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Abstract: Autonomous vehicles play a crucial role in three-dimensional transportation systems and
have been extensively investigated and implemented in mining and other fields. However, the
diverse and intricate terrain characteristics present challenges to vehicle traversability, including
complex geometric features such as slope, harsh physical parameters such as friction and roughness,
and irregular obstacles. The current research on traversability analysis primarily emphasizes the
processing of perceptual information, with limited consideration for vehicle performance and state
parameters, thereby restricting their applicability in path planning. A framework of traversability
analysis and path planning methods for autonomous wheeled vehicles on rigid terrains is proposed
in this paper for better traversability costs and less redundancy in path planning. The traversability
boundary conditions are established first based on terrain and vehicle characteristics using theoretical
methods to determine the traversable areas. Then, the traversability cost map for the traversable areas
is obtained through simulation and segmented linear regression analysis. Afterward, the TV-Hybrid
A* algorithm is proposed by redefining the path cost functions of the Hybrid A* algorithm through
the simulation data and neural network method to generate a more cost-effective path. Finally, the
path generated by the TV-Hybrid A* algorithm is validated and compared with that of the A* and
Hybrid A* algorithms in simulations, demonstrating a slightly better traversability cost for the former.

Keywords: unmanned ground vehicle (UGV); three-dimensional transportation systems; unstructured
environment; traversability analysis; path planning

1. Introduction

Three-dimensional transportation enhances traffic efficiency and safety by utilizing
advanced technical means and facilities. Autonomous vehicles are integral to this system
in various fields, including mining, rescue, construction, and military operations [1–3].
The roads of these applications typically are rigid terrains. Rigid terrains encompass
compacted soil, asphalt, or concrete surfaces, which typically exhibit negligible deformation
under loading, as demonstrated in Figure 1. Surface coverings such as snow, dust, and
grass, along with the roughness of rigid terrains, not only reduce contact friction but can
contribute to amplified driving vibrations. The geometric features (e.g., slope) and irregular
terrain obstacles (e.g., ditches, steps, vegetation) of rigid terrains also present a formidable
challenge to vehicle traversability.
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Figure 1. An example of rigid terrain composed of compacted soil. 

Traversability analysis typically evaluates a vehicle’s ability to navigate specific areas 
based on environmental and vehicle information [4]. Estimating traversability is crucial 
for autonomous path planning in unstructured environments. Inaccurate or inefficient 
assessment of traversability can lead to the generation of subpar paths, resulting in 
excessive energy and time consumption as well as unnecessary risks to equipment and 
the environment [4,5]. 

Although vehicles are capable of traversing certain areas, they may incur additional 
costs such as safety expenses, energy consumption, time expenditure, speed reduction, 
and wear and tear on parts or goods. Therefore, it is essential to assess the cost of terrain 
traversability. The results of a traversability cost analysis can provide valuable 
information for path planners to select and optimize the path. 

This paper integrates environmental data such as terrain geometric features, physical 
parameters, static obstacle information, and wheeled vehicle characteristics using 
theoretical methods to establish traversability boundary conditions and generate a 
traversability boundary map for specific areas. The traversability boundary map is 
utilized to delineate the traversable boundary while excluding impassable areas for 
subsequent construction of the cost map and path planning to enhance efficiency. Then, 
simulation and segmented linear regression are combined to conduct a comprehensive 
analysis of traversability costs and generate a multi-layer traversability cost map based on 
the established cost functions. This paper not only takes into account the vehicle 
dimensions and performance parameters but also considers the speed, load, tire pressure, 
and other vehicle state parameters. Subsequently, the TV-Hybrid A* algorithm is 
proposed for path planning by redefining the cost function of the Hybrid A* algorithm 
based on simulation test data and a neural network method to account for the impact of 
rigid terrains on vehicle path costs. 

The contributions of this paper include the following: 
• An optimized framework for path planning on rigid terrains is introduced aimed at 

minimizing redundant efforts and enhancing overall operational efficiency, as 
illustrated in Figure 2. 

• Methods of assessing the traversability boundaries and costs on rigid terrains are 
proposed by the theory-based and segmented linear regression approach taking into 
consideration terrain and vehicle characteristics. 

• The TV-Hybrid A* algorithm, a path planning algorithm for rigid terrains, is 
proposed based on the Hybrid A* algorithm with a three-layer neural network model 
to improve cost functions. 

Figure 1. An example of rigid terrain composed of compacted soil.

Traversability analysis typically evaluates a vehicle’s ability to navigate specific areas
based on environmental and vehicle information [4]. Estimating traversability is crucial
for autonomous path planning in unstructured environments. Inaccurate or inefficient
assessment of traversability can lead to the generation of subpar paths, resulting in ex-
cessive energy and time consumption as well as unnecessary risks to equipment and the
environment [4,5].

Although vehicles are capable of traversing certain areas, they may incur additional
costs such as safety expenses, energy consumption, time expenditure, speed reduction,
and wear and tear on parts or goods. Therefore, it is essential to assess the cost of terrain
traversability. The results of a traversability cost analysis can provide valuable information
for path planners to select and optimize the path.

