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Abstract: Autonomous exploration of unknown environments is a challenging problem in robotic ap-
plications, especially in large-scale environments. As the size of the environment increases, the limited
onboard resources of the robot hardly satisfy the memory overhead and computational requirements.
As a result, it is challenging to respond quickly to the received sensor data, resulting in inefficient
exploration planning. And it is difficult to comprehensively utilize the gathered environmental infor-
mation for planning, leading to low-quality exploration paths. In this paper, a systematic framework
tailored for unmanned aerial vehicles is proposed to autonomously explore large-scale unknown
environments. To reduce memory consumption, a novel low-memory environmental representation
is introduced that only maintains the information necessary for exploration. Moreover, a hierarchical
exploration approach based on the proposed environmental representation is developed to allow
for fast planning and efficient exploration. Extensive simulation tests demonstrate the superiority
of the proposed method over current state-of-the-art methods in terms of memory consumption,
computation time, and exploration efficiency. Furthermore, two real-world experiments conducted in
different large-scale environments also validate the feasibility of our autonomous exploration system.

Keywords: unmanned aerial vehicles; autonomous exploration; path planning

1. Introduction

Recently, with the continuous development of robotic technology, unmanned aerial
vehicles (UAVs) have attracted much attention and have been used in numerous fields due
to their agility, flexibility, and high-speed mobility; these fields include inspection [1], terrain
surveying [2], search and rescue [3–5], planetary exploration [6], etc. A key technology
for these tasks is the autonomous exploration of unknown environments, in which the
UAV moves autonomously and gathers information related to its surroundings to build
environmental maps.

In the past few decades, many studies have proposed solutions that enable UAVs
to explore unknown environments efficiently [1,7–9]. However, when facing large-scale
environments, autonomous exploration still presents numerous challenges. First of all,
the exploration process requires real-time environmental maps and the information nec-
essary for planning, which consume more onboard memory resources as the size of the
known environment grows. The increased memory consumption restricts the robot’s ca-
pability to perform fundamental tasks for exploration, such as simultaneous localization
and mapping (SLAM). Further, many exploration planning algorithms, such as [9–12], are
computationally expensive when exploring large-scale environments. Algorithms that have
long computational durations cannot quickly respond to environmental changes, resulting
in some unnecessary actions by the robot, such as moving to a previous goal or stopping
to wait for calculation results. Furthermore, the exploration of large-scale environments
often suffers from inefficient observation paths, which slow down the robot’s gathering of
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environmental information and even cause it to visit the same regions repeatedly, reducing
the overall exploration efficiency.

To address the aforementioned challenges, we present an efficient UAV autonomous
exploration framework for large-scale environments in this paper. To reduce the con-
sumption of onboard memory during exploration, a novel low-memory representation
of the environment is introduced that provides essential information for exploration by
only maintaining information about the frontier (the boundary between unknown and
free space) and the obstacles without retaining information related to extensive free and
unknown spaces; for convenience, we name the environmental representattion FAOmap
(Frontier And Obstacle map). Meanwhile, we propose a method for quickly updating
FAOmap whenever the UAV moves and receives new environmental data. To ensure fast
exploration planning when the environment changes and to find high-quality observation
paths in large-scale environments, a hierarchical exploration planning approach based
on the proposed FAOmap is developed that reduces the computational overhead and
improves the exploration efficiency.

The proposed FAOmap is benchmarked against several typical maps used in explo-
ration, and the proposed exploration method is compared to state-of-the-art methods in
simulations. The results demonstrate that the proposed FAOmap can considerably de-
crease memory consumption compared to other maps. Moreover, in all tests, the proposed
exploration planning method exhibits the shortest computation time out of the compared
methods—only a few tens of milliseconds—ensuring prompt responses to environmental
changes. And the proposed method consistently outperforms other methods in terms of
total exploration time and movement distance. Furthermore, the proposed autonomous
exploration system is validated by real-world experiments conducted in large-scale envi-
ronments. In summary, the main contributions of this paper are as follows:

• A novel representation of the environment is presented to provide the essential in-
formation for exploration: only obstacle and frontier information are maintained,
requiring less onboard memory. And a method is designed to update the representa-
tion immediately whenever new environmental data are received.

• A hierarchical exploration approach incorporating the proposed environmental repre-
sentation is developed to enable fast planning and generate high-quality exploration
paths, allowing for quick responses to environmental changes and improving overall
exploration efficiency.

• Comprehensive simulations and real-world experiments demonstrate that the proposed
environmental representation is memory-efficient, and the proposed exploration method
is able to promptly plan efficient exploration paths in large-scale environments.

2. Related Work
2.1. Autonomous Exploration Methods

The problem of autonomous exploration, which requires a mobile robot to autonomously
and safely navigate and map unknown environments as fast as possible, has been studied for
several decades. Exploration approaches mainly include frontier-based methods, topological
methods, information theoretic methods, and sampling-based methods.

Frontier-based methods identify all frontiers within the known map and then select
one of them as the next target for exploration. As the robot moves, the existing map is
gradually expanded until the entire environment is completely explored [7,13–16]. In the
fundamental study on frontier-based methods by Yamauchi [7], the robot consistently
chooses the closest frontier as the next goal. Inspired by [7], many researchers modify
the approach to suit their own application situations. In order to achieve high-speed
flight for UAVs during exploration, the frontiers within the current field-of-view (FOV) are
prioritized as the targets in [16]. In [14], candidate targets are calculated on frontiers, and
the one with the highest information gain is determined in order to rapidly expand the map.
However, since many of these methods use greedy strategies, short-sighted movements
occur frequently, resulting in inefficient exploration.
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Topological methods typically construct a sparse graph to represent the environment
during exploration, which consists of nodes positioned at key locations and edges con-
necting these nodes. The nodes of the graph are usually associated with the necessary
information for determining the exploration target, and the edges are collision-free that used
for searching of the traversable paths in the graph [17–20]. Nevertheless, topological maps
fail to provide adequate details about the environment due to their concise representations.

Information theoretic methods quantify the uncertainty of maps using information
theory and guide the robot to explore by determining the action with the highest informa-
tion gain out of the possible candidates [21–25]. But evaluating the information gain of
the map requires considerable computing power, which usually requires significant time,
causing the robot to stop and wait for the results.

