cooperation state smoothly, but there was
an unstable chattering phenomenon. Guo et al. [24] proposed a multi-UAV cooperative
communication and computing optimization (MCCCO) scheme to reduce UAV task delays,
but it requires high computing power and has limited application scope. Wang et al. [25]
proposed a cooperation control mechanism for fixed-wing UAVs based on a state consis-
tency model. The six-element state consistency model was used to correlate each stage
of flight, but it was not suitable for flight control in complex environments. Sun Yijun
et al. [26] proposed a cooperative obstacle avoidance control algorithm for UAV cooperation
based on an improved potential field method, which combined graph theory and artificial
potential field theory. However, the cooperation changes during the obstacle avoidance
process, which is not conducive to the execution of the task.

The above methods can achieve UAV cooperation position adjusting, but there is still
room for further improvement in cooperation control when assisting vehicular networks.
Aiming at improving the accuracy and stability of UAV cooperation, the use optimization
algorithm increases the safe distance between UAVs and enhances the ability of UAVs to
fly according to predetermined positions in UAV cooperation [27]. This paper proposes a
multiple UAV consistency cooperation algorithm based on arithmetic optimization. A new
quadrotor UAV dynamic model is established, which adds a limit of acceleration to the UAV
model in Reference [11]. Combined with the controller [28] and the method for solving
quadratic programming problem, it overcomes the problems of a limited cooperative
control range and unstable operation of existing UAVs. Therefore, the precision and
stability of the cooperation control are improved, and the stability of UAV and vehicular
networks is enhanced.

The structure of the UAV cooperation control network used in this paper is shown
in Figure 1. The consistency module is implemented locally in each UAV and forms the
cooperation control framework. Such a UAV-assisted communication network allows the
exchange of information and the information of the controlled state through the reference
controller. The reference controller takes the required reference information and provides
a correct output, which is then distributed in the UAVs cooperation formation control
network. Through the consistency module, the reference state information is sent to the
quadrotor controller to control the UAVs’ position. The maximum distance consistency
module optimizes the distance information through the AOA optimization algorithm
to increase the safe distance between UAVs, achieving faster convergence speed and
higher accuracy. UAVs’ cooperation formation control network provides a service to
vehicular networks.

The structure of the UAV cooperation control network used in this paper is shown in
Figure 1.

The main contributions of this work are summarized as follows:

• The dynamical analysis of the cooperative control of UAVs is conducted. When
UAVs undergo formation changes, if they rotate and fly to change the attitude of the
formation, acceleration limitations need to be applied to the UAVs; otherwise, it will
cause position errors. Therefore, a new UAV model is established, which adds an
acceleration limit to the UAV model in Reference [11]. The purpose of this work is
to control the movement of the formation and therefore control the virtual reference
frame to maintain the maximum required acceleration within the possible physical
limitations of the UAV, thereby improving cooperative formation maintenance.

• We have designed an adaptive arithmetic sine cosine optimization algorithm to solve
the balance problem between the global search stage and the local development stage
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in the arithmetic optimization algorithm. It can achieve a faster convergence speed
and higher accuracy.

• The UAV cooperation network was designed with a consensus module based on
the consensus algorithm [29], which could achieve more accurate positioning for the
UAVs. In addition, the reference controller is designed with a proportional integral
differential (PID) [30], and the method for solving the quadratic programming problem
is introduced to further improve the accuracy and reliability of the cooperation.
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Figure 1. UAV cooperation control network diagram.

2. Consistency Theory
2.1. Connected Network

An undirected graph G = (N, E) can mathematically model the communication network
among N independent UAVs, where N = {1, 2, . . ., n} is a finite nonempty set of nodes, and
E ∈ n × n is an unordered set of nodes, called edges, with each node corresponding to a
UAV. An edge (i, j) allows the information flow from node i to j and vice versa. If (i, j) is
an edge of G, then nodes i and j are neighbors. Note that edges of the form (i, i) are not
allowed. A path consists of a series of nodes, with consecutive nodes being adjacent nodes.
If there is a path between each pair of nodes, then the graph G is called a connected graph.
In this case, each node pair is connected by a path, and the tree containing all nodes in a
graph is called a spanning tree. The diagram is easier to visualize with numbered circles
representing nodes and lines representing edges, as shown in Figure 2. Here, the thick solid
line represents the possible spanning tree. An equivalent representation of an undirected
graph is its adjacency matrix A = [aij] ∈ Rn×n. If (j, i) ∈ E, the elements of matrix A are
defined as aij = aji = 1; otherwise, aij = aji = 0.
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In Figure 2, the diagonal elements of the corresponding adjacency matrix are zeros,
and the matrix is symmetric. The corresponding adjacency matrix A is shown as

A = AT =


0 1 1 0 0
1 0 1 1 1
1 1 0 1 0
0 1 1 0 0
0 1 0 0 0

. (1)

Each non-zero element aij indicates that there is an information exchange between the
ith and jth UAVs. In a connected graph, information from one UAV can be transmitted
to all other UAVs in the network. Another important correlation matrix L is the graph
Laplacian, which is given as

L =
[
lij
]
= D − A ∈ Rn×n. (2)

where D = [dij]∈Rn×n, and the element dij of matrix D is given as

dij =


n
∑

j=1
aij, i = j

0, i ̸= j
. (3)

We comment that the diagonal entry is a node i neighbor number.
The model can be extended by additional nodes, including a virtual leader (VL), which

contains the reference information distributed to other nodes. As shown in Figure 3, the
number of UAVs from 1 to 5 are named in a series of UAVs. The VL is added to Figure 1 to
extend the adjacency matrix, and the added adjacency matrix AVL can be expressed as