This paper integrates environmental data such as terrain geometric features, physical
parameters, static obstacle information, and wheeled vehicle characteristics using theoreti-
cal methods to establish traversability boundary conditions and generate a traversability
boundary map for specific areas. The traversability boundary map is utilized to delineate
the traversable boundary while excluding impassable areas for subsequent construction of
the cost map and path planning to enhance efficiency. Then, simulation and segmented
linear regression are combined to conduct a comprehensive analysis of traversability costs
and generate a multi-layer traversability cost map based on the established cost functions.
This paper not only takes into account the vehicle dimensions and performance parameters
but also considers the speed, load, tire pressure, and other vehicle state parameters. Subse-
quently, the TV-Hybrid A* algorithm is proposed for path planning by redefining the cost
function of the Hybrid A* algorithm based on simulation test data and a neural network
method to account for the impact of rigid terrains on vehicle path costs.

The contributions of this paper include the following:

• An optimized framework for path planning on rigid terrains is introduced aimed
at minimizing redundant efforts and enhancing overall operational efficiency, as
illustrated in Figure 2.

• Methods of assessing the traversability boundaries and costs on rigid terrains are
proposed by the theory-based and segmented linear regression approach taking into
consideration terrain and vehicle characteristics.

• The TV-Hybrid A* algorithm, a path planning algorithm for rigid terrains, is proposed
based on the Hybrid A* algorithm with a three-layer neural network model to improve
cost functions.
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Figure 2. The proposed framework of traversability analysis and path planning methods for 
autonomous wheeled vehicles on rigid terrains. 

2. Related Work 
2.1. Traversability Analysis 

Currently, the focus of traversability analysis lies in environmental perception, 
particularly in the methods for collecting and processing perceived environmental data 
[6–8]. The means of traversability analysis typically include experimental, image 
processing-based, and behavior-based approaches [5]. Early traversability analysis was 
usually conducted through experiments. For example, the cone index method was 
proposed by the Waterways Experiment Station (WES) of the U.S. military to determine 
the traversability of a particular vehicle in a certain soil [9]. The experimental methods are 
expensive, time-consuming, and also constrained by environmental limitations and 
challenges in replication [5]. As a result, simulation tests have become widely adopted. 
Image processing-based methods typically rely on geometric and semantic information to 
make assessments, but they fail to consider the vehicle performance parameters and the 
terrain physical attributes [10]. Behavior-based methods, which are the new trend in this 
field, assess the traversability by experts’ driving trajectories with learning-based methods 
[11–13]. These methods are tailored to specific vehicles and are not directly applicable to 
different vehicles or even the same vehicle under varying operating conditions [14]. 
Hence, it is strongly advised to utilize traversability analysis means that integrate 
theoretical principles, simulation techniques, and machine learning algorithms [5,7]. 

Figure 2. The proposed framework of traversability analysis and path planning methods for au-
tonomous wheeled vehicles on rigid terrains.

2. Related Work
2.1. Traversability Analysis

Currently, the focus of traversability analysis lies in environmental perception, particu-
larly in the methods for collecting and processing perceived environmental data [6–8]. The
means of traversability analysis typically include experimental, image processing-based,
and behavior-based approaches [5]. Early traversability analysis was usually conducted
through experiments. For example, the cone index method was proposed by the Waterways
Experiment Station (WES) of the U.S. military to determine the traversability of a particular
vehicle in a certain soil [9]. The experimental methods are expensive, time-consuming, and
also constrained by environmental limitations and challenges in replication [5]. As a result,
simulation tests have become widely adopted. Image processing-based methods typically
rely on geometric and semantic information to make assessments, but they fail to consider
the vehicle performance parameters and the terrain physical attributes [10]. Behavior-based
methods, which are the new trend in this field, assess the traversability by experts’ driving
trajectories with learning-based methods [11–13]. These methods are tailored to specific
vehicles and are not directly applicable to different vehicles or even the same vehicle under
varying operating conditions [14]. Hence, it is strongly advised to utilize traversability
analysis means that integrate theoretical principles, simulation techniques, and machine
learning algorithms [5,7].

The outputs of a traversability analysis can be categorized into classification-based
and regression-based results. Classification-based results are generally discrete classes of
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terrain type, including binary classification and multi-classification [15]. Classification-
based methods often provide restricted traversability analysis for specific categories, and
their results are challenging to directly integrate into the path planner [7]. The outcomes
derived from regression-based methods are depicted as traversability maps or functions,
which can be readily fed into the path planner [16].

Traversability analysis is closely tied to the vehicle characteristics. Reference [17]
first generates a geometric representation of the world, then assesses traversability by
comparing the geometric features such as the height, width, and slope of the traversable
areas with the vehicle dimensions. Additionally, traversability is also impacted by the
performance and state parameters of vehicles. For example, the vehicle’s capability to
traverse slopes varies depending on the vehicle’s driving direction, speed, and load. Indeed,
current research has given scant attention to these crucial aspects, significantly limiting
their practical applicability within the realm of path planning. This paper aims to address
this gap by first defining the traversability boundary condition from a vehicle performance
perspective based on mechanics theory and then determining the traversability cost through
a segmented linear regression method using the simulation results of vehicle traversability
under different terrain parameters.

2.2. Path Planning

In recent years, the predominant path planning strategies for rigid terrains encompass
graph-search-based, sampling-based, and artificial potential field (APF) approaches [5,18].
Among these, graph-search-based methods can effectively integrate the results of traversability
cost analysis [7]. Graph-search-based methods discretize the configuration space as a graph
and then search for a minimum-cost path within it [19,20]. The A* and Dijkstra are the
most common algorithms [21].

