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Abstract: This paper proposes a method based on a Bayesian network model to study the intelligent
tactical decision making of formation coordination. For the problem of formation coordinated attack
target allocation, a coordinated attack target allocation model based on the dominance matrix is
constructed, and a threat degree assessment model is constructed by calculating the minimum
interception time. For the problem of real-time updating of the battlefield situation in the formation
confrontation simulation, real-time communication between the UAV formation on the battlefield is
realized, improving the efficiency of communication and target allocation between formations on
the battlefield. For the problem of UAV autonomous air combat decision making, on the basis of
the analysis of the advantage function calculation of the air combat decision-making model and a
Bayesian network model analysis, the network model’s nodes and states are determined, and the air
combat decision-making model is constructed based on the Bayesian network. Our formation adopts
the Bayesian algorithm strategy to fight against the blue side’s UAVs, and the formation defeats
the blue UAVs through coordinated attack, which proves the reasonableness of coordinated target
allocation. An evaluation function is established, and the comprehensive scores of our formation
are compared with those of other algorithms, which proves the accuracy and intelligibility of the
decision making of the Bayesian network.

Keywords: formation cooperation; tactical decision making; target allocation; Bayesian network

1. Introduction

Unmanned combat platforms (UCPs) have unique advantages in the field of aircraft
confrontation due to their low cost and simple operation. With the increasing complexity
of battlefield situations and the change in emerging technologies, unmanned aerial vehicles
(UAVs) play an increasingly important role in modern aircraft confrontation [1,2]. With the
continuous development of UAV-related technology, UAV cluster cooperative confrontation
has emerged, and its combat mode is accelerating the change in aircraft confrontation
patterns and system combat modes [3].

Due to the limited level of intelligence of the current UAV development, it is difficult
to realize a fully autonomous cooperative combat mode among UAV clusters [4,5]. In
terms of UAV formation tactical decision making, all countries hope to develop UAVs in
the form of lead UAVs that can make accurate decisions, as well as unmanned systems
in the form of wingmen that can realize intelligence and cooperate with manned combat
UAVs in coordinated operations, so as to form formation-coordinated intelligent tactics
in air combat, i.e., lead UAV–wingman coordinated operations [6,7]. The United States
has adopted the Loyal Wingman, Skyborg, Long Shot, and SoSITE programs under a
number of operational concepts, and has conducted research and test validation based
on these programs. Research and test validation have been carried out on the basis of
programs such as Skyborg, Long Shot, and SoSITE [8]. France conducted flight tests to
further test the tactical coordination of AWACS, fighters, and UAVs in air combat [9].
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Russia has conducted cooperative flight tests, and the test UAVs include Su-57 fighter jets
and “Hunter” drones [10]. The United Kingdom has developed and manufactured the
Mosquito unmanned verification UAV, which will be used as a “loyal wingman” to carry
out coordinated operations with manned fighters [11].

In addition, in the formation cooperative combat mode, scholars from various coun-
tries have proposed a large number of decision-making methods for air combat [12,13],
such as decision-making methods based on genetic learning, differential countermeasures,
expert knowledge, neural network, and matrix countermeasures [14–18]. Liu, H. et al. [19]
proposed an Evolution Strategies (ESs) optimization method and applied it to large-scale
UAV swarms to address the issues of high dimensionality and high dynamics in the adver-
sarial game process, where traditional optimal control algorithms fail to meet timeliness
requirements. Ou Y. et al. [20] proposed a multi-UAV cooperative air combat maneuver-
ing decision-making method based on LSTM and competitive graph convolutional deep
reinforcement learning by introducing an LSTM network for processing air combat infor-
mation with strong temporal correlations and building a graph convolutional network for
inter-UAV communication. Ma W. et al. [21] proposed an algorithm that combines game
theory with deep reinforcement learning, using a Deep Q-Network (DQN) to handle the
aircraft’s continuous infinite state space and employing linear programming to solve the
optimal value function for stage games while training the network to approximate this
value function. Li Y.F. et al. [22] proposed a deep reinforcement learning algorithm-based
autonomous maneuver decision-making model for air combat, which enables unmanned
aerial vehicles to autonomously select tactical actions in air combat, greatly improving the
combat efficiency of unmanned aerial vehicles.

Compared to countermeasure theory-based and heuristic learning maneuver-based
decision-making methods, Bayesian network decision-making methods can introduce
expert experience to build decision-making models based on datasets when solving un-
certainty problems, as well as the ability to train the models based on sample data [23–25].
Bayesian networks have been widely used in complex decision-making systems, and the
networks can better fit the environment and make reasonable decisions based on domain
expert knowledge and objective information [26]. The air warfare battlefield environment
is complex, and Bayesian networks can solve the uncertainty problem based on formulating
the problem description as conditional probability relationships [27,28]. The Bayesian
network method used in this paper can effectively make decisions about the next moment
of formation maneuvers based on the battlefield situation. The results of simulation ex-
periments show that the construction of a maneuver decision-making model based on a
Bayesian network improves the battlefield adaptability of the UAV system and ensures
the autonomy and effectiveness of the decision-making process. Formation coordination
tactical decision making is the core and key of UAV coordinated combat utilization [29];
how to choose better decision-making tactics based on Bayesian networks in formation
coordination to achieve the combat effectiveness of “1 + 1 > 2” has important research value
and military significance [30–32].