Sampling-based methods primarily include the random selection of viewpoints within
the known space and the construction of rapidly exploring random trees (RRTs) [26]
for generating potential paths. The most optimal path or target for exploring unknown
environments is then determined using a utility function [9,10,27–29]. Regardless, most of
these methods are only suitable for small-scale or confined environments, such as indoor
spaces or subterranean tunnels. When the robot is faced with large-scale environments,
back-and-forth actions easily occur in certain places, which leads to the robot becoming
stuck in local areas.

In order to explore large-scale environments efficiently, some hybrid hierarchical
methods that incorporate the characteristics of the aforementioned methods have been
developed [11,12,30–33]; they usually consist of local and global planners. For example,
the GBP method [11] was developed to explore large-scale subterranean mines. It first
constructs a topological map using a random sampling method for discovering paths,
then, it calculates the information gain of nodes, and finally, it selects high-gain nodes as
frontiers to guide exploration. The TARE method [32] was presented to explore complex
3D environments and consists of global planning and local planning. In global planning,
cuboid subspaces with uncovered surfaces are utilized as the targets of exploration, and
global paths are searched using a key–pose graph. In local planning, the visible frontiers
of candidate viewpoints are calculated to determine the optimal path that passes through
some viewpoints to observe all frontiers. Furthermore, the FUEL method [31] was proposed
to support fast UAV exploration in complex unknown environments; it is composed of
an incremental frontier information structure that maintains essential information for
exploration and a hierarchical exploration planner that generates efficient global coverage
paths. However, most of these methods still suffer from excessive memory consumption
and heavy computational overhead in complex and large-scale environments.

In recent years, with the advancement of deep learning, learning-based methods
for autonomous exploration have been increasing in number [34–37]. After extensive
training in simulated environments, they can directly output actions for robots that facilitate
environment mapping based on perceived information. Nevertheless, most of them are
suitable for indoor scenarios, and to the best of our knowledge, no learning-based approach
has been developed for large-scale complex environments.

2.2. Environmental Representation

The environmental representation is a key component of autonomous exploration
and provides essential information to other modules. Most early works in autonomous
exploration focus on how to quickly explore a 2D environment [7,13,17], and they usually
employ a 2D occupancy grid map or a topological map to represent the environment. For
exploring large-scale and complex environments, the existing approaches mainly rely on
the 3D occupancy grid map, which splits the space into numerous grids of equal size
and records the space’s occupancy state, providing rich and comprehensive information.
For example, the AEP method [30] maps the environment using the Octomap [38], which
is based on the octree structure and uses a probabilistic occupancy representation. The
GBP method [11] works with either Octomap or Voxblox [39] depending on the user’s
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choices. Voxblox is based on a voxel-hashing approach to incrementally build the map
with a Euclidean signed distance field (ESDF). The FUEL method [31] utilizes FIESTA [40],
which also is a global ESDF map, to represent the environment, facilitating the real-time
trajectory planning. Additionally, the TARE method [32] uses point clouds to maintain free
and occupied space. In our previous work [33], UFOmap [41] was employed to represent
the environment. It is an extension of Octomap with a fast querying capability by using
Morton code.

Although these maps accurately represent the environment, much of the recorded
information, such as excessive free space, is unnecessary for exploration planning and
consumes extra memory resources. Moreover, many frontier-based and hybrid hierarchical
methods must calculate the frontiers based on these maps to provide richer information
for decision-making. The stored information in these maps is not directly used, leading to
inefficient exploration planning.

In this paper, a novel low-memory map is introduced to directly provide the fron-
tier information, and a hierarchical exploration planning method based on the map is
developed, enabling efficient exploration in large-scale 3D environments with low memory
consumption and fast planning.

3. System Overview

The proposed autonomous exploration system framework is depicted in Figure 1. The
SLAM module provides the UAV’s localization and registered point clouds by processing
sensor data. The local 3D grid map, which is centered at the UAV’s current position, is
updated by the SLAM results. And it is used to update FAOmap and the road map as well
as being employed in global planning and local refinement. FAOmap only maintains
information about the frontiers and the obstacles to provide the essential information for
exploration. The road map is a sparse free-space graph that allows for efficiently search-
ing for paths between points in the free space using A* or Dijstra’s algorithms. Frontier
clustering forms a lot of clusters quickly, and the calculation of super points that represent
the frontier clusters facilitates global planning. The finding of the exploration route pro-
duces a preliminary route that passes through the super points. Local refinement samples
candidate viewpoints in the vicinity of the first-to-be-observed cluster and determines an
observation path that traverses some of the viewpoints to efficiently observe surrounding
frontiers. Finally, trajectory optimization generates smooth and safe trajectories based on
the generated paths, which the UAV follows to explore unknown environments.

Notably, in our system, different components operate at different frequencies. Global
planning and local refinement are executed sequentially to determine the exploration paths at
a preset frequency. However, the frequency of SLAM outputs and FAOmap updates corre-
spond to the frequency of the used sensor, such as LiDAR, which usually works at 10–20 Hz,
providing real-time environmental representation. Moreover, trajectory optimization performs
at a higher frequency of ⩾30 Hz, enabling the UAV to fly safely.
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Figure 1. An overview of the proposed framework for autonomous exploration: The local 3D
grid map is updated by the SLAM results, and then it is utilized to update FAOmap and the road
map. Global planning, local refinement, and trajectory optimization are then conducted sequentially.
Finally, the UAV executes the trajectory to explore unknown environments.

4. A 3D Environmental Representation for Exploration

Most autonomous exploration methods represent environments using the occupancy
grid map, which splits the space into 3D grids with three occupancy states: free, occu-
pied, and unknown. Such a map takes a significant amount of memory to store the free
and unknown grids in large-scale environments because the free and unknown spaces
generally make up the majority of the environment. However, the whole space’s free and
unknown information is not required for exploration, which mainly relies on the frontiers
(the boundary between the free and the unknown spaces) and the occupancy state of the
space around the UAV to determine exploration routes. Moreover, the occupancy grid
map does not include the frontiers, which are calculated additionally during exploration
planning. Therefore, we design a novel environmental representation to efficiently provide
the necessary information during exploration, termed FAOmap, which only represents the
frontiers and the occupied grids, enabling quick access to the frontiers and acquiring the
occupancy state around the UAV.