AVL =



0 1 1 0 0 1
1 0 1 1 1 0
1 1 0 1 0 1
0 1 1 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0

 ∈ R(n+1)×(n+1) (4)
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2.2. Consistency Theory

Information sharing is an important premise for cooperative control, which can be
done by a consistency algorithm. Consensus is the result of asymptotically converging
to the quantity of interest through local communication. The concept of the consensus
algorithm is introduced by

.
σi(t) = ωi(t), i = {1, . . . , n} (5)

where ωi(t) is the simple integrator information state with the control input at time t. Such
a network is composed of n data, with each datum to realize distributed linear agreement.
A simple information integrator state expression is given as

ωi(t) = −
n

∑
j=1

aij(σi(t)− σj(t)), j = {1, . . . , n}. (6)
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Therefore, the whole network can be rewritten as

.
σ(t) = −Lσ(t) (7)

where σ(t) = [σ1(t), . . ., σn(t)]T; here, L is the graph Laplacian.
Each data access to local information is available and owns information back to the

neighboring average. When σ1(t) = . . . = σn(t), the convergence and bounded information
state can be guaranteed for a connected network graph.

3. Modeling and Control of Quadrotor UAVs

A new quadrotor UAV dynamic model is established, which added a limit of accel-
eration to the UAV model based on Reference [11]. During the formation of the UAV
changes, if the UAVs undergo rotational flight to change the attitude of the formation—that
is, the movement of the reference frame includes a rotational component—then the UAVs
at different positions in the reference frame will generate different accelerations. If the
acceleration limitation of the UAVs is not considered when establishing the dynamic model,
it will ultimately lead to significant positional errors of the UAVs.

In Figure 4, six UAVs form a collaborative. When the UAVs change formation posture—
that is, the UAVs rotate and fly counterclockwise around the center of the rotating reference
frame O by an angle of ω—at this time, each UAV needs to rotate counterclockwise and
produce different rotational accelerations ai. The direction of the dashed arrow is the
direction of the rotational acceleration, and the longer the arrow, the greater the required
acceleration. The further away from the reference frame rotation center, the greater the
absolute acceleration required by the UAV, falling behind its expected position. Therefore,
the cooperative formation of UAVs will not be able to transform according to the preset
formation and cannot complete the task of multi-UAV cooperative vehicular networks.
Adding acceleration limitations to the UAV dynamic model is to control the cooperative
formation motion of UAVs. This, in turn, controls the virtual reference frame and maintains
the maximum required acceleration within the physical limitations of the UAVs, thereby
improving the maintenance of the cooperative formation of UAVs.
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3.1. UAV Modeling

The quadrotor UAV is an underactuated system, and its angular velocity ωi (i = {1, 2,
3, 4}) causes each propeller to generate a force and a moment in the same upward direction.
Force fi and upward direction τMi are shown, respectively, as

fi = k+ω2
i (8)

and
τMi = k−ω2

i + Ir
.

ωi. (9)
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where k+ is the positive lift constant, k− is the positive aerodynamic drag constant, and Ir is
the moment of inertia around the rotor axis. The impact of Ir

.
ωi is considered minimal, as

in stationary flight ωi ≈ 0; thus, it can be ignored.
Assume that the ground coordinate system is E[X, Y, Z]T and the body coordinate

system is B[x, y, z]T. When a UAV does not engage in attitude, the two coordinate systems
coincide.

In Figure 5, when the quadrotor UAV pitch roll angle φ, angle θ, and yaw angle ψ
change, the transformation matrix R( φ , θ , ψ) of the UAV is

R(ϕ,θ,φ) =

cos ψ cos ϕ cos ψ sin θ sin ϕ − sin ψ cos ϕ cos ψ sin θ cos ϕ + sin ψ sin ϕ
sin ψ cos θ sin ψ sin θ sin ϕ + cos ψ cos ϕ sin ψ sin θ cos ϕ − sin ψ cos ψ
− sin θ cos θ sin ϕ cos ϕ cos θ

. (10)
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system is B[x, y, z]T. When a UAV does not engage in attitude, the two coordinate systems 
coincide. 

In Figure 5, when the quadrotor UAV pitch roll angle φ, angle θ, and yaw angle ψ 
change, the transformation matrix R(φ, θ, ψ) of the UAV is 

( , , )

cos cos cos sin sin sin cos cos sin cos sin sin
sin cos sin sin sin cos cos sin sin cos sin cos

sin cos sin cos cos
Rφ θ ϕ

ψ φ ψ θ φ ψ φ ψ θ φ ψ φ
ψ θ ψ θ φ ψ φ ψ θ φ ψ ψ

θ θ φ φ θ

− + 
 = + − 
 − . 

(10)

 

  
(a) (b) 

 
(c) 

Figure 5. Attitude angle parameters. (a) Roll angle. (b) Pitch angle. (c) Yaw angle.