The research objective of this paper is to carry out research on formation cooperative
intelligent tactical decision making based on Bayesian networks, compare different decision-
making methods in the simulation and confrontation platform, and verify the effectiveness
of the decision-making method adopted in this paper by analyzing the posture of the enemy
and us. In this paper, under the framework of the air combat decision-making process, real-
time communication between formations is realized through OpenDDS, and a Bayesian
network modeling algorithm is adopted to enable UAV formations to autonomously and
cooperatively attack targets. By analyzing the process and results of formation combat
target allocation, the rationality of cooperative target allocation and the accuracy of Bayesian
network decision making are proved. In the research process, for the target allocation
problem, a coordinated attack target allocation model is constructed, and a threat degree
assessment model is constructed by calculating the minimum interception time; for the
autonomous air combat decision-making problem, on the basis of the air combat decision-
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making model calculated by the dominance function and the Bayesian network model, the
nodes and states of the network model are determined, and the air combat decision-making
model based on the Bayesian network is constructed.

The following sections give a specific introduction to the main contents of this paper.
Among them, Section 2 introduces the formation coordination target allocation model
established in this paper; Section 3 introduces the Bayesian network-based air combat
decision-making model established in this paper; Section 4 carries out simulation valida-
tion for communication, target allocation, and decision-making evaluation; and Section 5
summarizes the whole paper.

2. Formation Collaboration Target Allocation Model

The air combat decision-making process involves the red formation conducting ac-
tion planning under the current mission and posture environment. This includes target
allocation between the lead UAV and wingman after calculating the threat assessment to
obtain the interception time. The formation then selects tactics to realize tactical decision
making according to the Bayesian network, and executes the mission under the control of
the lead UAV, with the cooperation of the wingman, and collaboratively through commu-
nication. Based on the above ideas, this section first discusses threat assessment theory,
and then, studies the target allocation process based on coordinated attack to clarify the
threat assessment and target allocation process of the red formation as well as the tactical
decision-making method.

2.1. Threat Assessment Model

The threat assessment task is to judge the extent of the threat of the current battlefield
events occurring and the severity of the threat from the blue side to the red side’s formation.
Through the model of threat assessment by interception time, the threat to the red formation
from the blue side is transformed into judging whether the blue side poses a threat to the
red side and the size of the threat posed by the distance and the length of the attack time.

Two criteria, threat distance threshold and interception time threshold, are used as
the criteria for judging the threat level. The threat distance threshold is used to judge
whether the target poses a threat to the red formation; when the blue target is within the
threat distance threshold, it is judged that the target poses a threat to the red formation.
Interception time is used to estimate the time required by the red formation to intercept the
blue target; when the estimated value of the interception time is less than the interception
time threshold, it is judged that the target poses a threat to the red formation, and the
shorter the interception time is, the bigger the threat is [33].

In the following, the threat assessment model is established by calculating the intercep-
tion time. In the current decision cycle, the set target maintains a constant speed and linear
motion, while our interceptor UAV maintains the current speed and moves in a straight
line, so as to calculate the threat index of our formation to the enemy’s formation of UAVs
at this moment. The interceptor UAV can turn towards the interception point to fly in a
straight line.

The equation for the interception time t can be derived as follows: ∥AP∥2 = ∥AT∥2 + ∥TP∥2 − 2∥AT∥·∥TP∥· cos(q)
∥AP∥ = Va·t
∥TP∥ = Vt·t

(1)

The symbols in Formula (1) are described as shown in Table 1.
By simplifying, we obtain

(V2
a −V2

t )·t2 + 2∥AT∥·Vt· cos(q)·t− ∥AT∥2 = 0 (2)
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Letting s =
∥∥∥ AT

t

∥∥∥, the equation can be further simplified to

s2 − 2Vt· cos(q)·s + V2
t −V2

a = 0 (3)

Solving that we obtain

s = Vt· cos(q)±
√

V2
a −V2

t sin (q)2 (4)

When s = Vt· cos(q) +
√

V2
a −V2

t sin (q)2, the minimum interception time can be
obtained. If s < 0 or s is undefined, meaning Va < Vt· sin(q), the red interceptor UAV
cannot intercept the target.

Table 1. Formula symbol table.

Symbol Description

T The current position of the target
A The current position of the interceptor
P The interception point
∥AT∥ The distance between the interceptor and the target
∥AP∥ The distance between the interceptor and the target
∥TP∥ The distance between the interception point and the target

q The target aspect angle
Vt The target’s velocity
Va The interceptor’s velocity

When s is meaningful and s > 0, the threat assessment model can be used to evaluate
the minimum time for the red UAV to intercept the blue UAV, thus assessing the threat
level of the blue UAV to the red UAV under the current situation.

