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Abstract: Coaxial multirotors, characterized by overlapping rotors, represent a common solution
to increasing payload capacity while maintaining a compact platform size. However, the overlap
between motors generates airflow disturbances that, if not taken into account properly, may decrease
the system’s overall performance. In this paper, aerodynamic interactions for coaxial multirotors are
analyzed and characterized. Two rotor models are introduced, which account for the aerodynamic
interaction between the upper and the lower rotor. Each model is accompanied by its corresponding
mixer design and analyzed with respect to the state-of-the-art mixer solution for classical multirotor
systems. The proposed approaches are tested through rotor stand experiments, simulations, and
implementation on an actual coaxial platform. The results demonstrate the effectiveness of these
models in mitigating the adverse aerodynamic effects, thereby improving the performance and
efficiency of coaxial multirotor systems.

Keywords: aerodynamics; coaxial interaction; control allocation; multirotor

1. Introduction

Unmanned aerial vehicles (UAVs) have attracted a lot of interest recently from a
variety of industry sectors due to their ability to carry out crucial tasks in hazardous
environments, such as inspection tasks and search and rescue missions, among others.
To address evolving demands, UAV platforms have undergone considerable evolution
from the beginning, expanding in both size and payload capacity. Departing from the
first quadrotor designs, a diverse variety of configurations has emerged to increase safety
and robustness during operations [1]. Among these configurations, coaxial multirotors
have been tested in recent years [2–4], particularly for the possibility of carrying high
payloads in a compact footprint, since using coaxial rotors allows for a significant increase
in power without the need to increase the size of the platform. However, the presence of
rotors located on top of each other generates aerodynamic flux among the two, which can
compromise the control and stability of the platforms if not properly considered in the
mixing strategy. Motivated by the necessity of advancing the precise control of coaxial
multirotors, this paper presents a novel coaxial rotor model and control allocation aiming
to model and minimize coaxial aerodynamic interactions between coaxial rotors.

1.1. Related Work

In the past few decades, control allocation has been extensively researched [5] for
UAVs. Various methodologies have been developed to robustly and effectively compute
desired rotor velocities, such as the optimal control allocation method [6,7], quadratic
programming-based methods [8,9] and neural network-based techniques [10]. The method-
ologies presented in [5–10] primarily focus on investigating novel techniques to tackle
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control allocation challenges, particularly concerning issues like singularity, rotor satura-
tion, and optimality of the solution. However, little attention has been directed towards the
study of the aerodynamic complexities generated by rotor propellers. Indeed the majority
of the allocation methods rely on the standard constant rotor model derived in [11], which
defines that the thrust and torque produced by a single rotor are proportional to its velocity
squared. This rotor model has been proven to be accurate in ideal conditions and with
no rotor overlap, whereas for coaxial rotors the proximity of the two rotors generates
aerodynamics flux, which causes additional thrust and torque components, as analyzed
in [12–16], making the standard model not valid anymore. In particular, in [13] a study
on aerodynamic interaction for counter-rotating coaxial rotor is proposed, while in [14] a
numerical analysis of interaction effect at different rotor spacing is presented; finally, in [15]
the aerodynamic performance of a coaxial hexacopter is studied for different rotor spacing.
The analysis indicates that the aerodynamic performance is affected by the proximity of
two rotors, both in thrust and torque. From a control perspective, in the design of the
control structure for coaxial multirotors, aerodynamic effects due to rotor proximity are
often neglected [17–20] or treated simplistically. One common choice in this regard is the
inclusion of a constant penalization gain in the control allocation design to consider the
thrust loss due to rotor proximity [21–23]. However, this conventional approach fails to
capture the complex and nonlinear interactions between lower and upper rotors by just
considering a linear model. Another common approach to compensate for coaxial thrust
loss is to increase the diameter of the lower rotor propeller with respect to the upper one to
increase its thrust and thus compensate for thrust loss, as mentioned in [24]. However, this
method has several disadvantages. Increasing the lower rotor size can lead to additional
weight and structural complexity, as well as the addition of aerodynamic drag and noise,
which overall decrease the efficiency of the system. Other solutions present the integration
of more complex thrust models in control allocation structure [10,25–28]. In [10], a neural-
network-based mixing strategy proposes to compensate for nonlinear aerodynamics effects
generated in multirotors. A similar approach is adopted in [25], specifically targeting the
compensation of coaxial aerodynamics effects. Although neural network-based solutions
are generally capable of accurately modeling highly nonlinear systems, they impose a
substantial computational burden. This increased computational demand makes it very
challenging to deploy such solutions in real systems, given the high frequencies typically
required by mixers in multirotor systems. In [26], quadratic polynomials are used to model
rotor thrust and torque based on input speed. However, the nonlinear models are not
explicitly integrated into the mixing strategy. In [27], a similar approach is adopted, a
nonlinear polynomial is utilized to estimate the total thrust and torque for a coaxial rotor
unit of an octacopter. Despite being evaluated on a real system, the approach presented
relies on a thrust and torque color map to compute the rotor velocities from coaxial thrust,
which is limited by the color map resolution and introduces uncertainty caused by the
interpolation of the colormap. In [28], an optimal efficiency-based solution is developed
and applied to a multirotor prototype. While this approach provides valuable insights
into the efficiency of the coaxial platform, it merely focuses on the overall efficiency in the
development of the coaxial mixer rather than on its accuracy for thrust and torque.