3.2. UAV Line Motion Model

Let the orthogonal basis of the ground system be (
→
b 1,

→
b 2,

→
b 3)

T
and the orthogonal

basis of the machine system be (
→
i ,

→
j ,

→
k )

T
, then the relationship between the two orthogonal

bases and the transformation matrix can be expressed as
→
b 1
→
b 2
→
b 3

 = R


→
i
→
j
→
k

. (11)

After analysis of the quadrotor motion model, the vertical upward force
→
T B of the

rotor motion model can be expressed as

→
T B =

(
4

∑
i=1

Ti

)
→
b 3 =

(
4

∑
i=1

Ktw2
i

)
→
b 3 (12)

where wi(i = 1, 2, 3, 4) is the speed of each motor, and Kt is the lift coefficient provided by
each motor. Ti(i = 1, 2, 3, 4) is the upward force of each motor. The transformation torque R
between coordinate systems is expressed as
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R =

(
4

∑
i=1

Ktw2
i

)[→
i
→
j
→
k
]cosψsinθcosϕ + sinψsinϕ

sinψsinθcosϕ − sinϕcosψ
cosθcosϕ

. (13)

Combing Formulas (12) and (13), a set of four vertical upward forces
→
T B of the rotor

motion model can be expressed as

→
T B =

(
4

∑
i=1

Ktw2
i

)[→
i
→
j
→
k
]cosψsinθcosϕ + sinψsinϕ

sinψsinθcosϕ − sinϕcosψ
cosθcosϕ

. (14)

Considering the self-gravity
→
GB and environmental resistance

→
f B of the quadrotor

UAV, they are expressed, respectively, as

→
GB = mg (15)

and
→
f B =

[→
i
→
j
→
k
] fx

fy
fz

 (16)

where fx, fy, and fz are the environmental resistance in the x, y, and z directions, respectively.
m is the mass of the UAV. According to Newton’s law F = ma, one obtains the following

→
F = m

→
a = m

d
→
v

dt
= m

d2→r
dt2 . (17)

Formula (17) can be represented, respectively, in two forms as

→
F =

→
T B −

→
GB −

→
f B (18)

and

→
F =

(
4

∑
i=1

Ktw2
i

)[→
i
→
j
→
k
]cosψsinθcosϕ + sinψsinϕ

sinψsinθcosϕ − sinϕcosψ
cosθcosϕ

− mg −
[→

i
→
j
→
k
] fx

fy
fz

. (19)

A further derivation of Formula (16) can yield the following result as

m
→
a = m

d
→
v

dt
= m

d2→r
dt2 = m

[→
i
→
j
→
k
] ..

x
..
y
..
z

 (20)

where
..
x,

..
y, and

..
z denote d2x

dt2 , d2y
dt2 , and d2z

dt2 , respectively.
According to the above derivation, the following relationship can be obtained as(

4

∑
i=1

Ktw2
i

)cos ψ sin θ cos ϕ + sin ψ sin ϕ
sin ψ sin θ cos ϕ − sin ϕ cos ψ

cos θ cos ϕ

−

 0
0
mg

−

 fx
fy
fz

 = m

 ..
x
..
y
..
z

. (21)

The control input U1 corresponds to the total thrust generated by the quadrotors. The
linear motion formula of the center of mass of the quadrotor motion model can be obtained
by solving the above formulas as
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..
x = U1(sin θ cos ψ cos ϕ + sin ψ sin ϕ − fx)/m
..
y = U1(sin θ cos ψ cos ϕ − cos ψ sin ϕ − fy)/m
..
z = U1(cos θ cos ϕ − fz − mg)/m

. (22)

3.3. UAV Angular Motion Model

The UAV can be regarded as a rigid body. The total moment is denoted by M, and
the angular momentum is denoted by H. From the theorem of the moment of the center of

mass of the rigid body,
→
M is expressed as

→
M =

d
→
H

dt
. (23)

In the motion model coordinate system, Formula (23) can be rewritten, by combining
motor rotation and propeller gyro torque, as

→
M =

d
→
H

dt

∣∣∣∣∣∣
b

+
→
w ×

→
H (24)

where
→
w is the angular velocity vector of the UAV. When the motion model flies in space,

the external moment can be decomposed into three parts: M1 is the pitch moment, M2 is
the roll moment, and M3 is the yaw moment, which can be obtained by

→
M =

→
M1 +

→
M2 +

→
M3 (25)

and 
→
M1 = l(T4 − T2)

→
b 1

→
M2 = l(T3 − T1)

→
b 2

→
M3 = Kd(w2

1 − w2
2 + w2

3 − w2
4)

→
b 3

(26)

where Kd is the torque of the air resistance, wi is screw rotation rate, and l is wheel base of

the quadrotor. Therefore,
→
M can be expressed as

→
M =

→
M1 +

→
M2 +

→
M3 = (b1, b2, b3)

 l(T4 − T2)
l(T4 − T2)

Kd(w2
1 − w2

2 + w2
3 − w2

4)

. (27)

For Formula (24), the moment of momentum H can be decomposed as

→
H = I × w + JTPΩ

→
b 3 (28)

where Ω = (w2 + w4 + w1 − w3), I is the moment of inertia, JTP is the moment of inertia,
and Ω is the sum of the angular velocity vector.