2.2. Target Allocation Model Based on Coordinated Attack

The target allocation process utilizes the command-and-control system of the com-
mand UAV in order to give full play to the comprehensive advantages of the attacking
UAV. It optimally allocates combat resources according to the target posture, the threat
level, the combat effectiveness of the red side’s weapons, and the destruction requirements
to achieve the effect of improving the combat effectiveness and reducing the cost of the
attack [34–36]. After evaluating the threat level, target allocation is carried out, and the
lead UAV and wingman cooperate to attack the blue UAV.

The exact steps of target allocation are shown in the Algorithm 1 below.

Algorithm 1 Target Allocation Model

Require: Red UAV R, Blue UAV B, Combat matrix C
Ensure: Attack assignments
1: T ← calculate_threat_indices(B, R, C)
2: assignments← { } ▷Initialize assignments dictionary
3: while T is not empty do
4: btarget ← T[0] ▷Find the blue UAV with highest threat index
5: rUAV ←find_min_threat_red_UAV(btarget, R, C) ▷Find red UAV with lowest threat
index
6: assign_ attack(rUAV, btarget, assignments) ▷Assign red UAV to attack blue UAV
7: remove_ threat(btarget, T, C) ▷Remove assigned blue UAV and threat indices
8: if is_attack_capacity_exceeded(rUAV, assignments) then
9: remove_red_UAV(rUAV, C)
10: end if
11: end while
12: return assignments
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In step 1, the specific strategy of calculate_threat_indices is as Algorithm 2.

Algorithm 2 calculate_threat_indices

Require: Red UAV R, Blue UAV B, Combat matrix C
Ensure: Threat vector T
1: T ← ∅
2: for each b in B do
3: for each r in R do
4: s← ∥AT∥

t

5: q← arccos
(

AT·TP
∥AT∥∥TP∥

)
6: threat_index← Vi cos(q)±

√
V2

i −V2
a sin2(q) ▷Using Equation (4)

7: T.append((b, threat_index))
8: end for
9: end for
10: T ← sort(T, descending = True)
11: return T

In addition, after each target allocation is completed the lead UAV will not issue
another command to change the attack target based on the existing assignment scheme.
However, in the simulation, it is necessary to select a suitable time interval cycle to perform
the threat judgment again and complete a new round of target allocation.

2.3. Air Combat Tactical Action

According to the action and posture characteristics of UAVs in the battlefield, the
attack tactical actions are as follows:

1. Head-on reception and enemy-first attack tactics.

Head-on attack tactics are used for attack within the target entry angle. When the
radar detection distance of the red UAV and the maximum attack distance of its missiles
are better than the radar detection distance of the blue target UAV and the maximum attack
distance of its missiles, head-on attack tactics are used.

2. Single side to receive the enemy or double side of the sandwich tactics.

The red UAV, under guidance, approaches the blue UAV from the route side or
both sides of the blue UAV close to the blue UAV; at a distance from the blue UAV of
100 km~120 km, to avoid the radar it turns to the side of the target, after the interception of
the target UAV, for attack. The flanking strike and attack avoids the best position for radar
detection by the blue UAV, and it cuts in from outside of the blue UAV’s radar detection
area. A schematic of the flanking detour of the occupation attack is shown in Figure 1;
where R1 and R2 represent the red formation, while B1 represents the blue UAV. This
tactic is used when the radar detection distance and missile range of the target UAV are
significantly better than that of the red UAV.
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3. Covert approach and sudden attack tactics.

The red UAV receives the blue UAV at a low position with negative altitude difference,
and when approaching the missile attack distance, it jumps up to the target UAV’s altitude
to attack. When the red UAV’s radar’s upward vision is superior to the blue UAV’s
downward vision, we choose the tactic of concealed reception.

4. Head-on around-the-side attack tactics.

The red UAV quickly turns to the outside so that the target azimuth angle reaches
90◦, and the radial relative velocity of the UAV is extremely small, so it is difficult for
the blue UAV’s radar to stably intercept the red UAV. When it reaches the edge of the
target’s radar detection, the red UAV quickly turns to the side of the target so that the target
azimuth angle is 0 or relatively small to carry out the attack. When the radar and missile
performance of the red UAV is at an obvious disadvantage, and the initial posture of the
red UAV and the blue UAV is head-on, we choose head-on around-the-side attack tactics.

5. Evasive maneuver tactics.

The evasive maneuver tactic means that the red UAV adopts 90◦ side-turning and
tail-placing maneuvers to reduce the detection distance of radar when the blue UAV is in
the side-turning and tail-placing state. When the red UAV is captured by the blue UAV’s
radar but does not reach the blue UAV’s missile launching conditions, we choose the
evasive attack tactics.

2.4. Air Combat Tactical Decision Control

The motion model of the UAV is as follows:
.
x = v cos γ sin ψ
.
y = v cos γ cos ψ

.
z = y sin γ

(5)

x, y, z are the position coordinates in the coordinate system. v is the velocity of the
UAV. γ is the heading angle of the UAV trajectory, which represents the angle of the velocity
vector and the horizontal plane x-O-y. ψ represents the heading angle of the UAV trajectory,
indicating the angle between the projection v’ of the velocity vector on the x-O-y plane and
the y-axis.