A* search can be seen as an improvement of Dijkstra’s search [22,23]. The A* algorithm
was proposed by Hart in the 1960s, combining the advantages of the mathematical search
method and the heuristic search method. By using a heuristic function to guide the search
direction, it can reduce the search amount, improve the efficiency of the algorithm, and
ensure the optimization of the results [24].

The Hybrid A* algorithm represents a significant enhancement of the A* algorithm [22],
which is limited to considering positions in two dimensions (x, y), while the Hybrid A* al-
gorithm incorporates vehicle kinematic constraints and introduces an additional dimension
θ (the direction of the vehicle) to optimize node expansion for better alignment with the
motion characteristics of the vehicle. The path points generated by the A* algorithm typi-
cally fall within the center of the grid, whereas those produced by the Hybrid A* algorithm
have the potential to appear anywhere within the grid, resulting in a more adaptable and
seamless path. The heuristic function of the A* algorithm typically relies on straightforward
distance estimation, such as the Euclidean or Manhattan distance. In contrast, the Hybrid
A* algorithm takes into account real-world factors and introduces penalties for variables
such as the vehicle angle, gear changes, and forward/backward motion adjustments to
ensure that the planned trajectory aligns more closely with actual motion scenes. However,
the path cost function for both Hybrid A* and A* does not take into account the impact of
terrain physical parameters and obstacles on vehicle traversability. Therefore, the path cost
function of Hybrid A* is improved in this paper with the simulation data and a three-layer
neural network model to generate a more cost-effective path.

3. Methods
3.1. Overview

The overall framework of traversability analysis and path planning methods on rigid
terrains proposed in this paper is illustrated in Figure 2. The environmental information
collected in this study is processed to generate a multi-layer map, which includes a 2.5D
height layer, a gradient layer, a terrain physical characteristics layer, and a static obstacle
layer. Then, theoretical principles are applied based on wheeled vehicle characteristics to
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define the boundary conditions for the terrain geometric features, physical parameters, and
static obstacles. The wheeled vehicle characteristics considered in this paper encompass
structural dimensions (e.g., vehicle length, vehicle width, minimum ground clearance,
wheel radius, wheelbase), performance parameters (e.g., maximum engine torque, maxi-
mum engine speed, maximum engine power, maximum braking torque, minimum turning
radius, maximum steering angle), and state parameters (e.g., driving direction, speed, load,
tire pressure). Based on the established boundary conditions, a traversability boundary
map is generated from the initial environment map while eliminating impassable areas.

A multi-layer cost map for the traversable areas is generated by conducting a terrain
traversability cost analysis, taking into account the terrain height, slope, friction, roughness,
and obstacles. The estimation of terrain slope, friction, and roughness costs is established
using simulation test data and the segmented linear regression method. The traversability
cost of terrain obstacles is empirically determined based on their impact on the wheeled
vehicle driving speed.

Path planning is conducted based on the traversability boundary map and cost map.
This paper proposes the TV-Hybrid A* planner by introducing the consideration of ter-
rain characteristics into the Hybrid A* planner to comprehensively account for various
parameters’ influence on the path cost function and to thus obtain a more optimized path.
The weights of different terrain parameters’ influence on the wheeled vehicle path cost are
determined by a three-layer neural network model.

3.2. Traversability Boundary Analysis

The acquired DEM data are processed to generate a 2.5D height map and gradient
map. The terrain physical map with friction and roughness distribution, as well as the
static obstacle map, are overlaid as the initial environment map. Subsequently, based
on theoretical principles, the traversability boundary conditions for wheeled vehicles in
relation to different terrain geometric features, physical parameters, and static obstacles are
analyzed sequentially. Finally, impassable areas are removed from the initial environmental
representation according to the established boundary conditions to obtain a traversability
boundary map to avoid redundancy in cost analysis and path planning.

3.2.1. Terrain Geometric Boundary Condition Definition

The geometric feature that significantly affects vehicle traversability is slope, which is
associated with driving direction. In this paper, the limit value of the slope SL is defined as:

SL = min
{

slopelong_uphill , slopelong_downhill , slopeside

}
(1)

where slopelong_uphill , slopelong_downhill , and slopeside are the maximum longitudinal uphill
slope, the maximum longitudinal downhill slope, and the maximum side slope, respectively,
that the wheeled vehicle is capable of traversing.

The maximum longitudinal uphill slope slopelong_uphill is primarily determined by
wheeled vehicle dynamics and static non-pitch performance requirements:

slopelong_uphill = min{slopelu_d, slopelu_s} (2)

where slopelu_d and slopelu_s are the maximum longitudinal uphill driving slopes required
by dynamics and static non-pitch performance, respectively. slopelu_s can be calculated
by reference [25]. slopelu_d can be calculated according to the vehicle dynamics equation,
disregarding wind resistance and acceleration resistance:

slopelu_s = tan−1 l2
h

(3)
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Ft = Ff + Fi

Ft =
Ttq ·i

r
Ff = φ·G· cos(slopelu_d)

Fi = G· sin(slopelu_d)

(4)

where l2 is the longitudinal distance from the vehicle’s center of mass to the center of the
vehicle rear axis; h is the height of the vehicle’s center of mass; Ft is the driving force of the
vehicle; Ff is the friction force of the vehicle; Fi is the force caused by the slope; G is the
vehicle gravity; Ttq is the torque of the engine or motor; i is the gear ratio; r is the driving
radius of the wheel, which is influenced by factors such as tire pressure, load, and driving
speed; and φ is the terrain friction coefficient.