4.1. Representation of FAOmap

As shown in Figure 2a, the whole exploration space is divided into free and unknown
areas by the frontiers and the surfaces of obstacles, considering that the inside of the obstacle
is an unobservable area and is regarded as unknown. The core idea of the proposed
environmental representation is to record the frontier and the obstacle’s surface with
indicators of the occupancy states of adjacent areas, which can be used to identify the
occupancy state of any area in the space.

In FAOmap, the entire space is split by 3D grids with a constant resolution r, as shown
in Figure 2b, and the occupied grids only appear on the surfaces of the obstacles. A frontier
f is a free grid for which at least one of its six neighbor grids (up, down, left, right, front,
and back) is an unknown grid. Not all grids are stored: only the frontiers and occupied
grids with indicators are stored in a tailored data structure (in Section 4.2). The indicator d of
a grid g (frontier or occupied grid) has three dimensions that correspond to the coordinate
directions of x, y, z, which indicate the occupancy states of the six neighbors of grid g.
As depicted in Figure 2c,d, the value of d depends on whether the grid’s neighbors are
unknown or not, as below:
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di =


0, if g−i ̸= unknown and g+i ̸= unknown
1, if g−i ̸= unknown and g+i = unknown
−1, if g−i = unknown and g+i ̸= unknown
2, if g−i = unknown and g+i = unknown

i = x, y, z

(1)

where g+i and g−i are the positively and negatively adjacent grids, respectively, of g in the
i direction. Figure 2e shows an example of the calculation of the indicator. Based on the
indicator of a grid, it is easy to determine the occupancy states of the areas adjacent to the
grid, as described in Section 4.3.

Figure 2. FAOmap representation (presented in 2D view). (a) The environmental representation
during exploration. (b) The space is split by occupancy grids, and FAOmap only stores the frontiers
and occupied grids. (c) The relationships between grid states. (d) Cases corresponding to the indicator
values associated with frontiers and occupied grids in FAOmap. (e) An example of determining the
indicator value of the grid v.

4.2. Data Structure of FAOmap

In order to minimize the memory consumption during exploration, arrays are firstly
considered to store the frontiers and the occupied grids. However, the number of frontiers
and occupied grids increases as the size of the known environment grows, leading to
inefficient access to the required elements in a large array. Moreover, this causes a major
decrease in exploration planning efficiency, which requires frequent acquiring of the fron-
tiers and the occupancy state of the space around the UAV. Therefore, aiming to balance
between memory consumption and querying efficiency, we adopt a hybrid data structure in
FAOmap that combines a hash map and arrays to maintain the information about frontiers
and obstacles.

As depicted in Figure 3, the entire environment space is equally divided into blocks of
size R, which is an integer multiple of the resolution r. The hash map only stores blocks
containing frontiers or occupied grids. The centroid of the block is used as the key value,
and information about the frontiers and the occupied grids within the block is utilized
as the element value. Each element in the hash map corresponding to a block consists of
two arrays that record the frontiers and the occupied grids separately, together with their
corresponding lengths. Each element in the arrays carries information about a frontier or
an occupied grid: the grid’s coordinates, occupancy probability, and an indicator indicating
the occupancy state of the grid’s neighbors. Since the hashing map and the small arrays
allow for efficient querying, FAOmap ensures that the specific frontiers or occupied grids
can be accessed quickly.
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Figure 3. The data structure of FAOmap, which is organized by a hash map. (a) The whole space
is divided into multiple blocks. (b) The hash map only stores the blocks that include frontier or
occupied grids. (c) An element of the hash map contains the frontier and occupied arrays together
with their corresponding length values. (d) An element of the frontier or occupied arrays consist
of the center point of the frontier or occupied grid, an indicator that indicates the state of the grid’s
neighbors, and an occupancy probability of the grid.

4.3. Updating of FAOmap

Real-time updating of environment maps is required for autonomous exploration.
Thus, a method for quickly updating FAOmap is proposed using a local 3D grid map with
the same resolution r. As depicted in Figure 4, firstly, the model recovers the occupancy
states surrounding the UAV in a local 3D grid map G. Then, it updates G using the newly
perceived data. Finally, it extracts the new frontiers and occupied grids from G and adds
them to FAOmap. The details for updating FAOmap are as follows:

(1) After the UAV moves, the local 3D grid map G is centered at the UAV’s current position,
and all grids in G are reset to the empty state (the real state has yet to be determined).

(2) Based on the coordinates, the frontiers and the occupied grids in the range of G are
retrieved from FAOmap and stored in their corresponding grids in G, as shown in
Figure 4b. And then, they are erased in FAOmap.

(3) The grids in G are clustered according to their current states (frontier, occupied,
and empty). The possible occupancy states of a grid in G are frontier, free, occupied,
and unknown, as shown in Figure 2c. Since the frontiers and occupied grids are
identified in step 2, the empty grids are free or unknown. The real states of empty
grids in the same cluster Ce are determined by the indicators of the frontiers or the
occupied grids adjacent to Ce. For example, as shown in Figure 4c–e, supposing that
along the positive direction of the x-coordinate, there is a frontier v adjacent to the
grid b, which is in cluster Ce. After querying the indicator of grid v, whose value dv

x is
1, it can be inferred that the state of grid b is known, according to Figure 2d. However,
there are only two types of known grids: free and occupied. But occupied grids have
already been identified in step (2), so the real state of grid b is free. Then the real states of
all grids in Ce are free. Similarly, the real states of all empty grids in other clusters can
be determined.

(4) The occupancy states of all grids in G are updated based on newly received data using
a ray-cast approach, as in Octomap [38].

(5) All new frontiers and occupied grids in G are extracted and added to FAOmap.

In this way, FAOmap is continuously updated according to the newly received envi-
ronmental information as the UAV flies. Additionally, the indicators of frontiers are applied
for calculating the observation vectors, which are used to generate candidate viewpoints,
and the local 3D grid map serves for local refinement in the proposed exploration method
(in Section 5.2).
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Figure 4. The updating of FAOmap (presented in 2D view), which relies on a local 3D grid map
G. (a) The states of the space before FAOmap updating: the green line represents the frontiers,
and the black line represents the obstacles’ surfaces (the area inside the obstacle is unobservable and
is regarded as unknown). (b) The states of grids in G after retrieving frontiers and occupied grids
from FAOmap. The white grids are to be determined. (c–e) An example of determining the grid
states by querying the indicators of grid v. (f) The real states of grids in G. (g) The states of grids in G
after being updated by newly received data. (h) The states of the space after FAOmap updating.