The quadrotor is a strictly symmetrical structure; therefore, its component matrix I is
represented as

I =

Ix 0 0
0 Iy 0
0 0 Iz

. (29)

We noted that w can also be expressed as

w =

(→
b 1,

→
b 2,

→
b 3

)wx
wy
wz

 =

(→
b 1,

→
b 2,

→
b 3

)
.
ψ sin φ sin θ +

.
θ cos φ

.
ψ cos φ sin θ +

.
θ sin φ

φ + ψ cos θ

. (30)
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Substituting Formulas (29) and (30) into (28),
→
H is found as

→
H =

(→
b 1,

→
b 2,

→
b 3

)Ixwx
Iywy
Izwz

+

(→
b 1,

→
b 2,

→
b 3

) 0
0

JTP(w2 + w4 − w1 − w3)

. (31)

According to Formulas (30) and (31), Formula (24) can be rewritten as

d
→
H

dt

∣∣∣∣∣∣
b

+
→
w ×

→
H =

(→
b 1,

→
b 2,

→
b 3

)Ix
.

wx +
(

Iz − Iy
)
wywz + JTPΩwy

Iy
.

wy + (Ix − Iz)wxwz + JTPΩwx
Izwz +

(
Iy − Iz

)
wxwy

. (32)

Finally, substituting Formulas (27) and (32) into Formula (24),
→
M can be derived as

→
M =

(→
b 1,

→
b 2,

→
b 3

) l(T4 − T2)
l(T3 − T1)

Kd
(
w2

1 + w2
2 + w2

3 + w2
4
)
 =

(→
b 1,

→
b 2,

→
b 3

)Ix
.

wx +
(

Iz − Iy
)
wywz + JTPΩwy

Iy
.

wy + (Ix − Iz)wxwz − JTPΩwx
Izwz +

(
Iy − Iz

)
wxwy

 (33)

By combining the one-to-one relationship of each determinant with Formula (34), it
can be derived as 

wx =
[l(T4−T2)+(Iy−Iz)wywz−JTPΩwy]

Ix

wy = [l(T3−T1)+(Iz−Ix)wxwz−JTPΩwx ]
Iy

wz =
[Kd(w2

1+w2
2+w2

3+w2
4)+(Ix−Iy)wxwy]

Iz

(34)

The angular motion model of the quadrotor UAV can be derived as
..
φ =

Iy−Iz
Ix

.
ψ

.
θ + U2

Ix
− JTP

Ix

.
θΩ

..
θ = Iz−Ix

Iy

.
ψ

.
θ + U3

Iy
− JTP

Iy

.
φΩ

..
ψ =

Ix−Iy
Iz

.
θ

.
φ + U4

Iz

(35)

where, U2, U3, and U3 are the control inputs for the roll angle, pitch angle, and yaw angle,
respectively.

In order to facilitate the control, on the premise of ignoring the external disturbance, a
simplified dynamic model of the quadrotor UAV is established. After the simplification of
Formulas (22) and (35) with drag coefficient Ki, disturbance di, and the Lagrange formula,
the dynamic model of the quadrotor UAV can be obtained, respectively, as

..
x = [U1(cos ϕ sin θ cos ψ + sin ϕ sin ψ)− K1

.
x]/m + d1..

y = [U1(sin ϕ sin θ cos ψ − cos ϕ sin ψ)− K2
.
y]/m + d2..

z = [U1 cos ϕ cos ψ − g − K3
.
z]/m + d3..

θ = U2 − lK4
.
θ/I1 + d4..

ψ = U3 − lK5
.
ψ/I2 + d5..

ϕ = U4 − lK6
.
ϕ/I3 + d6

(36)

and 
U2 = FR1 − FR2 + FR3 − FR4
U3 = FR1 + FR2 − FR3 − FR4
U4 = FR1 − FR2 − FR3 + FR4

. (37)

where l represents the arm length, Ii (i = 1, 2, 3) represents the moment of inertia, and the
system selects the tracking trajectory [x, y, z] and roll angle φd, simultaneously stabilizing
the other two angles.



Drones 2024, 8, 340 11 of 27

3.4. Limit of Acceleration

The control input U1 corresponds to the total thrust generated by the quadrotors.

Therefore, U1 is constrained by the upper
→
f B,max and lower

→
f B,min = 0 limits when the

rotor orientation is fixed, which, in turn, limits the maximum acceleration and velocity.
Due to simulating the air friction drag, the maximum acceleration

..
Zmax and the minimum

acceleration
..
Zmin in the ZW direction can be expressed, respectively, as

..
zmax =

→
f B,max − K3

.
z

m
− g (38)

and

..
zmin =

→
f B,min − K3

.
z

m
− g = −K3

.
z

m
− g. (39)

The same results can be obtained for the horizontal x–y plane. Here, the maximum
pitch θ and roll angles φ limit the acceleration performance. Assuming a constant height,
these angle ranges are −|θmax| ≤ θ ≤ θmax and −|φmax| ≤ φ ≤ φmax, respectively. There-
fore, the maximum acceleration

..
Xmax in the ZX direction and the maximum acceleration

..
Ymax in the ZY direction can be expressed, respectively, as

..
xmax = − ..

xmin = g tan θmax −
k1

.
x

m
(40)

and
..
ymax = − ..

ymin = −g
tan ϕmax

cos θmax
− k2

.
y

m
. (41)

For the maximum acceleration in the positive and negative coordinate directions,
matrix apos represents the maximum acceleration in the positive coordinate direction, and
matrix aneg represents the maximum acceleration in the negative coordinate direction. These
two matrices apos and aneg can be expressed, respectively, as

apos =

 ..
xmax..
ymax..
zmax

 (42)

and

aneg =

 ..
xmin..
ymin..
zmin

 (43)

4. Adaptive Arithmetic Sine Cosine Optimization Algorithms

The basic arithmetic optimization algorithm (AOA) is divided into three steps: in the
initial stage, using the mathematical optimizer accelerate (MOA) function to select the
search stage. Then, it enters the global search stage and uses the multiplication–division
method to find the optimal solution. Finally, the AOA enters the local development stage
and calculates the development result by the addition and subtraction method. However,
the optimization performance of the AOA and the balance between the global search phase
and the local development phase still leave great room for improvement. In order to
further improve the accuracy of UAVs’ cooperation control and improve the optimization
ability of the algorithm, an adaptive arithmetic sine cosine optimization algorithm is
proposed in this paper, which enables individuals to find the equilibrium position of the
best global search stage and the local development stage. The sine cosine algorithm is
simple in principle and easy to implement. It can increase the diversity of the population
and improve the optimization accuracy significantly after merging with the arithmetic
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optimization algorithm. It includes an adaptive optimization stage, global search stage,
and local development stage.