The maximum longitudinal downhill slope slopelong_downhill is primarily determined
by wheeled vehicle dynamics and static non-pitch performance requirements:

slopelong_downhill = min{slopeld_d, slopeld_s} (5)

where slopeld_d and slopeld_s are the maximum longitudinal downhill driving slopes re-
quired by dynamics and static non-pitch performance, respectively. slopeld_s can be cal-
culated by reference [25]. slopeld_d can be calculated according to the vehicle dynamics
equation, disregarding wind resistance and acceleration resistance:

slopeld_s = tan−1 l1
h

(6)


Fi = Ff + Fµ

Fi = G· sin(slopeld_d)
Ff = φ·G· cos(slopeld_d)

(7)

where l1 is the longitudinal distance from the vehicle’s center of mass to the center of the
vehicle front axis, and Fµ is the braking force.

The maximum side slope slopeside is primarily determined by wheeled vehicle dy-
namics and static non-rollover performance requirements:

slopeside = min{slopes_d, slopes_s} (8)

where slopes_d and slopes_s are the maximum side driving slopes required by dynamics and
static non-rollover performance, respectively. slopes_s can be calculated by reference [25].
slopes_d can be calculated according to the vehicle dynamics equation, disregarding wind
resistance and acceleration resistance:

slopes_s = min
{

tan−1 dl
h

, tan−1 dr

h

}
(9)


Ff = Fs + Fi

Fi = G· sin(slopes_d)
Ff = φ·G· cos(slopes_d)

(10)

where dl and dr are the lateral distances from the vehicle’s center of mass to the center of the
left and right wheels, respectively, and FS is the lateral force that is related to the steering.

3.2.2. Terrain Physical Boundary Condition Definition

The primary physical attributes of rigid terrains consist of friction and roughness.
In this paper, the limit value of the friction φL is defined as:

φL = min
{

φLacc , φLdec

}
(11)
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where φLacc and φLdec are the limit values of friction required by a vehicle to drive stably
without skidding during acceleration and braking, respectively. φLacc and φLdec can be
calculated according to the following equations:

φLacc =
Ttq · i
N · r

(12)

φLdec =
m · adec

N
(13)

where m is the mass of the vehicle, which is related to the load, and adec is the maximum
braking deceleration.

The terrain roughness RL can be classified into A to H grades according to ISO 8608 [26].
The vehicle’s ability to traverse rough roads is influenced by factors such as the vehicle’s
characteristics (e.g., load, tires, suspension system, chassis height, powertrain), and terrain
friction. The thresholds can be determined through experiments or simulation tests, taking
into account the transportation, comfort, and wear requirements.

3.2.3. Terrain Obstacle Boundary Condition Definition

The boundary conditions of terrain obstacles are analyzed based on the wheeled
vehicle characteristics and obstacle information, utilizing both empirical knowledge and
theoretical principles. This paper primarily focuses on discrete, densely distributed, and
continuous obstacles, such as vegetation, steps, ditches, and fences. Small and single-point
obstacles are generally considered in trajectory planning, while large obstacles such as
buildings and mountains are treated as impassable areas.

The traversability of vegetation needs to consider both its distribution and height. For
discrete vegetation, the wheeled vehicle can pass if the minimum distance between adjacent
plants BVDis meets Inequality (14). In the case of densely distributed and continuous
vegetation, the wheeled vehicle can pass if its minimum ground clearance Vmgc and the
height of the plant BVH meet Inequality (15). Otherwise, the traversability of vegetation is
not recommended for safety reasons.

BVDis ≥ Vw + Sw (14)

BVH ≤ Vmgc − SH (15)

where Vw is the width of the vehicle, Sw is the safe lateral distance, and SH is the safe
altitude distance.

The traversability of steps should also take into account their distribution. For a single
step, the passable height of the step BSH is defined as the minimum value of the maximum
heights that the front and rear wheels of the vehicle can cross, as well as the vehicle’s
minimum ground clearance (see Equation (16)). When dealing with multiple steps, it is
also essential to determine whether the minimum interval between adjacent steps BSDis
allows for the vehicle to pass through after all wheels have landed in a steady state (see
Inequality (17)). If not, when the front wheels are ready to pass over one step but the rear
wheels have not completely passed over the previous step, it is not recommended for safety
and stability reasons.

BSH = min
{

BSHF, BSHR, Vmgc
}

(16)

BSDis > Vlb (17)

where BSHF and BSHR are the maximum heights that the front and rear wheels of the
vehicle can cross, which can be calculated by reference [9] (see Equations (18) and (19)). Vlb
is the wheelbase of the vehicle.