The relative postures of the blue and red UAVs are shown in Figure 2.
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In the above equations, V1 is the velocity vector of the red UAV, V2 is the velocity
vector of the blue UAV, φA is the target azimuth angle, representing the angle between the
red UAV’s heading and the target line. φT is the target entry angle, representing the angle
between the blue UAV’s heading and the target line. SMA is the maximum range of the red
UAV’s missile, and SMT is the maximum range of the blue UAV’s missile. D is the relative
distance between the blue UAV and the red UAV.
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By analyzing the impact of various parameters on tactical decisions, the threat function
is controlled to the same magnitude for subsequent modeling, and the control variables are
defined as follows:

1. Angular advantage.

ST = (φT − φA)/180 (6)

where ST ∈ [−1, 1], φT is the target entry angle, and φA is the target azimuth angle. When
ST = 1, the angular advantage is at its maximum; when ST = 0, the angular advantage is
at its minimum.

2. Missile range advantage

SM = (SMA − SMT)/10 (7)

where SM ∈ [−5, 5], SMA is the maximum range of the red UAV’s missile, and SMT is the
maximum range of the blue UAV’s missile.

3. Relative distance advantage.

SD = D/100 (8)

where SD ∈ (0, 1), and D is the relative distance between the red UAV and the blue UAV.

4. Radar line-of-sight capability advantage.

SR = (DSS − DXS)/50 (9)

where SR ∈ (−1, 1), DSS is red’s radar line-of-sight capability, and DXS is blue’s radar
line-of-sight capability.

5. Enemy missile launch status

The enemy missile launch status is denoted by F. The state is represented as a logistic
variable taking the value Y/N.

Assume ST , SM, and SR can be fuzzified as P, Z, N; SD can be fuzzified as L, S; and
F can be fuzzified as Y, N. The tactics chosen for each cycle are determined by the results
of fuzzy reasoning, and their values are defined as “1”, “2”, “3”, “4”, or “5”, respectively,
representing head-on reception and enemy-first attack tactics, single side to receive the
enemy or double side of the sandwich tactics, covert approach and sudden attack tactics,
head-on around-the-side attack tactics, and evasive maneuver tactics; see Table 2 for the
corresponding number of these action strategies.

Table 2. Action strategy numbering.

No. Action Strategy

1 Head-on reception and enemy-first attack tactics
2 Single side to receive the enemy or double side of the sandwich tactics
3 Covert approach and sudden attack tactics
4 Head-on around-the-side attack tactics
5 Evasive maneuver tactics

2.5. Reasoning Rules for Tactical Decision Making

Set ST , SM, SD, SR, and F as nodes, and set 7 fixed reasoning rules. As shown in
Table 3, it is stipulated that each reasoning rule can derive corresponding action strategies
when the node is in the state shown in the table. Among them, P/Z represents that the
node is in state P or state Z, Z/N represents that the node is in state Z or state N, the
statements from 1 to 5 in “action strategy” are consistent with those in Table 2.
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Table 3. Reasoning rules.

ST SM SD SR F Action Strategy

R1 P/Z P/Z N 1
R2 N P/Z L N 1
R3 N P/Z S N 3
R4 P/Z L P N 2
R5 N Z/N N 3
R6 L Y 4
R7 S Y 5

3. Air Combat Decision-Making Model Based on Bayesian Networks

This section introduces an air combat decision model based on Bayesian network
decision making. After the target allocation is completed, the formation cooperative
combat evolves into a one vs. one confrontation combat mode between the red UAVs and
the assigned target. For each of the red UAVs, the air combat decision-making model can
represent the current enemy–us situation based on five control variables, i.e., the dominance
function, which then determine five tactical decision-making actions. Meanwhile, for the
Bayesian network-based air combat decision-making model, this section introduces its
updating method and decision-making method, as well as the nodes and node relationships
in the model. According to the input and output values of the decision model, the current
optimal decision method can be selected.

3.1. Bayesian Network Modeling

A Bayesian network is an uncertainty handling model that simulates causal rela-
tionships in human reasoning and can be represented as a probabilistic graphical model
through a directed acyclic graph [37]. The directed acyclic graph represents a definite
direction in the information flow process, and the connection relationship between nodes
represents the conditional independent semantics of Bayesian networks [38,39]. A Bayesian
network consists of nodes and a table of conditional probabilities between nodes, with a
series of probability values that allow the calculation of any given joint probability, i.e., the
inference process of a Bayesian network.

The Bayesian network analysis method is shown in Figure 3.
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3.2. Bayesian Network Update Method

For a Bayesian network, suppose some node X has m child nodes (Y1, Y2, . . . , Ym) and
n parent nodes (Z1, Z2, . . . , Zn). λ represents the information of the node, and π represents
the causal relationship between the parent and child nodes. The probability of event x
occurring in the child node set X given the state z in the parent node set Z is

MX|Z = P(X = x
∣∣∣Z = z) (10)
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Since X has multiple discrete values, λ(x) and π(x) are vector factors. Their elements
are related to each discrete value of X:

λ(x) = [λ(X = x1), λ(X = x2), . . . , λ(X = xl)] (11)

π(x) = [π(X = x1), π(X = x2), . . . , π(X = xl)] (12)

The inference algorithm of the Bayesian network centers on each node, obtaining λ
values from the child nodes and π values from the parent nodes. The posterior probability
of the nodes is then calculated and updates are made to the neighboring nodes. The update
process is as follows.