4.1. Adaptive Optimization Stage

The population vector X at this stage consists of an N × n dimensional matrix, and its
model is given as

X =


x1

1 x2
1 · · · xn

1
x1

2 x2
2 · · · xn

2
...

...
. . .

...
x1

N x2
N · · · xn

N

. (44)

Before adaptive optimization, one selects a random number r1(0 < r1 < 1) and compares
it with the MOA, If r1 < MOA, start the global search phase; otherwise, one performs the
local development phase. The mathematical model of the adaptive coefficient MOA is
shown as

MOA(t) = Mmin + (Mmax − Mmin)× cos(
πt

2Tmax
) (45)

where t is the current number of iterations, Tmax is the maximum number of iterations,
and Mmin and Mmax are the minimum and maximum values of the MOA function, taking
values of 0.2 and 1, respectively. The optimized adaptive coefficient MOA can effectively
solve the problems of the insufficient global search stage and limited local development
stage of the AOA, thus accelerating the convergence speed.

4.2. Global Search Stage

In this stage, the multiplication-division search strategy is used to find a better solution.
Taking the random number r2(0 < r2 < 1), if r2 > 0.5, one could perform the multiplication
search strategy; otherwise, the division search strategy is executed. The mathematical
model of the AOA in the global search stage can be formulated as follows:

xj
i(t + 1) =

{
Best(xj)÷ (MOP(t) + ε)× zj, r2 ≤ 0.5
Best(xj)× MOP(t)× zj, r2 > 0.5

, (46)

zj = (UBj − LBj)× µ + LBj, (47)

and

MOP(t) = 1 − t1/α

T1/α
(48)

where xj
i(t + 1) is ith and jth position of the t + 1 iteration, Best(xj) is the jth position of

the optimal individual, ε is a small integer, UBj and LBj are the upper and lower bounds
of the jth position, respectively, µ is the control parameter (typically µ = 0.5), MOP(t) is
the mathematical optimization rate coefficient, and α represents the sensitivity parameter
(typically α = 5).

4.3. Local Development Phase

In the local development stage, if only the addition and subtraction search strategy
is used for development and calculation, it will lead to insufficient local development
ability and poor result accuracy. Therefore, an improved sine cosine algorithm (ISCA) is
designed to maintain the population diversity in the later stage of the algorithm iteration
and strengthen the development capacity. The ISCA is formulated as

xj
i(t + 1) =

 xj
i(t) + MOP(t)r1 sin(r2)

∣∣∣r3Best(xj)− xj
i(t)
∣∣∣, r4 ≤ 0.5

xj
i(t) + MOP(t)r1 cos(r2)

∣∣∣r3Best(xj)− xj
i(t)
∣∣∣, r4 > 0.5

(49)
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where r1 = a − t a
T , with a being a constant (typically a = 2); xj

i(t) is the ith and jth positions
of the t iteration; and r2, r3, and r4 are random range factors, with r2 ϵ [0, 2π], r3 ϵ [0, 2],
and r4 ϵ [0, 1]. We note that r1 can complete the transformation from a global search to
local development, r2 determines how far to move, r3 decides the impact generated, and r4
determines whether the update method for individuals in the population is a sine algorithm
or a cosine algorithm. In the local development stage after fusion, oscillation is used to
maintain the diversity of the population, which could greatly enhance the performance of
the local networking development.

5. Quadrotor Cooperation Control Design
5.1. Cooperation Control Framework

The quadrotor UAV can position itself in space, and when UAVs collaborate, they
also need to know the desired position, which depends on the current reference system.
rd

rel,i represents the relative expected position of each UAV. Let ξr
contr be the state of the

coordinate system fR: {OR; XR; YR; ZR}. In Figure 6, three quadrotor UAVs form a triangular
formation, and the circle point is the desired position rd

i set in the coordinate system fR.
The diamond is the actual position ri. Each UAV has its own state ξi.
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Figure 6. Agreed results of the reference system.

After reaching a consensus on the reference system of all UAVs, the UAVs’ state ξi can
be shown as

ξ1 = . . . = ξn = ξr
contr. (50)

In contrast to Figure 6, the result with no consensus of all UAVs is shown in Figure 7.
For this case, the ideal position of a UAV deviates from the triangle structure, because the
information state of ξi does not converge.
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The consistency module is implemented locally in each UAV and forms the cooperation
control framework, as shown in Figure 8. Such a UAV-assisted communication network
allows the exchange of information, and the information of the position controller and
the direction controller can be obtained through the reference controller. The reference
controller takes the required reference locus ξr and provides a correct output ξr

contr, which
is then distributed in the UAV-assisted communication network through the consistency
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module. The revised output considers the dynamic limitations of the UAV involved and
ultimately reduces the position error. The maximum acceleration occurs in the farthest UAV
during cooperation, so the cooperation feedback is in the form of the quadrotor information
state ζi, carrying the maximum distance data. It is provided by the maximum distance
consistency module, which is implemented locally in each quadrotor.
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Figure 8. Overview of the cooperation control framework.