BSHF = r·
1 − φ r

Vlb
+ η2 − η·

√
1 − 2φ r

Vlb
+ η2(

1 + φ r
Vlb

)2
+ η2

(18)
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{φ r

Vlb
+

[
−φ2 +

(
1 + φ2) l1

Vlb

]
cos β +

[
φ −

(
1 + φ2) h

Vlb

]
sin β} cos α

= φ
[(

φ r
Vlb

+ cos β − φ sin β
)

sin α − φ r
Vlb

]
sin α = 1 − BSHR

Vlb
sin β = r

Vlb
(1 − sin α)

(19)

where η is the argument to simplify the equation, which can be represented as
η =

[
1 − φ r

Vlb
−

(
1 + φ2) l1

Vlb

]
/φ, β is the angle between the connecting line of the cen-

ter points of the front and rear wheels and the horizontal plane, and α is the angle between
the force applied to the wheel and the horizontal plane.

Referring to [9], there is a certain relationship between the width of the ditch BDw that
the vehicle can cross and the passable height of the step BSH (see Equation (20)).

BDw

2r
= 2

√
BSH
2r

−
(

BSH
2r

)2
(20)

The traversability of fences is primarily determined by whether the minimum clear-
ance height of the fence meets the vehicle’s passing requirements. While specialized
vehicles, such as military vehicles, may be able to drive against weak fences, it is not
recommended for ordinary vehicles due to safety concerns.

3.3. Traversability Cost Analysis

A wheeled vehicle traversability cost model is developed based on simulation test
data from various terrains. Subsequently, the traversability cost for each region is assessed
using the obtained traversability boundary map and the established traversability cost
model, resulting in the creation of a traversability cost map.

In this paper, the traversability cost model takes into account the height, slope, friction,
roughness, and obstacles. The cost model described in the literature [27,28] integrated
parameters such as the slope, roughness, and steps, assuming a consistently linear rela-
tionship between the traversability cost and parameter values. In reality, the relationship
between the traversability cost and parameter value is not constant. When the parameter
value is small, its impact on traversability cost is minimal, resulting in a smaller proportion
of the relationship; conversely, when the parameter value is large, its impact on traversabil-
ity cost is significant, leading to a larger proportion of the relationship. Consequently,
the traversability cost function can be defined based on how parameter values influence
traversability costs within different ranges through experiments or simulation tests. The
influence of these parameters on the traversability cost can be evaluated through the lim-
itations imposed on the vehicle speed, with a higher speed limit resulting in a higher
traversability cost [29]. Furthermore, these parameters significantly impact the vehicle’s
load-bearing capacity during traversal, subsequently influencing the traversability cost.
Therefore, the impact of various parameters on both the vehicle speed and load capacity
is studied in this paper through simulation tests. Subsequently, the traversability cost
functions are defined based on the comprehensive analysis of the simulation data.

3.3.1. Terrain Height Cost Definition

The terrain height cost function is generally designed to take into account the change
in height when calculating the distance between two points:

TZ =

√
(xi − xn)

2 + (yi − yn)
2 + [wz·(zi − zn)]

2 (21)

where TZ is the terrain height cost, (xi, yi, zi) and (xn, yn, zn) are the coordinates for any two
points, respectively, and wz is the weight of the height.
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3.3.2. Terrain Slope, Friction and Roughness Cost Definition

Experiments or simulation tests can provide insight into the impact of terrain pa-
rameters such as the slope, friction, and roughness on the vehicle speed and load. The
Chrono platform [30] is utilized to investigate the influence of different terrain parameters
on vehicle speed and load-bearing capacity restrictions within the above traversability
boundary conditions. Subsequently, traversability cost functions are established based on
the influence rule using segmented linear regression methods.

This paper employs simulation test data to examine the maximum average driving
speeds of vehicles under different loads on varying terrain slope, friction, and roughness
conditions, as illustrated in Figure 3. The maximum average driving speed of a vehicle
refers to the maximum mean speed of a vehicle that is capable of meeting acceleration,
braking, steering, and vibration requirements smoothly across various terrains without
skidding or rolling. Based on the simulation results and empirical knowledge, the slope
cost functions (see Equation (22)), friction cost functions (see Equation (23)), and roughness
cost functions (see Equation (24)) are established through segmented linear regression.

TS =


ks1

S
SL

, S ≤ SF

TS1 + ks2
S

SL
, SF < S ≤ SS

TS2 ++ks3
S

SL
, SS < S ≤ SL

(22)

Tφ =


k f 1

φ
φF

, φ ≥ φF

Tφ1 + k f 2
φ

φF
, φS ≤ φ < φF

Tφ2 + k f 3
φ

φF
, φL ≤ φ < φS

(23)

TR =

{
kr1

R
RL

, R ≤ RF

TR1 + kr2
R

RL
, RF < R ≤ RL

(24)

where TS, Tφ, and TR are the slope, friction, and roughness costs; S, φ, and R are the actual
slope, friction, and roughness of the terrain, where S is calculated with the driving direction
θ; SF, φF, and RF are the free thresholds of slope, friction, and roughness at which the
vehicle can traverse with lower cost; SS and φS represent the risky thresholds of slope
and friction at which the vehicle can traverse with higher cost; SL, φL, and RL are the
traversability boundary conditions of slope, friction, and roughness that were identified in
the previous section; ksi, k f i, kri, TSi, Tφi, and TRi (i = 1, 2, 3) are the parameters of these
functions that can be selected according to the simulation tests.
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Figure 3. The relationship among vehicle speed, vehicle load, and terrain parameters: (a) The
maximum average driving speed of vehicles under different loads on varying terrain slopes with
favorable friction and roughness conditions; (b) The maximum average driving speed of vehicles
under different loads on varying friction conditions of flat terrain with favorable roughness conditions;
(c) The maximum average driving speed of vehicles under different loads on varying roughness
conditions of flat terrain with favorable friction conditions. The x-axis values 1–8 correspond to the
roughness categories A–H.