5. Hierarchical Exploration Approach

Recently, some studies have pursued the optimal path that can efficiently observe
global frontiers to guide exploration by a hierarchical planning method [31,32]. However,
they still suffer from high computational overhead and quality degradation of exploration
paths in large-scale 3D environments. Thus, following the frontier-based and the hierarchi-
cal methods, we propose a novel autonomous exploration planning approach that integrates
closely with the proposed FAOmap to enable fast planning and efficient exploration.

5.1. Global Planning

Global planning aims to find a promising route to observe all frontiers for efficient
exploration and consists of four components: frontier clustering, super point computation,
exploration route finding, and road map extension.

Using numerous frontiers directly during planning is computationally expensive and
provides too-coarse information for fine-grained decision-making, so many frontier-based
methods typically group frontiers into clusters to speed up computation and extract richer
information, such as [31]. Inspired by them, a fast incremental approach for clustering
frontiers that relies on the local 3D grid map used in FAOmap updating is developed
to improve the planning efficiency and facilitate exploration. Further, a super point for
each cluster is calculated based on the indicators of the frontiers to facilitate the planning,
providing a potential viewpoint for each cluster. In addition, our previous work [33]
proposed a path optimization formulation that takes into account coverage efficiency,
information gain, and movement distance to produce efficient 2D exploration routes for
ground robots, which is proven to support fast exploration in challenging large-scale
environments. Thus, in this work, we adapt the formulation to promptly plan high-quality
3D exploration routes for UAVs by simplifying the computation of information gain and
employing super points as waypoints. Also, referring to the 2D road map in [33], a 3D
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road map is built and expanded based on the local 3D grid map to enable effective path
searching between points in free space.

5.1.1. Fast Incremental Frontier Clustering

Assume that there are many clusters of frontiers before FAOmap updates. As shown
in Figure 5, since the new frontiers always appear within the range of G, only a small
number of clusters intersecting with G is considered to be updated when frontiers change,
allowing for the fast grouping of new clusters. The detailed descriptions are as follows:

(1) Find all clusters that currently overlap with the local 3D grid map G. If a cluster falls
inside the range of G, then delete it (as with the orange cluster in Figure 5a).

(2) For clusters that intersect with the boundary of G, some frontiers in these clusters
may no longer be the frontiers after G is updated by newly perceived data. If the
number of remaining frontiers in a cluster is less than the threshold Nmin, delete the
cluster (as with the green cluster in Figure 5); otherwise, retain clusters that consist of
remaining frontiers (as with the blue cluster in Figure 5).

(3) Cluster all frontiers that are not yet clustered, including the new frontiers that appear
after G is updated and some frontiers from the deleted clusters.

Figure 5. Fast incremental frontier clustering. (a) The old clusters and some new frontiers to be
clustered when the local grid map is updated as the UAV moves. (b) The new clusters (red and
yellow) are formed after updating. The green cluster in (a) is erased, and the blue cluster is modified.

In the presented method, the classic region-growing algorithm [42] is used to cluster
the frontiers. To avoid forming large clusters that degrade the efficiency of local refinement
(see Section 5.2), the maximum size of the cluster is limited by a threshold Smax, which is
generally set to approximately half of the sensing range in our system.

5.1.2. Super Points for Frontier Clusters

In order to facilitate global planning, each cluster is considered to be represented by a
super point p. Before calculating the super point, the observation vector −→a f associated with
a frontier f can be obtained by its indicator d in FAOmap; it represents the direction that is
suitable for observing the frontier. In detail,

−→a f =
ex · −→x + ey · −→y + ez · −→z√

ex2 + ey2 + ez2

ei =


0, if di = 0 || di = 2
1, if di = −1
−1, if di = 1

, i = x, y, z

(2)
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where di (i = x, y, z) are the indicator values in the three coordinate directions of x, y, z,
respectively, ei is a value to assist with calculation, and −→x ,−→y ,−→z are the three basis vectors
in the coordinate system.

Then, the super point p for a cluster C is calculated by

cavg =
∑n

j=1 cj

n

−→aavg =
∑n

j=1
−→aj

n

−→op = −−→ocavg + λ · −→aavg

(3)

where c is the coordinate of the frontier f , n is the total number of frontiers in C, o is the
origin point of the coordinate, and λ is the tuning factor. As shown in Figure 6a,b, the super
point provides a potential viewpoint for observing all frontiers in each cluster.

Figure 6. Hierarchical exploration planning. (a) Global planning: global frontiers are grouped into
multiple clusters quickly and incrementally, and then a global exploration route is found for visiting
these clusters in order. (b) Local refinement: when reaching the vicinity of the first-to-be-observed cluster,
a local path that can efficiently observe all frontiers in the cluster is determined by the sampled candidate
viewpoints. (c) Generation of the candidate viewpoint v f by frontier f and its observation vector a⃗ f .

5.1.3. Exploration Routes Finding

To efficiently explore large-scale 3D environments, we adapt the path optimization
method proposed in our previous work [33] to acquire a reasonable exploration route.
In the path optimization formulation, an optimal path σ∗ that visits global clusters in an
orderly manner is found by maximizing the following function:

σ∗ = max ∑n
k=1G(pk) · P(pk)

= max ∑n
k=1η · Nf(pk) · exp(−ω · Dc(p0 · pk))

(4)

where σ = [p0, p1, · · · , pn], p0 is the UAV’s current position, and [p1, · · · , pn] is a sequence
of all super points. Additionally, G(pk) = η · Nf(pk) is the information gain for pk, η is the
tunable factor, and Nf(pk) is the total number of frontiers in the cluster represented by pk.
Furthermore, P(pk) = exp(−ω · Dc(p0 · pk)) is the penalty function for pk, ω is the penalty
factor, and Dc(p0 · pk) is the cumulative movement distance from p0 to pk along the path σ.
Equation (4) can be solved quickly by a method based on the 2-opt local search heuristic,
which is described in detail in [33]. By simultaneously considering the movement distance,
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information gain, and coverage efficiency in the optimization, an efficient exploration route
that passes through all super points is obtained as depicted in Figure 6a.