5.2. Consistency Module

The reference system state ξr
contr can be described by the central position of the inertial

system FW and the three Euler angles (Figure 9). ξr
contr can be written as

ξr
contr =

[
xc yc zc︸ ︷︷ ︸

rc

α β γ︸ ︷︷ ︸
δ

]
. (51)
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With ξi being the control input, ξi and
·
ξi can be expressed, respectively, as

ξi =
[
xc,i yc,i zc,i αi βi γi

]
(52)

and
.
ξ i =

1
ηi

n

∑
j=1

aij

[ .
ξ j − κ(ξi − ξ j)

]
+

1
n

ai(n+1)

[ .
ξ

r
contr − κ(ξi − ξr

contr)
]

(53)

where aij is the (i, j) term of the extended adjacency matrix AVL, ai(n+1) is the (i, n + 1) term
of the extended adjacency matrix AVL, κ is a positive scalar, and ηi is the ith row of the
extended adjacency matrix AVL, which ensures the cooperation control process does not
limit the number of each UAV. The first term in Formula (53) is related to the information
state of the UAV, and the second term is related to the ξr

contr. Adding a derivative term to ξi
enables the algorithm to follow any variable reference value. The desired absolute position
rd

i is calculated with each UAV’s own state ξi and the known desired position rd
rel,i relative

to the virtual coordinate system, and it can be expressed as
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rd
i =

xc,i
yc,i
zc,i

+ W RRrd
rel,i (54)

where matrix W RR is a rotation matrix based on the Euler angels αi, βi, and γi from the
reference system to the world coordinates. The desired absolute position is eventually
passed to the local controller to locate the UAVs for networking.

5.3. Maximum Distance Consistent Module

Similar to the design of the consistency module, the purpose of designing the maxi-
mum distance consistency module is to ensure that the UAVs can adapt to distance changes
at different positions during collaboration, thereby ensuring the flexibility of the UAV-
assisted vehicular networks. The maximum size of the UAVs’ cooperation frame refers to
the desired position of the farthest point in each coordinate direction from the origin of the
virtual reference system, which can be expressed as

ζr =

[
max(rd

rel,i)
min(rd

rel,i)

]
∈ R6, i = {1, . . . , n} (55)

where ζr is the globally correct value. Note that each UAV has its own location. After the
UAVs exchange information, ζi can be written as

ζi =

[
dmaxi

dmini

]
∈ R6, i = {1, . . . , n} (56)

During UAV-assisted vehicular networking, each UAV has a maximum positive dis-
tance dmaxi and a maximum negative distance dmini, as shown in Figure 10.
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After synchronization is maximized for cooperation, the information state ζj of each
UAV can be expressed as

ζ j =

[
max(dmaxj , dmaxi )

min(dminj , dmini )

]
(57)

where j ∈ Ni, and Ni is the set size of the ith node. Each UAV sends its own information
status ζj, and all connected nodes will update their information status only if the infor-
mation status is greater than or less than this value. Before information is exchanged, the
information state is initialized to [rd

rel,I rd
rel,i]T. The consistency algorithm has a distributed

feature when exchanging local information. The virtual leader can connect to any follower
and obtain its information status. When the spanning tree exists, the consistency algorithm
can guarantee that ζi(t) → ζr.

5.4. Reference Controller

The reference controller has the current and expected states of the reference system,
denoted as ξr

contr and ξr, respectively. In addition, if the reference controller is effectively
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connected to the ith UAV, it could receive estimated data values dmax and dmin for the maxi-
mum and minimum distances, respectively, from the virtual center to the communication
network. The dmax and dmin are given, respectively, as

dmax =
[
d1 d2 d3

]T (58)

and
dmin =

[
d4 d5 d6

]T (59)

where d1 to d6 denote the first to the sixth elements of the distance feedback, respectively.
In the above case, the information is available to the reference controller. Therefore,

a controlled reference system state ξr
contr is generated, and the virtual reference system

state ξr is closely connected to the required information state. At the same time, the
dynamic constraints of the UAV are considered through the cooperation information state
ζi feedback. The maximum acceleration amax, the minimum acceleration amin, and the
angular velocity vector ω for the cooperative UAVs in the inertial system can be found,
respectively, as

amax1 =
..
rc +

.
ω × dmax + ω × (ω × dmax), (60)

amin =
..
rc +

.
ω × dmin + ω × (ω × dmin) (61)

and

ω =

 cos γ − sin γ 0
sin γ cos γ 0
0 0 1

 cos β 0 sin β
0 1 0
− sin β 0 cos β

 .
α
0
0


+

 cos γ − sin γ 0
sin γ cos γ 0
0 0 1


 0

.
β
0

+

 0
0
.
γ


=

 cos γ cos β − sin γ 0
sin γ cos β cos γ 0
− sin β 0 1




.
α
.
β
.
γ

 = WRE

.
δ

(62)

where W RE is a rotation matrix, and
.
δ is a reference system Euler angle matrix.

The angular velocity vector ω is obtained from the time derivatives of the three Euler
angles with respect to the inertial system after the rotation matrix transformation. Thus,
the angular acceleration vector

.
ω can be shown as

.
ω = W RE

..
δ + W

.
RE

.
δ

=


..
α cos β cos γ − .

α
.
β sin β cos γ − .

α cos β
.
γ sin γ −

..
β sin γ −

.
β

.
γ cos γ

..
α cos β sin γ − .