The posterior probability of updating a node is as follows:

Bel(x) = αλ(x)π(x) (13)

Here, α is the normalization factor, satisfying the condition Σ
x

Bel(x) = 1, λ(x) = Π
j

λYj(x),

π(x) = Π
i

πzi MX|Z.

It is updated from bottom to top as follows:

λX(z) = λ(x)MX|Z (14)

It is updated from top to bottom as follows:

πYj(x) = απ(x) Π
k ̸=j

λYk (x) (15)

3.3. Bayesian Network Modeling for Tactical Decision Making

A Bayesian network model is the basis of Bayesian network decision making. Estab-
lishing a Bayesian network model must follow certain principles and rules, and the process
includes confirming the network nodes, confirming the network state, and confirming the
relationship between nodes.

From the analysis of tactical decision making, it can be seen that the control variables
in the decision-making process include angular advantage ST , missile range advantage SM,
relative distance advantage SD, the red UAV’s radar line-of-sight capability advantage SR,
and the blue UAV’s missile launch status F. Therefore, the Bayesian network model nodes
consist of SM, ST , SD, SR, and F. For node SD, there are two states: L and S. The blue UAV’s
missile launch status F has two states: Y and N. The decision node D has five states: T1,
T2, T3, T4, and T5, which correspond to head-on reception and enemy-first attack tactics,
single side to receive the enemy or double side of the sandwich tactics, covert approach
and sudden attack tactics, head-on around-the-side attack tactics, and evasive maneuver
tactics, respectively. The final selected tactical action is determined by SM, ST , SD, SR, and
F, constructing the Bayesian network model as shown in Figure 4.
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In the Bayesian network model, φA and φT are parameters determining the angular
advantage, SMA and SMT are parameters determining the missile range advantage, AxisA
and AxisT are parameters determining the relative distance advantage, DSS and DXS
are parameters determining the red UAV’s radar line-of-sight capability and blue’s radar
line-of-sight capability advantages, and StaticM is the parameter determining the enemy
missile launch status.

3.4. Definition of Inputs and Outputs in Decision Modeling

For the above Bayesian network decision model, the input and output variables in the
combat mission are shown in Tables 4 and 5, respectively. Based on the input and output
variables, the tactical decision chosen at each moment can be judged.

Table 4. Input variables.

Input Quantity Range of Values

Angular advantage, ST [−1, 1]
Missile range advantage, SM [−5, 5]

Relative distance advantage, SD (0, 1)
Radar line-of-sight capability advantage, SR (−1, 1)

Enemy missile launch status, F Y/N

Table 5. Output variables.

Output Quantity Range of Values

Attack UAV tactics T1, T2, T3, T4, T5

3.5. Air Combat Decision Evaluation Model

The purpose of close air combat is to maneuver the UAV as close as possible to the
tail of the target UAV, and at the same time avoid the target UAV from approaching our
UAV’s tail. Based on the above air combat decision-making model, an evaluation model
is established to evaluate the decision-making process of the confrontation between us
and the enemy. According to the spatial position and relative motion state of the UAV
and the target, the following four functions are designed, the time advantage function, the
speed advantage function, the altitude advantage function, and the weapon advantage
function, which together constitute the evaluation function of the air combat decision
evaluation function.

1. Time advantage function.

In the decision-making process of UAV confrontation, the combat time is used as
an index for judging the decision-making efficiency of UAVs, and the shorter the combat
time is, the higher the decision-making efficiency of UAVs is within the range of allowed
combat time.

Q1 = 1− 1

1 + e
¯ To−Ts

Tup−Tdown

(16)

where To and Ts are the attack start and attack end times, respectively. Tup and Tdown are
the maximum and minimum time allowed for UAV operations, respectively. The greater
the interval between the end time of the attack and the start time of the attack, the greater
the temporal advantage that the current decision-making method possesses, within the
operationally permissible time frame.

2. Speed advantage function.

In the UAV confrontation decision-making process, speed and altitude together charac-
terize the UAV’s energy advantage, which is an important indicator of the UAV’s situational
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superiority. Within the range of permissible flight speeds, a UAV with a higher speed rela-
tive to an enemy aircraft has a more favorable posture.

Q2 = 1− 1

1 + e
vU−Ev

vup−vdown

(17)

where vU is the flight speed of the blue UAV during the attack, and Ev is the average speed
of the UAV in each round. vup and vdown are the maximum and minimum speeds at which
the UAV is allowed to fly, respectively. The greater the flight speed of our UAV during the
attack compared to its average speed during the round, the greater the speed advantage of
the current decision is considered to be.

3. Altitude advantage function.

In the decision-making process of UAV confrontation, in the range of permitted flight
altitudes, the red UAV has a higher altitude relative to the blue UAV, and the posture is
more advantageous.