Overall, the studies mentioned propose solutions that are either computationally
demanding, such as neural networks, or lack precision due to multiple interpolation steps
or prioritizing efficiency without adequately evaluating the accuracy of thrust and torque.

1.2. Contributions

In this work, two coaxial mixers to minimize aerodynamic interaction in coaxial multi-
rotors are designed. Unlike other solutions, the proposed model distinguishes between the
thrust contributions of the upper and lower rotors and it is defined as a priori unknown
polynomial order, whose order is determined through the identification process. While
existing literature frequently presents solutions that either rely on highly computationally
intensive models or empirical polynomial equations, the mixers developed in this work
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from the rotor model generate analytical solutions for control allocation problems. Further,
the proposed mixers are designed for rapid integration with standard allocation structures.
Consequently, the main contributions of the presented works are (i) the development of an
advanced coaxial rotor model that incorporates the effects of coaxial aerodynamic interac-
tion, (ii) the integration of a coaxial aerodynamic effect into the allocation control problem,
(iii) the adoption of the LASSO identification method for coaxial rotor model identification.

2. Coaxial Rotor

In order to effectively compensate for the interaction between upper and lower rotor
velocities in determining overall force and torque, this section is devoted to the introduction
of a nonlinear model for a generic coaxial rotor unit, the Coaxial Rotor Model (CRM).
Additionally, the model will be detailed, along with the validation procedure conducted on
a typical rotor test stand.

2.1. Model

A single coaxial unit, composed of a lower rotor (.)l and an upper rotor (.)u, is
considered. The two rotors are aligned vertically, separated from each other by a distance
of h, and equipped with the same propeller geometry. Further, it is assumed that the
rotor speed of the two can be controlled separately. Then, building on the second-order
polynomial model for coaxial thrust and torque proposed in [27], the approach developed
in this paper extends the model to include higher polynomial degrees and separately
models the thrust and torque for the upper and lower rotors. Consequently, upper and
lower thrust and torque are introduced:

fu = γ
f
u(uu) (1a)

τu = γτ
u(uu) (1b)

fl = γ
f
l (ul , uu) (1c)

τl = γτ
l (ul , uu) (1d)

where γ
f
u, γτ

u are polynomials of degree N, γ
f
l , γτ

l are polynomial surfaces of order P, ul , uu
are the normalized velocities for the upper and lower rotor velocities, and fu, τu, fl , τl
represent, respectively, upper thrust, upper torque, lower thrust and lower torque. The
upper rotor is considered dependent merely on its velocity, assuming a negligible effect
of the upper rotor with respect to the lower one on the overall thrust and torque, as
demonstrated in [14,29]. On the other hand, the influence of upper rotor flux with respect
to the lower one has been considered in the model (Equation (1c,d)) since it always operates
in the altered flow of the other. This provides the need to consider the two velocities for
both the lower thrust and torque models. Considering this, the right side of Equation (1)
can be expressed as: 

γ
f
u =

i=0

∑
i=N

(piuN−i
u )

γτ
u =

i=0

∑
i=N

(qiuN−i
u )

γ
f
l =

i=0

∑
i=N

(
j=0

∑
j=M

pkuN−i
u uM−j

l )

γτ
l =

i=0

∑
i=N

(
j=0

∑
j=M

qkuN−i
u uM−j

l )