α
.
β sin β sin γ +

.
α cos β

.
γ cos γ +

..
β cos γ −

.
β

.
γ sin γ

− cos β
.
β

.
α − sin β

..
α +

..
γ

 . (63)

The acceleration constraints are expressed, respectively, in the following inequalities
as

aneg
!
≤ amax

!
≤ apos (64)

and

aneg
!
≤ amin

!
≤ apos. (65)

If either of the two maximum accelerations exceeds the quadrotor physical limits,
a positional error will occur. Thus, the task of the reference controller is to restrict the
desired state of the reference system ξr in order to satisfy Formulas (64) and (65). The
maximum acceleration is nonlinear due to the angular velocity vector ω. Therefore, the
correction vector and correction value are added, but these will cause a large error between
the controlled reference state ξr

contr and the expected value. A PID controller is added
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to the reference controller to repair the error and improve the system’s adaptability and
robustness. The complete form of the reference controller is given as

..
ξ

r
contr = κr

i

..
ξ

r
+ κr

d(
.
ξ

r
−

.
ξ

r
contr) + κr

p(
.
ξ

r
−

.
ξ

r
contr) + ca (66)

where κr
i , κr

d, and κr
p are PID controller coefficients.

The diagram is shown in Figure 11. If Formulas (65) and (66) are satisfied, the cor-
rection vector ca equals zero, and an asymptotically stable dynamic PID controller can be
obtained. The correction vector ca is given by

ca = Ki(
..
ξ

r
−

..
ξ

r
contr) + Kd(

.
ξ

r
−

.
ξ

r
contr) + Kp(ξ

r − ξr
contr) = 0 (67)

which can be simplified as
Kr

I
..
eξ + Kr

d
.
eξ + Kr

peξ = 0 (68)

where eξ = (ξr − ξr
contr).
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When the maximum acceleration exceeds the limit, the vector ca can be calculated by
solving the quadratic programming problem. Under the constraints in Formulas (64) and
(65), the vector norm of ca can be minimized, and the acceptable ξr

contr value is obtained by
combining it with the PID controller output ur. By calculating the minimum value of the
corrected vector, the maximum acceleration is kept within the physical limit of the UAV.
Among them, the quadratic programming problem can be shown as

min
ca

1
2

cT
a Haca, Ha =


h1 · · · 0
...

. . .
...

0
... h6

 ∈ R6×6 (69)

with
Gaca ≤ ha (70)

where Ha is the weight matrix, h1–h6 are the weight elements, Ga is the constraint matrix of
the optimization problem, and ha is the constraint vector of the optimization problem.

The optimization problems in quadratic programming are formulated as

G1 =

 d3 cos β sin γ + d2 sin β cos γd3 −d2
d1 sin β − d3 cos β cos γ d3 sinγ d1

d2 cos β cos γ − d1 cos β sin γ −d2 sin γ − d1 cos γ 0

 (71)

[
I3 G1

] ..
ξ

r
contr ≤ aquadpos − ω × (ω × dmax)− h1 (72)

h̃1 = −ω × (ω × dmax)− h1 −
[
I3 G1

]
ur (73)

G̃1 =
[
I3 G1

]
(74)

G̃1ca ≤ apos + h̃1 (75)
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and
−G̃1ca ≤ −apos − h̃1 (76)

where G1 is the matrix of the maximum acceleration in the optimization problem, h1 is the
vector of the maximum acceleration in the optimization problem, I3 is the identity matrix of
3 × 3, G̃1 is the constraint matrix of the maximum acceleration in the optimization problem,
and h̃1 is the constraint vector of the maximum acceleration in the optimization problem.

Similarly, using the minimum acceleration constraint from Formula (64), the expres-
sions of the optimization problems in quadratic programming are formulated as

h̃2 = −ω × (ω × dmin)− h2 −
[
I3 G2

]
ur (77)

G̃2 =
[
I3 G2

]
(78)

G̃2ca ≤ apos + h̃2 (79)

and
−G̃2ca ≤ −apos − h̃2. (80)

In summary, the linear formula constraints of the quadratic programming problems
can be expressed, respectively, as

Gaca ≤ ha (81)

and 
G̃1
−G̃1
G̃2
−G̃2

ca ≤


apos
−aneg
apos
−aneg

+


h̃1

−h̃1

h̃2

−h̃2

 (82)

Since the weight matrix is composed of elements greater than zero, it is positive
definite, and the optimization problem is convex, which can be solved by solving the
convex quadratic programming problem.

6. Simulation Analysis

Starting with the modeling and control of a single quadrotor UAV, the UAV dynamic
model is shown in Formula (39), which can be extended to multiple UAVs’ cooperation
to assist the vehicular communication network. The complete UAVs cooperation control
structure is simulated with or without a reference controller. The hardware platform
is a computer with an Intel Core I7-13700H 2.3GHz CPU and 16G memory. Each UAV
dynamic coefficient obtained in the test is calculated and analyzed, and the cooperation
effect is verified by MATLAB R2021a and Simulink software platforms, which proves
the effectiveness of the proposed method. The experiment assumes that communication
between UAVs is always successful, without considering the UAV communication model.
The UAV model is simulated using Simulink, as shown in Figure 12.

In the simulation experiment, six UAVs were used for formation cooperation control,
and custom simulation was used in the experiment. In the MATLAB simulation experiment,
we assume that communication between UAVs is not disturbed; the weather is stable; and
there is no meteorological interference such as wind, rain, and snow. The UAV has sufficient
battery and will not malfunction. The UAV rotors perfectly accurately fulfill the command
of the optimization algorithm. A virtual cooperation scene is shown in Figure 13.