Q3 = 1− 1

1 + e
zU−Ez

Zmax−Zmin

(18)

where zU is the altitude of the red UAV at the time of the attack, and Ez is the average
altitude of the UAV in each round. Zmax and Zmin are the maximum and minimum altitudes
at which the UAV is allowed to fly, respectively. The greater the altitude of our drone’s
flight at the time of the attack compared to its average altitude during the round, the greater
the altitude advantage of the current decision.

4. Weapon advantage function.

In the decision-making process of UAV confrontation, the remaining weapons as well
as the confrontation results are used as evaluation indexes, setting the number of remaining
weapons on the red side as F1 and the number of remaining weapons on the blue side as F2.
The result of the match is R, which is recorded as R = 1 in the case of the red side’s victory,
and R = 0 in the case of the blue side’s victory.

Q4 =


1, R = 1, and F1 > F2
0, else
−1, R = 0, and F1 < F2

(19)

When the red side wins and has fewer weapons left, Q4 = 1. Conversely, when the blue
side wins and has fewer weapons left, Q4 = −1.

5. Air combat decision evaluation function.

On the basis of designing the time advantage function, speed advantage function,
altitude advantage function, and weapon advantage function, the three advantage functions
are restricted by setting adjustment parameters through a hierarchical analysis method; in
order to be able to directly represent the weight of each advantage function, the different
coefficients of the advantage function are normalized, and the air combat decision-making
evaluation function is obtained as follows:

Q = α1 ×Q1 + α2 ×Q2 + α3 ×Q3 + α4 ×Q4 (20)

where α1, α2, α3, and α4 are the weight coefficients; the specific weights can be calculated
using the hierarchical analysis method through the evaluation function as a measure of the
advantages and disadvantages of air combat decision making [40].

4. Simulation and Validation

In this section, the air combat decision-making model is validated based on the
Bayesian network-based air combat decision-making method. In addition, the communica-
tion method of sending battlefield information via OpenDDS between the lead UAV and
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the wingman is introduced. After that, two groups of simulation confrontation are carried
out on the simulation platform with two vs. two as the simulation scenario. Finally, the
rationality of the target allocation method and the effectiveness of the air combat model
updated and decided by the Bayesian network are proved by the red side winning.

4.1. Formation Cooperative Combat Target Allocation Model

In the simulation training, the default numbers of the lead UAV and wingman are 1
and 2, respectively, and the numbers of the two blue UAVs are 3 and 4, respectively, and
the communication events of the lead UAV–wingman are shown in Table 6.

Table 6. Lead UAV–wingman communication events.

Communication Modes Function Communication Form and Explanation

Lead UAV --> Wingman
Lead UAV writes for DDS publication a–b–c

a: Total number of UAVs on the battlefield
b: Identifier for the attacking side
c: Identifier for the defending sideDDS subscription write for wingman read

Wingman --> Lead UAV
Wingman writes for DDS publication d–e

d: Number of blue UAVs detected on the battlefield
e: Number of blue UAVs shot down

DDS subscription write for lead UAV read

The lead UAV sends the wingman the current attack mission, i.e., the attacking and
attacked parties, and this message indicates the number in the attacking party and the
number in the attacked party based on the number of UAVs in the current formation.
The wingman sends to the lead UAV the detected status of the blue side on the current
battlefield, which indicates the number of detectable blue UAVs and the number of blue hits.

This constant communication between the leader and wingman determines the target
of the attack each cycle.

4.2. Experimental Environment and Parameter Setting

The simulation platform is based on the air combat confrontation simulation software,
which is mainly oriented to formation air combat, based on simulation, human–computer
interaction, and other technical principles, to recreate the key elements of formation air
confrontation with high precision. The platform supports algorithm implementation using
the C++ language, and adopts two vs. two red and blue confrontation, with the red side as
the attacking side, and the red and blue sides each controlling two UAVs to carry out air
combat games within the limited air combat task area.

The air combat area is a closed rectangular three-dimensional space, with minimum
flight height and maximum flight height restrictions. The red side’s UAVs are initially
located in the red side’s battle area, and the blue side’s UAVs are initially located in the blue
side’s battle area. The combat scenario is set up to simulate the confrontation according to
the currently set action strategy. The initial parameters are shown in Table 7.

Table 7. Initial parameters of operational scenarios.

Regional Platform Parameter Initial Value Parameter Initial Value Unit

Setup of the combat
simulation platform

Longitude of the red UAV 102.4 Longitude of the blue UAV 103.7 deg
Latitude of the red UAV 29.1 Latitude of the blue UAV 28.8 deg
Altitude of the red UAV 6000 Altitude of the blue UAV 6000 m

Mach number of the red UAV 0.8 Mach number of the blue UAV 0.8 Ma
Heading of the red UAV 90 Heading of the blue UAV 270 deg
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4.3. Training Results
4.3.1. Experiment One

During the simulation, both our side and the enemy have two UAVs. Our side is the
red side, with the lead and wingman corresponding to no. 1 and no. 2, respectively. The
enemy is the blue side, corresponding to no. 3 and no. 4. Both our aircraft and the enemy
aircraft are set to fly at an initial altitude of 6000 m. Our side flies according to the set
strategy, while the enemy flies according to the waypoint. Both sides are equipped with the
same number of missiles.