(2)

where N is the maximum front rotor velocity exponent, M the maximum lower rotor veloc-
ity exponent such that P = M ∗ N, and pk and qk are the p-th coefficients for, respectively,
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thrust and torque (with k = 1, . . . , M ∗ N). Integrating Equation (2) into Equation (1c) and
Equation (1), the overall thrust and torque for the two rotors is defined in a matrix form:[

fl
τl

]
=

[
θ

f
l

θτ
l

]
φ,

[
fu
τu

]
=

[
θ

f
u

θτ
u

]
φ (3)

where θ
f
u,l , θτ

u,l ∈ R1xP are the unknown coefficient matrices, and φ ∈ RPx1 is the velocity
regressor matrix. It is important to notice that the coaxial model presented is also influenced
by the blade geometry and the coaxial distance h between the two rotors. In particular,
as shown in [11], the rotor thrust and torque parameters for a single rotor, are computed
based on the performance of the motor and the geometrical shape of the blade. Further, the
influence of coaxial distance on the thrust and torque performance of the rotors has been
studied in [30,31]. The performance of the upper rotor results in being negligibly affected
by the proximity of the lower rotor due to its operation in the upstream. However, the
thrust and torque of the lower rotor result in being significantly dependent on the coaxial
distance, with closer proximity to the upper rotor resulting in greater thrust loss in the lower
rotor. This makes its thrust and torque coefficient (Equation (1)) dependent on the coaxial
distance. These insights directly impact the model presented in Equation (1). In particular,
increasing the coaxial distance h results in an increase in the overall lower rotor thrust and
torque due to the decrease in the penalization terms related to upper rotor velocities. On
the other hand, a decrease in h leads to a decrease in the lower rotor thrust and torque as a
consequence of the increased penalization due to the upper rotor’s flux. Modifications in
the distance h, as reported in [30], do not affect the coefficients for the upper rotor’s thrust
and torque. Overall, changes in the propeller geometry would necessitate a reevaluation
of the coefficient values for both the upper and lower rotors [11], while a change in the
coaxial distance would imply a difference in the value of lower rotor coefficients. However,
the model presented in Equation (1) has been presented not assuming specific rotor or
propeller performance, relying instead on the aerodynamic interaction between the two
rotors, which is caused by the coaxial configuration.

2.2. Identification Method

For the estimation of the unknown parameter vector of Equation (3), a Least Absolute
Shrinkage and Selection Operator (LASSO) method is adopted. LASSO is an identification
technique introduced in [32] that allows computing unknown constant parameters that
can best fit the proposed model. In contrast to the most used Least Square (LS) technique,
LASSO minimizes the residual between the data and the model with a penalization on the
vector norm. This allows us to overcome over-fitting problems that may arise with classical
techniques such as LS [33] and constrain the complexity of the model. In particular, for
the model presented in Equation (1), a NonLinear LASSO method (NL-LASSO) is adopted
for the identification of four θ vectors of Equation (3). Following the structure introduced
in [34], the NL-LASSO problem for the upper and lower rotors becomes:

θ̂
f
i = argmin

θ
f
i

|| f̃i − φ(ũi, ũu)θ
f ||22 + λ f ||θ f

i ||1

θ̂i
τ
= argmin

θτ
i

||τ̃i − φ(ũl , ũu)θ
f
i ||22 + λτ ||θτ

i ||1

with i = {u, l}

(4)

where λ f ,τ are regularization terms, ||.||2 indicates the l2-norm, ||.||1 the l1-norm, ˜(.) in-
dicates the measured quantities while ˆ(.) the estimated ones. (.)i represents the quantity
related to the upper rotor u or lower rotor l. Equation (4) can be then formulated as
quadratic programming optimization problems and efficiently solved using a standard
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optimizer, providing the optimal coefficients to fit the thrust and momentum of the coaxial
rotor unit.

3. Coaxial Rotor Experiments and Analysis

This section is devoted to the experimental part of the coaxial rotor model. In particular,
two main aspects have been analyzed: the identification of unknown coefficients for the
rotor model and the analysis of the model obtained with respect to the identification
tolerance and efficiency.