The UAV dynamic coefficient obtained by our experiment is shown in Table 1. One can
select the appropriate position controller, as shown in Figure 14, and set the controller gain
to ensure a stable step response. A high controller gain ensures a fast dynamic response to
adjust the height of UAVs’ cooperation, as shown in Figure 15.
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Table 1. UAV power coefficient.

System Parameter Value with Units

Physical constants of UAV

m 1.5 kg
g 9.8 kg m s−2

k1 0.15
k2 0.15
k3 0.30

θmax = −θmin 0.05 rad
φmax = −φmin 0.05 rad

ft, max 5.35 N

The average acceleration of the simulated UAVs’ cooperation in the x–y–z direction
is shown in Figure 16. Our analysis shows that the proposed UAV model can meet the
cooperation requirements. The positioning speed is fast, the operation is stable, and it can
provide basic data for cooperation position adjusting.

Without a reference controller, the cooperation control was carried out according
to the predetermined trajectory, and the UAV position was plotted at four moments in
12 s of simulation time without reference correction ca. The three–dimensional and two–
dimensional modes are shown in Figures 17 and 18, respectively. The UAVs’ cooperation
changed significantly at 8 s, because the UAVs’ cooperation position adjusting was wrong
due to the turning and extra time needed to readjust the cooperation positions. At 12 s, they
reached the end of the predetermined track, but the cooperation position was not adjusted
to the initial state, and a certain amount of cooperation time was sacrificed. Therefore,
additional adjustment is required.

When there is a reference controller, the UAVs’ cooperation control is carried out
according to a predetermined trajectory. Given a reference correction ca, the position
of a UAV at four moments is plotted within the simulation time of 10 s, as shown in
Figures 19 and 20 for three–dimensional and two–dimensional modes, respectively. Clearly,
when there is a reference controller, the cooperation control is faster and more accurate, and
the cooperation frame shape does not change. At 8 s, the UAVs’ cooperation positions can
be maintained in their initial state, and no more cooperation adjustment time is required,
so the task can be completed faster with improved accuracy.
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controller.

In terms of time, the no reference controller will lag significantly behind the reference
controller. Meanwhile, the cooperation error is much larger than that with a reference
controller, especially at the turning point. After the turn, the error cannot be corrected as
quick as if there were a reference controller; therefore, it will cause the error to accumulate
and destroy the original cooperation position. The errors with or without a reference
controller are clearly shown in Figures 21 and 22, as we have analyzed.
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Figure 21. Formation errors for the non–reference controller.

When multiple UAVs fly at the starting point, the spacing of each two UAVs is initially
0.8 m. In this work, the proposed algorithm can reach the end point after 10 s with a
reference controller, so the cooperation time of 10 s is used as a reference. At 5 s, when the
turn is about to start, each UAV may produce a certain degree of error. The comparison
of the average distance between adjacent UAVs is shown in Figure 23. The algorithm in
this paper can keep the spacing within the minimum range of 0.2 m to prevent collision
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between UAVs’ cooperation position to the maximum extent. Under the action of the
reference controller, it can produce errors slightly later than other cases and control the
spacing distance within the safe range. We note that the maximum interval distance of
Reference [31] was less than 0.1 m. Therefore, it was easy to cause a collision of UAVs,
resulting in networking safety accidents. The algorithm in Reference [32] was slightly
better than the proposed algorithm in terms of time, but the maximum interval distance
was less than 0.1 m, with insufficient security. In such cases, the UAV cooperation position
fluctuates greatly, which is more susceptible to external interference.
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Traditional consistency algorithms [26] only use consistency theory and do not use
the AOA algorithm for optimization. Table 2 shows a comparison between the whole
time, cooperative formation recovery time, and maximum interval distance of different
cooperation algorithms. The proposed algorithm in this work offers advantages in the
whole time, cooperative formation recovery time, and maximum interval distance. It also
improves the UAVs’ cooperation speed on the premise of maintaining safety.
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Table 2. Comparison of different algorithms.

Algorithm
Evaluating Indicator

Whole Time (s)
Cooperative Formation

Recovery Time (s)
Maximum Interval

Distance (m)

This article’s algorithm 10.0 2.98 0.65
No reference controller 12.0 5.31 0.74

Traditional consistency algorithm 12.0 5.01 0.73
Algorithm [31] 10.0 3.87 0.77
Algorithm [32] 11.0 4.32 0.75

7. Conclusions

This paper designed a consensus cooperation method for multi-UAVs based on arith-
metic optimization to solve the cooperation problem in multi-UAV-assisted vehicular
networks. It established a four-rotors dynamic model, combined arithmetic optimization
algorithms, and added a reference controller to form a precise position cooperation net-
working method. It enhanced stability compared to the traditional cooperation method
and designed a cooperation feedback strategy, which can effectively adjust the cooperation
of UAVs. We added a maximum interval distance consistency module that can significantly
improve the accuracy of collaborative position preservation. This networking method can
maintain accurate collaboration positions, minimize collaboration errors, and greatly re-
duce the collaboration time of the network under the action of the reference controller. The
experimental results showed that the algorithm proposed in this paper takes the shortest
whole time. The cooperative formation recovery time is improved by at least 1 s compared
to other algorithms. The maximum interval distance can reach 0.65 m, which is notably
smaller than other algorithms. In the future, we will investigate other UAV network impact
factors, such as channel randomness, uncertainty models, uncertain channel disturbances,
and multi-relay cooperative/communication models.
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