The simulation scenario of the enemy UAVs flying along waypoints in a combat
environment is shown in Figure 5a. The enemy UAVs flew along the waypoint and the
combat results are shown in Figure 5b. The red sector is our formation radar detection
and missile guidance area, and the blue sector is the enemy formation radar detection and
missile guidance area.

Drones 2024, 8, x FOR PEER REVIEW 14 of 21 
 

  
(a) (b) 

Figure 5. (a) Blue UAV flight simulation scenario by waypoint; (b) blue UAV flight simulation re-
sults by waypoint. 

The operation of the red formation’s attack strategy selection for each cycle is shown 
in Figure 6. Figure 6 describes the strategy selection results of the lead UAV and wingman 
in each cycle during the confrontation, updated and decided through the Bayesian net-
work. 

 
Figure 6. Formation attack strategy. 

The evaluation function is set according to the hierarchical analysis method, setting 
the speed advantage level as 1, the height advantage level as 2, and the weapon advantage 
level as 1/2, and the evaluation function is calculated as follows: 

2 3 40.31190476 0.49047619 0.19761905Q Q Q Q= × + × + ×  (21)
Thirty sets of simulation confrontations were conducted, and a comparison between 

the scores of the red and blue sides is shown in Figure 7. 

Figure 5. (a) Blue UAV flight simulation scenario by waypoint; (b) blue UAV flight simulation results
by waypoint.

The operation of the red formation’s attack strategy selection for each cycle is shown in
Figure 6. Figure 6 describes the strategy selection results of the lead UAV and wingman in
each cycle during the confrontation, updated and decided through the Bayesian net-work.
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The evaluation function is set according to the hierarchical analysis method, setting
the speed advantage level as 1, the height advantage level as 2, and the weapon advantage
level as 1/2, and the evaluation function is calculated as follows:

Q = 0.31190476×Q2 + 0.49047619×Q3 + 0.19761905×Q4 (21)

Thirty sets of simulation confrontations were conducted, and a comparison between
the scores of the red and blue sides is shown in Figure 7.
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In order to make a more visual comparison, the data in Figure 7 were counted and
calculations performed, and Figure 8 was drawn based on the processed data.
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Figure 8. Statistical chart of scores.

In Figure 7, the red color is the combined score of the red UAVs and the blue color is
the combined score of the blue UAVs. Overall, the red UAVs’ scores are higher than the
blue UAVs’ scores in the same round.

It can be seen from the statistics that the fluctuation in the decision-making score
of the red UAVs is 0.02, which is lower than the decision-making score of the blue side
of 0.04, while the maximum and minimum values of the red decision-making score are
higher than the score of the blue side, and the fluctuation interval of the score of the red
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side is 0.13, which is lower than that of the blue side of 0.22. It can be seen from Figure 8
that the decision-making evaluation system can play a reasonable role in evaluating the
decision-making level of the UAVs in each round.

4.3.2. Experiment Two

In the second group of confrontations, we set the red UAVs to use the Bayesian
algorithm strategy and the blue UAVs to use the attack-avoidance strategy to start the
confrontation. Both sides carry the same number of missiles.

The attack-avoidance strategy is as follows: Blue’s no. 3 and no. 4 UAVs have the
same strategy, and both can calculate their respective air combat capability index. When a
red UAV enters the safety zone set by blue, the blue UAV will fly in the opposite direction
to avoid the red UAV. When the red UAV is detected entering the attack zone, the blue UAV
launches missiles.

The trajectory of one round of aerial combat is recorded; 1001 represents no. 1 UAV,
1002 represents no. 2, 1003 and 1004 represent no. 3 and no. 4, and 6024 represents the
launch missile marker. The confrontation trajectories of the red and blue UAVs are plotted,
and the flight trajectory diagram is shown in Figure 9. During the process of launching the
missile to hitting the target, 10 moments are selected according to the evaluation model of
experiment one, and the scores of the four UAVs are plotted, as shown in Figure 10.
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Figure 9. Flight path diagram.

In Figure 9, the x and y axes represent latitude and longitude, respectively, and the
z-axis represents altitude. The real flight trajectory of the UAV is described by this 3D scene.

The time from the launch of the missile until the missile is about to hit the target is
taken, and ten of these moments are taken to calculate the score of each of the four UAVs,
as shown in Figure 10.

As can be seen in Figure 9, the lead UAV assigns the wingman to attack target no. 4,
and when the blue UAV enters the attack area, the wingman fires a missile-guided hit on
the blue UAV, and after the hit the target red formation continues to attack target no. 3. As
can be seen in Figure 10, 1002 and 1004 are in attack and evasion states, respectively, and
their scores are lowest when the blue UAV is hit.
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4.3.3. Experiment Three

In the third set of confrontation experiments, the blue UAVs and the red UAVs are still
flying at an initial altitude of 6000 m. On the basis of the target allocation and communica-
tion method set in this paper, the red side adopts the Bayesian algorithm and the particle
swarm algorithm strategy to carry out the comparison experiment. The blue side starts the
confrontation by flying according to the same waypoints, and both the blue side and red
side mounted the same number of missiles.