In our previous work [33], candidate viewpoints were uniformly sampled around
the ground robot in a 2D plane, and then the information gains of the viewpoints were
evaluating by counting the number of their visible frontiers. Those viewpoints with high
gain were selected as waypoints to acquire high-quality exploration routes. However, this
path optimization strategy is time-consuming when exploring 3D environments using
UAVs. Because the number of the sampled candidate viewpoints and the frontiers is
significantly higher than in the ground scenarios, detecting the visibility between the
viewpoints and the frontiers takes considerable time. To enable real-time performance
for path optimization in this study, the elaborately calculated super points that represent
clusters are utilized as waypoints. And the total number of frontiers in a cluster is directly
employed as the corresponding super point’s information gain, considering that all frontiers
in the cluster are to be observed in local refinement (see Section 5.2), simplifying the
overall computation.

5.1.4. Road Map for Path Searching

The proposed method requires the lengths of collision-free paths between each pair of
super points in order to acquire efficient exploration routes, as illustrated in Equation (4).
Therefore, as shown in Figure 6a, a sparse 3D road map M is constructed and expanded as
the known space grows; it maintains a traversable space and allows fast searching of paths
between pairs of super points. The growth of M relies on the local 3D grid map G. Firstly,
the nodes of G are uniformly sampled at an interval ξ in the free space of G, ensuring the
sparseness of M. Secondly, sampled points with no old nodes of M in a radius of ξ are
added to G. Thirdly, the new nodes are connected to at most of n neighbors within the
range l by collision-free checking in G.

5.2. Local Refinement

Global planning finds a coarse exploration route that passes through the frontier
clusters sequentially, which is not the optimal path to observe the frontiers thoroughly.
Thus, the locally refined path is required for more detailed and efficient observation of
frontiers in each cluster. Many existing autonomous exploration methods sample a large
number of candidate viewpoints in the UAV’s surrounding space randomly or uniformly
and then compute the information gain of the viewpoints to determine the optimal target
or path. However, most viewpoints have low information gain and are deprecated in the end,
leading to a lot of time spent on ineffective computation. In order to improve computational
efficiency, a viewpoint generation method that samples a limited number of viewpoints with
high information gain is proposed in this work. Moreover, many methods typically determine
an optimal path that traverses some of the viewpoints to efficiently observe the frontiers
by minimizing the movement cost or maximizing the information gain of paths. When the
fields-of-view (FOVs) of the viewpoints overlap, the same frontier is observed repeatedly
by the UAV from different viewpoints, which is called the submodularity problem [43], and
results in the obtained path not actually being the optimal path. Therefore, inspired by [32],
a local path determination strategy that considers the submodularity is designed based on the
carefully sampled viewpoints and the local 3D grid map G (described in Section 4.3).

5.2.1. Viewpoint Generation

Considering a cluster C to be observed, multiple frontiers are sampled in C, and
their observation vectors are calculated to generate the candidate viewpoints, as shown in
Figure 6b,c. Firstly, multiple frontiers F ⊂ C are sampled based on an equal interval ε. Then,
the observation vector −→a f for each frontier f ∈ F is obtained according to Equation (2),
which indicates the suitable direction for observing the frontier. Finally, the candidate
viewpoints V are generated based on the frontiers F and their observation vectors. Like the
calculation of super points in Equation (3), the viewpoint v f of a frontier f is calculated by
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−→ov f =
−→oc f + µ · −→a f (5)

where o is the origin point of the coordinate, c f is the coordinate of the frontier f , and µ is
the tuning factor. In this way, only a small number of viewpoints with high information
gain for observing the frontiers are generated to determine the local path.

5.2.2. Observation Path Determination

As shown in Figure 6b, the UAV is at the center position p of the local 3D grid map
G, and the frontiers to be observed in G are FG. After viewpoint generation, the set of
candidate viewpoints VG is acquired. Path determination aims to find a high-potential
path that traverses some of the viewpoints and is as short as possible while observing all
frontiers within the horizon of G. We firstly obtain multiple subsets of VG that are capable
of observing all frontiers in FG, considering the submodularity, then acquire the shortest
path that starts at the UAV’s current position and traverses all of the viewpoints in each
subset. By comparing the shortest path of each subset, the optimal observation path is
determined, which is a high-potential path for observing the frontiers.

To get a subset of VG, the number of each viewpoint’s visible frontiers N fvis
v is counted

by detecting the visibility in the local grid map G, where f ∈ FG, v ∈ VG. Then, a priority
queue Q of viewpoints in descending order according to the number of visible frontiers is
used to pick viewpoints, like the sampling viewpoints in [32]. Firstly, we select a viewpoint
v′ randomly from the first ϕ viewpoints of Q and remove the viewpoint v′ from Q. Secondly,
we update the visible frontier numbers of the remaining viewpoints in Q with which the
visible frontiers of v′ are not involved, accounting for the overlapping FOVs of viewpoints.
Thirdly, we repeat these two steps until the queue Q is empty or the number of visible
frontiers for each viewpoint in Q is less than a threshold tvis, and the selected viewpoints
form a subset V′G ⊂ VG that can observe all frontiers in FG. Then multiple subsets of VG

are acquired using the same steps.
We denote ρ∗ as the optimal path to be determined, V′G

k as the k-th subset of VG,
E(vi, vj) as the edge connecting the viewpoints vi and vj, where 1 ⩽ i, j ⩽ n, n is the total

number of viewpoints in V′G
k , and ρ = [E(v0, v1), E(v1, v2), · · · , E(vn−1, vn)] as the shortest

path starting from the UAV’s current position v0 and passing through all of the viewpoints
in V′G

k . Then, the local path determination problem is solved based on the two steps below.
Firstly, the shortest path ρ for each subset V′G is obtained by formulating the asym-

metric traveling salesman problem (ATSP), which is a variant of the traveling salesman
problem (TSP) [44]. The solution of the ATSP is the shortest open-loop tour of a set of points
that starts from a specified point and passes through all other points. The ATSP can be
solved quickly by the Lin–Kernighan heuristic [45], for which an effective implementation
is available [46]. It is necessary to properly design a cost matrix Mtsp that corresponds to
an n + 1 dimensional square matrix for solving the ATSP, which is computed as:

Mtsp(i, j) = Mtsp(j, i) = ℓ(E(vi, vj))

Mtsp(0, i) = ℓ(E(v0, vi))

Mtsp(i, 0) = 0
i, j ∈ 1, 2, · · · , n

(6)

where ℓ is the length of the edge E(vi, vj). The shortest path ρk of the subset V′G
k is acquired

after the ATSP is solved by specifying the UAV’s current position as the start point.
Secondly, the high-potential path with the shortest length is determined as the final

outcome of local planning by comparing the shortest path of each subset as:

ρ∗ = min ℓ(ρk), k ∈ 1, 2, · · · , τ (7)

where τ is the total number of subsets of viewpoints.
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In [32], finding the local path that connects the global path requires sampling a large
number of viewpoints, detecting the visibility between viewpoints and frontiers, searching
paths between pairs of viewpoints, and solving the standard TSP by using the costs of
searched paths, which is time-consuming. To reduce the computational overhead of our
method, the number of viewpoints is limited to a small scale, and the costs of paths between
pairs of viewpoints are found directly using the Euclidean distance. Additionally, our method
uses the ATSP formulation to obtain an open-loop local path starting at the UAV’s current
position. It avoids the connection to the global path and strengthens the local autonomy, which
enhances the overall exploration efficiency. Furthermore, local refinement does not smooth the
path, because a trajectory optimization module is employed independently to optimize the
generated paths (see Section 6), which compacts the computation of exploration planning.

It is worth noting that local refinement is not always carried out for exploration
planning. During exploration in a large-scale environment, the UAV’s current position and
the next target cluster may be far away after global planning. In this case, local refinement
is not performed because the UAV only needs to follow the global exploration route. When
the frontiers of the target cluster appear within the horizon of the local 3D grid map, local
refinement will be triggered.

6. Trajectory Optimization

To follow global exploration routes or local observation paths after exploration plan-
ning, EGO-planner [47], which was developed for effective trajectory optimization of UAVs,
is utilized to generate a smooth and safe trajectory quickly. However, it uses a global
map with a fixed size, which takes significant amounts of memory for large-scale scenes.
Therefore, by using a 3D circular memory buffer [48], we modify the map representation in
EGO-planner to a local rolling map centered on the UAV’s current position, which requires
little memory during exploration.

7. Simulation Experiments

To evaluate the performance of the proposed autonomous exploration system, ex-
tensive simulation experiments are conducted in three distinct large-scale environments:
Indoor, Mountain, and Village, as shown in Figure 7. The MARSIM simulator [49], which is
a lightweight point-realistic simulator for LiDAR-based quadrotor drones, is employed in
the tests. And the drone is equipped with a Livox Mid-360 LiDAR sensor, for which the
FoV is [360°, 59°]. All simulation tests are carried out on an Ubuntu 20.04 system with an
Intel Core i7-8700k @ 3.70 GHz CPU.

Figure 7. Three simulation environments: (a) Indoor: 105 m × 60 m × 20 m; (b) Mountain:
100 m × 100 m × 30 m; (c) Village: 150 m × 100 m × 30 m.

7.1. FAOmap Evaluation

To evaluate the memory consumption and the update efficiency of the proposed FAOmap,
four benchmarks—Octomap [38], Voxblox [39], FIESTA [40], and UFOmap [41]—are compared
using their open-source codes. Comparisons are carried out in the three distinct scenes shown
in Figure 7, and all mapping methods are run simultaneously when the UAV moves, ensuring
they are updated using the same perceived data. In each scene, the memory consumption and
the update times of these maps are evaluated at different resolutions and sensing ranges.
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7.1.1. Memory Consumption

As shown in Table 1, the proposed FAOmap consumes significantly less memory than
the other maps in all comparisons. In the Indoor scene, at a resolution of 0.1 m, FAOmap
consumes 64.8 MB of memory, which is only 6.2%, 6.3%, 0.8%, and 18.8% of the memory
used by Octomap (1038.9 MB), Voxblox (1021.7 MB), FIESTA (7695 MB), and UFOmap
(344.4 MB), respectively. At a resolution of 0.3 m, the memory usage of FAOmap (6.9 MB)
is 36.9%, 9.99%, 1.43%, and 28.05% as compared to Octomap (18.7 MB), Voxblox (69.1 MB),
FIESTA (480.9 MB), and UFOmap (25.6 MB), respectively. Moreover, at resolution of 0.5 m,
all maps use less memory than at 0.3 m and 0.1 m. FAOmap takes 2.1 MB of memory,
which is considerably less than Octomap (5.0 MB), Voxblox (20.8 MB), FIESTA (120.2 MB),
and UFOmap (5.5 MB), with 42%, 10.1%, 1.75%, and 38.18%, respectively. In addition,
the comparison results in the Mountain and Village scenes are similar to those in the Indoor
scene, with FAOmap still consuming much less memory than the other maps. Because
FAOmap only represents the frontiers and the obstacles, it avoids storing a huge quantity of
information about the free and unknown space, resulting in significant memory reduction.
Furthermore, Figure 8 depicts the memory usage of the five maps over the volume of
known space in the three simulation environments at a resolution of 0.1 m. It shows that
the gap in memory consumption between FAOmap and other maps grows as the known
space increases, indicating that the proposed FAOmap is more memory-efficient while
representing larger environments. Note that the curve of FiESTA is step-like since it is
designed to double the map capacity whenever expanding the map.

Figure 8. The memory usage (MB) vs. known space volume (m3) for the five maps at a resolution of
0.1 m for three simulation scenes: (a) Indoor, (b) Mountain, and (c) Village. Ordinate values beyond
2000 are scaled three times.

7.1.2. Update Efficiency

In terms of update times, the proposed FAOmap performs well. As shown in Table 1,
FAOmap, UFOmap, and FIESTA have substantially shorter update times than Octomap and
Voxblox in all comparisons. At a resolution of 0.1 m for the three scenes, FAOmap is tens of
milliseconds behind the best model (UFOmap), but it is still hundreds of milliseconds faster
than Octomap and Voxblox. At a resolution of 0.3 m, FAOmap follows UFOmap closely
by a few milliseconds in the Indoor and Mountain scenes; however, FAOmap performs
best in the Village scene. At a resolution of 0.5 m, FAOmap, UFOmap, and FIESTA are
all updated within 20 milliseconds—only a few milliseconds apart—showing that the
proposed FAOmap can update as quickly as they can. All of these demonstrate that the
proposed FAOmap has the ability to update in real time.