3.3.3. Terrain Obstacle Cost Definition

According to the literature [22] and experience, the traversability cost of obstacles
can be qualitatively classified based on their types. For example, low grass and trees with
free gaps result in a lower speed drop for vehicles, while high grass, trees with safe gaps,
speed bumps, low steps, small ditches, and high traversable fences lead to a medium speed
drop. Bushes, high steps, large ditches, and low traversable fences are considered limited
obstacles that result in a higher speed drop for vehicles. The traversability cost of terrain
obstacles TU is defined based on the following classification:

TU =


TU1, IF = {Low Grass, Trees with f ree gaps}

TU2, Is = {High Grass, Trees with sa f e gaps, Speed bumps, Low Steps,
Small Ditches, High traversable f ence}

TU3, IL = {Bush, High Steps, Large Ditches, Low traversable f ence }

(25)
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where TU1, TU2, and TU3 represent the respective traversability cost of the obstacles corre-
sponding to the classification of IF, Is, and IL.

3.4. Path Planning

In the Hybrid A* algorithm, the path cost f (x) comprises both g(x) and h(x).

f (x) = g(x) + h(x) (26)

where g(x) is the cost of the path from the starting point to the current point, and h(x) is
the estimated cost of the path from the current point to the end point.

In the Hybrid A* algorithm, the function g(x) accounts for the physical distance
traveled from the starting point to the current point and considers the wheeled vehicle’s
maneuvers (such as reversing, advancing, turning, etc.) without taking into account the
terrain and vehicle characteristics. Environmental factors such as the slope, step, and other
obstacles were considered in designing g(x) in [12]. In Section 3.3, the impact of individual
terrain parameters on the wheeled vehicle traversability cost is separately addressed, while
the consideration of different parameters’ influence on the wheeled vehicle path cost should
be approached contrastively during path planning. The TV-Hybrid A* algorithm proposed
in this paper reconfigures the g(x) cost function to account for both terrain and vehicle
characteristics:

g(x) = ∑
[
(ωZTZn_ave+ωRTRn_ave + ωFTFn_ave + ωSTn_ave + ωUTUn_ave

)
·∆ln + gmaneuver_n] (27)

where ωj(j = Z, R, F, S, U) are the weight of the terrain height, roughness, friction, slope,
and obstacles costs, which can be determined by the simulation test data and neutral
network method; Tjn_ave(j = Z, R, F, S, U) are the mean traversability costs of the terrain
height, roughness, friction, slope, and obstacles from position point n to point n + 1, which
can be calculated by Equation (28); ∆ln is the distance between position point n and point
n + 1; gmaneuver_n is the extra penalty costs of vehicle maneuvering from position point n to
point n + 1.

Tjn_ave =
∑
(

Tjnk
·∆lnk

)
∆ln

(j = Z, R, F, S, U; k = 1, 2, . . .) (28)

where k denotes the various terrain types that may be traversed from point n to point n + 1,
and Tjnk

and ∆lnk represent the respective cost and length of each type from point n to point
n + 1.

This paper presents a three-layer neural network model established using data on the
maximum vehicle speed and maximum load under different terrain parameters obtained
from simulation tests. The model aims to contrastively analyze the impact of various
parameters on path costs, as illustrated in Figure 4. The neural network model is composed
of a single hidden layer, containing precisely 10 neurons. This hidden layer employs the
tansig activation function, which introduces nonlinearity and facilitates the network’s
ability to capture complex patterns in the data. Meanwhile, the output layer utilizes the
purelin activation function, ensuring a linear mapping of the hidden layer’s output to
the final prediction [31]. The influence of terrain parameters on vehicle path costs can
be roughly estimated by scrutinizing the weights assigned to the first layer of the neural
network, which connects the input layer to the hidden layer. Furthermore, sensitivity
analysis facilitates a more nuanced evaluation of how each parameter contributes to the
overall vehicle path costs.



Drones 2024, 8, 419 12 of 19

Drones 2024, 8, 419 12 of 20 
 

and point 𝑛 + 1 ; 𝑔௨௩_  is the extra penalty costs of vehicle maneuvering from 
position point 𝑛 to point 𝑛 + 1. 𝑇_ೌೡ = ∑(்ೕೖ ∙∆ೖ)∆ (𝑗 = 𝑍, 𝑅, 𝐹, 𝑆, 𝑈; 𝑘 = 1,2, … )  (28)

where 𝑘 denotes the various terrain types that may be traversed from point 𝑛 to point 𝑛 + 1, and 𝑇ೖ  and ∆𝑙 represent the respective cost and length of each type from point 𝑛 to point 𝑛 + 1. 
This paper presents a three-layer neural network model established using data on the 

maximum vehicle speed and maximum load under different terrain parameters obtained 
from simulation tests. The model aims to contrastively analyze the impact of various 
parameters on path costs, as illustrated in Figure 4. The neural network model is 
composed of a single hidden layer, containing precisely 10 neurons. This hidden layer 
employs the tansig activation function, which introduces nonlinearity and facilitates the 
network’s ability to capture complex patterns in the data. Meanwhile, the output layer 
utilizes the purelin activation function, ensuring a linear mapping of the hidden layer’s 
output to the final prediction [31]. The influence of terrain parameters on vehicle path 
costs can be roughly estimated by scrutinizing the weights assigned to the first layer of 
the neural network, which connects the input layer to the hidden layer. Furthermore, 
sensitivity analysis facilitates a more nuanced evaluation of how each parameter 
contributes to the overall vehicle path costs. 