The parameters related to the particle swarm algorithm experiment are shown in
Table 8.

Table 8. Particle swarm algorithm parameters.

Parameter Representation Initial Value

Particle count N 60
Particle dimension D 10

Inertia weight ω 0.8
Learning factor c1 0.1
Learning factor c2 0.1

Maximum number of iterations Tmax 100

According to the simulation environment of experiment two, 30 groups of simulation
confrontation are launched and the scores of red’s strategy are compared. According to
the hierarchical analysis method, the evaluation function was set: the time advantage level
was set as 1, the speed advantage level as 3, the height advantage level as 4, the weapon
advantage level as 1/2. The evaluation function calculation method is as follows:

Q = 0.12056036×Q1 + 0.2501542×Q2 + 0.52824038×Q3 + 0.10104506×Q4 (22)

A graph comparing the scores of the methods used in this paper and the particle
swarm algorithm is shown in Figure 11.

In Figure 11, the red color is the comprehensive score of our UAVs using the Bayesian
algorithm, and the blue color is the comprehensive score of our UAVs using the particle
swarm algorithm. In general, the combined score of the Bayesian algorithm is higher than
the combined score of the particle swarm algorithm.
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For the two decision-making methods, the number of battle losses of UAVs in the
enemy and our formations in 30 rounds is compared, and the comparison graph is shown
in Figure 12. Figure 12a shows the number of battle losses in the Bayesian decision-making
method, and Figure 12b shows the number of battle losses in the particle swarm decision-
making method.
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During the 30-group confrontation, the number of battle losses of our UAVs under
the Bayesian decision-making method is lower than that of the particle swarm decision-
making method, and the annihilation of the enemy aircraft is more efficient. Figure 12
shows that the decision-making method used in this paper is better than the particle swarm
decision-making method, and the decision-making method in this paper is effective.

4.3.4. Simulation Results and Analysis

In the first set of experiments, it can be seen in Figure 5 that after both sides’ radars
detected each other and entered the attack range, the red formation collaborated to destroy
two blue UAVs and won the victory. In Figure 6, it can be seen that the red formation
constantly chooses the most appropriate attack strategy for the current situation and
effectively avoids the attack of the blue UAVs. Comparing the scores of the blue side and
us through Figures 7 and 8, the comprehensive scores of the red UAVs are higher than
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the comprehensive scores of the blue UAVs and the fluctuation is small, which reflects the
rationality of the evaluation function established in this paper.

In the second group of experiments, the flight trajectories of the red formation and the
blue formation are plotted in Figure 9, and the scores of the four UAVs in the confrontation
process are calculated in Figure 10. In order to protect the lead UAV in the target allocation
process, the wingman is preferentially assigned to perform the attack task. It can be seen
by plotting the curve graph that the wingman and the blue UAV are in the attack and
avoidance states, respectively.

In the third set of experiments, the red UAVs flew and attacked the blue UAVs using
the Bayesian algorithm and particle swarm algorithm, respectively. Figure 11 compares
the comprehensive scores of the red UAVs under the two strategies, and the Bayesian algo-
rithm’s comprehensive score is generally higher than that of the particle swarm algorithm;
Figure 12 compares the number of aircraft losses of the red and blue sides under the two
algorithms, and the average number of aircraft losses of the Bayesian algorithm is generally
lower, which verifies that the decision-making strategy of the blue side’s UAVs in attacking
and evading is advantageous.

4.3.5. Experimental Conclusion

According to the lead UAV–wingman attack strategy, it can be seen that with the lead
UAV in the main decision-making role, the wingman, in the main detection as well as an
attack role, constantly strikes the blue UAV; according to the principle of allocation, the lead
UAV and the wingman coordinate the attack. By comparing the combined scores of the two
sides and comparing with other algorithms, the decision-making framework established in
this paper is shown to be effective, proving the rationality of assigning targets according
to the threat degree. Through the DDS communication, the efficiency of the coordination
between the lead UAV and the wingman is improved, which verifies the reliability of the
Bayesian network decision making.

5. Conclusions

This paper addresses the problem of formation cooperative intelligent tactical decision
making, and proposes a method based on a Bayesian network model to study formation
cooperative intelligent tactical decision making.

The main work of this paper is as follows.
For the formation coordinated attack problem of allocating targets, a coordinated

attack target allocation model based on a dominance matrix is constructed, which im-
proves the efficiency of communication and target allocation between formations on the
battlefield. The effectiveness of this communication method is proved through simulation
and confrontation.

For the problem of autonomous air combat decision making of UAVs, the air combat
decision-making model based on a Bayesian network is constructed. An evaluation function
is established, and by comparing it with other decision-making methods, the accuracy and
intelligence of the Bayesian network decision making are confirmed. The effectiveness of
the algorithm model is verified through simulation.

For subsequent research directions we will further optimize the Bayesian decision
network, increase the number of simulated confrontations, and start the confrontation in a
more complicated combat environment.
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