In summary, the proposed FAOmap provides a memory-efficient and real-time repre-
sentation of a large-scale environment for exploration.
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Table 1. Comparisons of environmental representations of three scenes.

Scene Indoor Mountain Village

Resolution r (m) 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

Sensing Range (m) 5 9 12 5 9 12 5 9 12

method

metric total

memory

usage

(MB)

average

update

time

(ms)

total

memory

usage

(MB)

average

update

time

(ms)

total

memory

usage

(MB)

average

update

time

(ms)

total

memory

usage

(MB)

average

update

time

(ms)

total

memory

usage

(MB)

average

update

time

(ms)

total

memory

usage

(MB)

average

update

time

(ms)

total

memory

usage

(MB)

average

update

time

(ms)

total

memory

usage

(MB)

average

update

time

(ms)

total

memory

usage

(MB)

average

update

time

(ms)

Octomap [38] 1038.9 1238 18.7 107 5.0 58 824.8 1176 31.8 122 7.2 54 1353.8 1793 44.9 184 12.5 74

Voxblox [39] 1021.7 345 69.1 143 20.8 124 857.4 344 105.1 160 25.2 119 1754.1 332 125.3 202 40.8 115

FIESTA [40] 7695.0 261 480.9 49 120.2 8 7695.0 232 480.9 36 240.5 11 7695.0 97 961.9 38 240.5 8

UFOmap [41] 344.0 51 24.6 20 5.5 14 353.9 47 30.9 27 8.0 15 448.2 53 41.8 32 12.5 14

FAOmap 64.8 112 6.9 28 2.1 17 76.5 117 8.0 28 2.6 17 120.7 114 12.1 30 4.7 17
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7.2. Exploration Planning Method Evaluation

To evaluate the computational efficiency and exploration efficiency of the proposed
autonomous exploration planning method, simulation tests are conducted in three different
large-scale environments, as shown in Figure 7. The performance of our method is bench-
marked against two representative methods (FUEL [31] and TARE [32]) using three critical
metrics: computation time, total exploration time, and total movement distance. Since each
of the two methods has its own termination conditions, for fair comparison, the exploration
is considered complete once 95% of the environment’s volume has been observed for all
methods. Further, both the Fuel and TARE methods are available online, but they have
different configurations. Thus, we adapt them to the same configuration as our approach
in simulations, which involves a UAV equipped with a Livox Mid-360 LiDAR sensor. In
all tests, the UAV’s maximum velocity is set to 3 m/s, and the maximum sensing range of
the LiDAR is fixed at 15 m. Additional parameters specific to our approach are detailed in
Table 2. Each method is tested 10 times in each scene, starting from the same initial position
to ensure consistency in the performance evaluation. The statistics of the simulation results
and the exploration progress for the three methods are displayed in Table 3 and Figure 9,
respectively, providing a concise and clear understanding of our method’s performance.
The planning computation time, total exploration time, and total movement distance are
average values calculated from 10 trials. Figure 10 depicts the executed trajectories of the
UAV in a representative run for each method.

Table 2. Parameters of the proposed method for all simulations.

FAOmap
Global Planning Local Planning

Frontier
Clustering

Road Map
Updating

Path
Planning

Viewpoint
Generation

Path
Determining

param r R Nmin Smax ξ n l η ω ε ϕ tvis τ

value 0.5 m 10 5 8 m 2 m 6 6 m 100 0.1 1.0 m 3 3 10

Table 3. Results of simulations in three environments.

Scene
& Bounding Box

For Exploration &
Observable Volume

Method
Planning

Computation
Time (ms)

Total Total
Average
Speed
(m/s)

Exploration Movement
Time (s) Distance (m)

avg std avg std

Indoor
105 m × 60 m × 8 m

47,084 m3

FUEL [31] 42 384.2 18.6 561.9 24.4 1.463
TARE [32] 694 336.7 46.0 728.1 98.4 2.162
proposed 29 205.9 16.2 494.4 35.4 2.401

Mountain
100 m × 100 m × 8 m

56,341 m3

FUEL [31] 74 412.9 44.6 579.9 67.1 1.404
TARE [32] 656 312.7 56.3 685.3 122.0 2.192
proposed 20 196.8 22.2 487.2 49.2 2.476

Village
150 m × 100 m × 8 m

94,463 m3

FUEL [31] 139 726.8 57.9 996.7 70.8 1.371
TARE [32] 749 659.2 105.6 1387.6 220.3 2.105
proposed 24 383.9 29.5 923.2 69.9 2.405

Observable volume: all space of the environment that can be observed by the UAV.
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Figure 9. The exploration progress of the three methods in three different environments: (a) Indoor,
(b) Mountain, and (c) Village. The charts show explored volume (m3) vs. time (s).

Figure 10. The executed trajectories of the three autonomous exploration methods in three different
environments. The exploration is complete when the known space reaches 95% of the total observable
space, according to the termination condition. (a) Indoor, (b) Mountain, and (c) Village.

7.2.1. Computational Efficiency

As shown in Table 3, the computation times of the proposed exploration planning
method are 29 ms for the Indoor scene, 20 ms for the Mountain scene, and 24 ms for
the Village scene, which are significantly faster than the times for the other two methods.
This is because each component of the proposed exploration planning method has low
computational overhead due to careful optimization for large-scale environments, including
fast incremental frontier clustering, efficient global exploration route finding, timely local
refinement, etc. Moreover, the computation time of the proposed method does not increase
as the size of the scene grows, showing that the computation efficiency of the proposed
method is stable in different environments with distinct sizes. However, the computation
time of the FUEL method grows with the scene size, mainly because it searches paths
between viewpoints using the occupancy grid map, which is computationally heavier
for the larger environment. The TARE method has a significantly longer computation
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time than the proposed method and the FUEL method, mainly because it samples a large
number of viewpoints and analyzes the visibility between them and the frontiers, which
takes a lot of time.