 
Figure 4. A three-layer neural network to analyze the impact of terrain parameters on path costs. 

4. Results 
4.1. Simulation Framework 

The simulation environment excels at conducting parametric modeling of the terrain 
with various parameters and targeted validation. Consequently, the traversability 
analysis and path planning methods on rigid terrains are validated through simulation in 
this paper. The generated path by the TV-Hybrid A* planner is compared with that of A* 
and Hybrid A*. The entire simulation framework is illustrated in Figure 5. Solidworks is 
utilized for creating the initial environment model, while MATLAB processes 
environmental information, conducts traversability analysis, and conducts path planning, 
including creating initial environment maps, establishing traversability boundary 
conditions to generate a traversability boundary map, establishing traversability cost 
functions to generate a traversability cost map, and implementing the TV-Hybrid A* 
algorithm to generate a planning path. Additionally, Chrono [30,32,33] is used for creating 
vehicle models, simulating vehicle traversability for different terrain parameters based on 
environmental information, verifying paths generated by TV-Hybrid A*, and comparing 
them with paths generated by A* and Hybrid A*. Chrono is extensively utilized for 
vehicles across various terrains, including rigid, deformable, and granular terrains 

Figure 4. A three-layer neural network to analyze the impact of terrain parameters on path costs.

4. Results
4.1. Simulation Framework

The simulation environment excels at conducting parametric modeling of the terrain
with various parameters and targeted validation. Consequently, the traversability analysis
and path planning methods on rigid terrains are validated through simulation in this paper.
The generated path by the TV-Hybrid A* planner is compared with that of A* and Hybrid
A*. The entire simulation framework is illustrated in Figure 5. Solidworks is utilized for
creating the initial environment model, while MATLAB processes environmental infor-
mation, conducts traversability analysis, and conducts path planning, including creating
initial environment maps, establishing traversability boundary conditions to generate
a traversability boundary map, establishing traversability cost functions to generate a
traversability cost map, and implementing the TV-Hybrid A* algorithm to generate a plan-
ning path. Additionally, Chrono [30,32,33] is used for creating vehicle models, simulating
vehicle traversability for different terrain parameters based on environmental information,
verifying paths generated by TV-Hybrid A*, and comparing them with paths generated
by A* and Hybrid A*. Chrono is extensively utilized for vehicles across various terrains,
including rigid, deformable, and granular terrains [30,32,33]. It can perform high-fidelity
simulations of terrains, wheels, and terrain mechanics.
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4.2. Simulation Model
4.2.1. Terrain Model

In this paper, a 200 m × 200 m 3D terrain model is designed and meshed with a
cell size of 1 m × 1 m, on which the terrain slope, friction, roughness, and obstacles are
randomly configured as depicted in Figure 6.
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in the aforementioned terrain environment, as depicted in Figure 7. This model takes into 
account the translational motions of the vehicle in the x, y, and z directions; the yaw, pitch, 
and roll motions; and the rolling, steering, and vertical motions of the wheels. The vehicle 
model is rear-wheel drive with a mass of 4140 kg, and other specific vehicle parameters 
are provided in Table 1. 

 
Figure 7. The simulation model of the articulated chassis vehicle on the designed terrain. 

Table 1. The parameters of the vehicle model. 

Parameter Value Units 
Vehicle Length 4.84 m 
Vehicle Width 2 m 
Minimum Ground Clearance 0.3 m 
Wheel Radius 0.42 m 
Wheelbase 4 m 
Maximum Engine Torque 300 N·m 
Maximum Engine Power 110 kW 
Maximum Braking Torque 4000 N·m 
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Maximum Steering Angle 135 ° 

Figure 6. The initial environmental information for the simulation validation: (a) The terrain DEM
model; (b) The terrain height map obtained from the DEM model; (c) The terrain gradient map
obtained from the DEM model; (d) The terrain physical distribution information of friction marked in
gray with roughness marked with filling; (e) The terrain obstacles with height and type information.

4.2.2. Vehicle Model

A prototype vehicle model is employed as a case study to evaluate its performance in
the aforementioned terrain environment, as depicted in Figure 7. This model takes into
account the translational motions of the vehicle in the x, y, and z directions; the yaw, pitch,
and roll motions; and the rolling, steering, and vertical motions of the wheels. The vehicle
model is rear-wheel drive with a mass of 4140 kg, and other specific vehicle parameters are
provided in Table 1.
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Figure 7. The simulation model of the articulated chassis vehicle on the designed terrain.

Table 1. The parameters of the vehicle model.

Parameter Value Units

Vehicle Length 4.84 m
Vehicle Width 2 m
Minimum Ground Clearance 0.3 m
Wheel Radius 0.42 m
Wheelbase 4 m
Maximum Engine Torque 300 N·m
Maximum Engine Power 110 kW
Maximum Braking Torque 4000 N·m
Minimum Turning Radius 5 m
Maximum Steering Angle 135 ◦
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4.3. Simulation Results
4.3.1. Traversability Boundary and Cost Map

The traversability boundary map is generated based on the designed terrain and
vehicle model according to the established boundary conditions, as depicted in Figure 8.
The cost map is obtained through traversability cost analysis of the height, slope, friction,
roughness, and obstacles within traversable areas, as shown in Figure 9. This includes
calculating the slope cost along both the x- and y-direction gradients. The costs for other
driving directions can be derived from the x and y costs.
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4.3.2. Path Planning

Based on simulation tests and neural network results, it has been determined that
the path cost is highly influenced by roughness and obstacles. This finding dictates the
selection of weights for terrain parameters in the path cost functions of the TV-Hybrid A*
planner. Then the planned paths are respectively generated by the A* planner, Hybrid A*
planner, and the TV-Hybrid A* planner based on the obtained boundary map and cost map.

The path generated by the TV-Hybrid A* algorithm demonstrates fewer significant
deviations but more minor fluctuations compared to that generated by the Hybrid A* and
A* algorithm from a geometric perspective, as illustrated in Figure 10. Subsequently, three
paths are individually simulated in Chrono, and the simulation data of both paths are
presented in Table 2. According to the simulation results, in comparison with the A* planner
and Hybrid A* algorithm, the path generated by TV-Hybrid A* exhibits a slightly shorter
length, reduced travel time and energy consumption, and a marginally higher average
vehicle speed. This suggests that the selected path terrain imposes a slightly lower speed
limit and traversability cost on the vehicle. Ultimately, regarding computational efficiency,
Table 2 clearly showcases the reduced path generation duration achieved. The algorithm
introduced in this paper exhibits superior performance over the conventional A* planner
and Hybrid A* algorithm for this terrain model. This enhanced efficiency stems from the
initial delineation of traversable boundaries, effectively pruning unnecessary computations
and evaluations in impassable areas. Additionally, the pre-emptive analysis of traversability
costs within the static environment during traversability assessment further contributes to
time savings during path planning, resulting in a more streamlined and efficient process.
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Table 2. The comparison data for the two paths.

Path Path Length (m) Travel Time (s) Average Speed (m/s) Energy (J) Calculation Time (s)

A* 228.4 23.4 9.76 1912 0.49
Hybrid A* 227.6 23.1 9.85 1844 0.34

TV-Hybrid A* 226.8 22.8 9.94 1734 0.27

5. Conclusions

A traversability analysis and path planning framework for wheeled vehicles on rigid
terrains was proposed in this paper. The traversability boundary conditions were first ana-
lyzed to obtain the boundary map of the traversable areas, and then the traversability cost
analysis and path planning based on this were conducted. This framework avoids redun-
dant analysis and calculation of impassable areas while enhancing the cost-effectiveness of
the planned path.

During the traversability boundary analysis, the geometric, physical, and obstacle
traversable conditions were established based on theoretical principles and practical ex-
perience, taking into account the characteristics of both the terrain and wheeled vehicles.
For the geometric boundary, a comprehensive analysis of slope conditions was conducted,
considering various driving directions. The limit conditions of friction and roughness
were analyzed for the physical boundary, considering vehicle driving stability and comfort.
The obstacle boundary conditions, including vegetation, steps, ditches, and fences, were
analyzed based on their type, size, and distribution. The traversability costs of the terrain
height, slope, friction, roughness, and obstacles were analyzed in this paper. The height
cost was defined as the distance cost associated with the height change. The traversability
costs of the slope, friction, and roughness were evaluated based on the limitations imposed
by terrain parameters on the vehicle speed and load in simulations. Based on the simula-
tion data, the traversability cost functions of the slope, friction, and roughness were then
established by the segmented linear regression method. The cost of obstacles was defined
by a qualitative classification. In path planning, the path cost function was redefined in
this paper with the proposed TV-Hybrid A* algorithm, which was based on the Hybrid
A* algorithm. This path cost function was based on the simulation data and a three-layer
neural network model, with consideration for the characteristics of the terrain and vehicle.
The paths planned by A*, Hybrid A*, and TV-Hybrid A* were each validated in the simula-
tion, showing that TV-Hybrid A* resulted in a shorter path length, less travel time, and less
energy consumption due to consideration of the terrain and vehicle characteristics.

The traversability analysis and path planning methodologies presented in this pa-
per hold the potential to substantially optimize path costs, yet there remain avenues for
improvement to address inherent limitations. Firstly, while enhancing the computational
efficiency of path planning, the approach faces a significant challenge in scaling to complex,
real-world environments, where the computational burden of traversability analysis be-
comes substantial. Future work should focus on refining and optimizing these algorithms
through rigorous testing in real-world environments, ensuring their performance and
adaptability in practical applications. Secondly, the current definitions of traversability
boundary conditions are narrowly focused on rigid terrains, which limits their applica-
bility to the broader range of dynamic and deformable terrains encountered in nature.
To expand the versatility of these methods, it is imperative to incorporate terrain me-
chanics principles, allowing for a more nuanced assessment of the terrain properties that
influence traversability.

In the future, this study will be expanded to include fleet applications and integrated
with technologies such as the Internet of Things and cloud computing for better three-
dimensional transportation systems in mining, rescue, construction, and the military.
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