7.2.2. Exploration Efficiency

As shown in Table 3 and Figure 9, the proposed method significantly improves the
exploration efficiency compared to the other methods; it has least exploration time and
the shortest movement distance in all tests. In the Indoor scene, the total exploration
time of the proposed method is 205.9 s, with 46.4% and 38.8% improvement compared
to FUEL (384.2 s) and TARE (336.7 s), respectively. In the Mountain scene, the proposed
method has a total exploration time of 196.8 s and outperforms FUEL (412.9 s) and TARE
(312.7 s) by 52.3% and 37.1%, respectively. In the larger scene of the Village, the total
exploration time of the proposed method (383.9 s) also shows considerable improvements
of 52.8% and 41.7% compared to FUEL (726.8 s) and TARE (659.2 s), respectively. For the
total movement distances of the three methods, the proposed method is optimal in the
three scenes, as with the total exploration time. The proposed method considers coverage
efficiency, exploration gain, and movement cost to obtain a more reasonable exploration
route in global planning and refines the local path to observe the frontiers efficiently,
ensuring efficient exploration in large-scale environments. However, both the FUEL and
TARE methods plan exploration routes by solving the TSP problem without considering the
exploration gain, causing the UAV to revisit some sites during exploration, which reduces
the overall efficiency. Furthermore, the TARE method fails to respond to environmental
changes promptly, leading the UAV to pursue previous targets that do not provide high
exploration gains during the current planning iteration over time. As a result, the TARE
approach has a significantly longer overall movement distance than the other methods.
Additionally, the proposed method generates smoother trajectories than the other methods,
as depicted in Figure 10, and achieves the highest flight speed in the three scenes, as shown
in Table 3, owing to fast planning of exploration paths and timely trajectory optimization.
This also illustrates that the proposed method is more efficient for large-scale environments.

In brief, the simulation tests demonstrate that the proposed exploration method
outperforms the benchmark methods in terms of computational efficiency and exploration
efficiency, exhibiting the fastest computation time, least exploration time, and shortest
movement distance in all tests.

8. Real-World Experiments

To further test the performance of the proposed autonomous exploration method in
practice, real-world experiments are conducted in two distinct large-scale environments:
an underground garage and a cluttered forest, as shown in Figures 11 and 12, respec-
tively. The quadrotor drone is equipped with an Intel NUC (NUC10FNK with an Intel
Core i7-10710U CPU and 16 GB of RAM) (Intel Corporation, Santa Clara, CA, USA) and
a Livox Mid-360 LiDAR sensor (Livox Technology Co. Ltd., Shenzhen, China), as shown
in Figure 13. Fast-lio2 [50], which is a fast, robust, and versatile LiDAR-inertial odometry
framework, is adapted to acquire the localization of the drone in real time. In all experi-
ments, the maximum sensor range is set to 15 m for FAOmap updating. The maximum
velocity of the drone is set to 1.5 m/s, and the maximum acceleration is set to 1.0 m/s2,
ensuring collision avoidance and smooth flight by the quadrotor drone. When there are no
observable high-gain frontier clusters, the exploration terminates.

For the underground garage scene, the space to be explored is bounded by a
72 m × 60 m × 2 m box, considering the free-flight height in the scene. During explo-
ration, the drone flies 171 m in 159 s and explores 4929 m3 inside the bounding box.
The executed trajectory of the drone and the online-built point cloud map are shown in
Figure 11. Notably, there are several untraversable areas within the bounding box due to
environmental structural restrictions.
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Figure 11. The real-world exploration in an underground garage. (a,b): Two different views of the
online-built point cloud map and the UAV’s trajectory, including images of the environment. The red
rectangle represents the bounding box of the space to be explored. Several untraversable areas are
within the bounding box due to environment structural restrictions. Some areas outside the bounding
box are observed due to the long LiDAR sensor range.

Figure 12. The real-world exploration in a cluttered forest. (a,b): Two different views of the online-
built point cloud map and the UAV’s trajectory, including images of the environment. The red
rectangle represents the bounding box of the space to be explored. Areas outside the bounding box
are also observed due to the long LiDAR sensor range.

Figure 13. The flying platform used in real-world experiments: a quadrotor drone equipped with an
Intel NUC and a Livox Mid-360 LiDAR sensor.
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For the cluttered forest scene, the size of the area to be explored is 72 m × 62 m × 4.5 m.
The trajectory and the point cloud map are displayed in Figure 12, and the drone flies 210 m
in 189 s. The statistics of two experiments are listed in Table 4, and the exploration progress
is shown in Figure 14.

The above experiments validate the capabilities of the proposed autonomous explo-
ration system in real-world, complex, large-scale environments.

Table 4. The statistics of two real-world experiments.

Scene Explored
Time (s)

Movement
Distance (m)

Explored Volume
in Bounding Box

(m3)

FAOmap
Memory

Usage (KB)

Average
Planning
Time (ms)

garage 159 171 4924 173 19.7
forest 189 210 17,229 610 53.5

Figure 14. The exploration progress for two real-world experiments conducted in large-scale environ-
ments. (a) Garage. (b) Forest.

9. Conclusions and Future Work

This paper presents an efficient UAV autonomous exploration framework for large-
scale unknown environments. In the framework, a low-memory environmental repre-
sentation named FAOmap is introduced to reduce the consumption of onboard memory
during exploration. Meanwhile, a quickly updating method for FAOmap is also presented.
Moreover, a hierarchical exploration planning method that integrates closely with the
proposed FAOmap is developed to quickly plan efficient exploration paths in large-scale
environments. The proposed method reduces the computational overhead and generates
more reasonable observation routes, ensuring fast planning and exploration efficiency. The
proposed method is benchmarked against state-of-the-art approaches in various environ-
ments. The results demonstrate that the proposed FAOmap effectively reduces memory
usage while maintaining real-time updating capacity, with an average update time that
is faster than those of the majority of compared maps. Further, the proposed exploration
planning method exhibits the fastest computation time, least exploration time, and shortest
movement distance compared to the baseline methods mentioned in the paper. Further-
more, real-world experiments conducted in two large-scale environments also prove the
applicability of the proposed autonomous exploration system. However, the proposed ap-
proach may occasionally ignore smaller regions during exploration, resulting in incomplete
scans, and the mapped environment may not have the desired level of detail. In future
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work, autonomous exploration methods that focus more on the quality of the reconstructed
maps will be researched.
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