3.1. Parameter Identification

For the identification of the parameters of the model developed in Section 2, a series of
tests have been conducted using a rotor testing platform. The platform allows sending ESC
signals for both rotors simultaneously and measures various quantities, including rotor
thrust, torque, and velocities. All the tests have been conducted in the center of a large
room to avoid air vortex and with similar light and temperature conditions to minimize the
influence of environmental factors, such as humidity and air density throughout the tests.
For the tests, two rotors KDE5215XF-220 are located one in front of each other in the testbed,
as highlighted in Figure 1, and the two rotors are equipped with triple-propeller blades
18.5” × 6.3. The rotor distance in the thrust stand is set equal to the actual coaxial distance
on the testing platform (15 cm) to correlate the measurements collected from the thrust
stand with those obtained from the testing prototype, as further explained in Section 5.1.
The tests are performed by sending a PWM ramp signal on both rotors simultaneously.
To map the whole set of possible combinations of PWMs between the two rotors, for each
PWM value sent to the front rotor, a ramp (from 0% to 90% throttle) is given to the back
rotor. This gives a dataset of 121 for the identification process. The dataset is then divided
into two subsets: a training set and a test set. Specifically, 70% of the samples are allocated to
the training set, while the remaining ones are dedicated to the test set. The data division is
performed using the Holdout method to ensure a robust evaluation of the identified model.

Figure 1. Thrust testbed in a coaxial configuration.
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The collected data from experiments are then used for the estimation of unknown
coefficients of Equation (3) by applying the NL-LASSO introduced in Equation (4). The
NL-LASSO algorithm implementation was realized using the CVX optimization toolbox
with the MOSEK solver (https://cvxr.com/, accessed on 10 August 2024). The tolerance
for the thrust optimization routine has been set to εT to 2N and the tolerance for torque
optimization routine εM to 0.05 Nm to prevent overfitting. To avoid an excessive increase in
the number of estimated coefficients, the maximum exponent for both the upper and lower
rotor is constrained to two (M = N = 2). Analyzing the estimated coefficients provided in
Table 1 for the upper rotor, it becomes evident that the primary contributions to the overall
thrust and torque of the two rotors come from the square of velocities and the corresponding
linear velocity terms, while the other contributions are considered negligible.

Table 1. Values of estimated coefficients for upper and lower rotors with LASSO. All rotor velocity
values are normalized.

Lower rotor coefficients

u2
l u2

u ulu2
u u2

l uu uluu u2
u

Thrust 2.755 2.166 × 10−9 1.047 × 10−9 −2.547 −37.502
u2

l ul const
64.721 12.402 0.801

u2
l u2

u ulu2
u u2

l uu uluu u2
u

Torque 1.685 × 10−10 −9.398 × 10−12 0.307 4.991 × 10−10 −0.695
u2

l ul const
1.466 0.573 2.987 × 10−10

Upper rotor coefficients

u2
u uu const

Thrust 55.9517 22.4464 1.4629 × 10−8

Torque 1.2437 0.7155 2.1277 × 10−8

This finding is consistent with [7,35], where it has been found that a linear plus a
squared velocity provides a better fit with respect to the conventional approach [11] data for
a single rotor. This behavior appears to persist for the upper rotor in a coaxial configuration,
indicating that the presence of the lower rotor minimally influences the upper rotor. On the
other hand, observing the estimated coefficients for the lower rotor, the standard thrust
model appears not to be a good model choice for coaxial configuration. This concept is
further explored in Figure 2, which compares the rotor thrust and torque for each rotor
with its squared velocities. The plots reveal a general deviation from the linear model
for the lower rotors, with significant uncertainty observed in both thrust and torque. It is
particularly evident at low lower rotor velocities, where the flow from the upper rotors
appears to exert a significant influence on the lower rotor.
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(a) Upper rotor results.
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(b) Lower rotor results.

Figure 2. Variation of linear correlation between thrust (torque) and rotor velocities squared with
changing velocities of the opposing coaxial rotor. The grey dotted line underlines the linear trend.

https://cvxr.com/
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With the estimated quantities, an evaluation of the quality of the introduced model
has been performed. Table 2 presents the analysis of the model performance considering
some common indicators for the coaxial thrust and torque. A comparison between the
presented Coaxial Rotor Model and various models adopted in the literature is proposed,
demonstrating a significant reduction in both thrust and torque with the presented model
relative to the most commonly used models.

Table 2. Evaluation of Coaxial Rotor Model (CRM) and Relaxed Coaxial Rotor Model (R-CRM) with
respect to coaxial thrust ( fcoaxial = fu + fl) and coaxial torque (τcoaxial = τu + τl) and comparison
with different models: Single Rotor Model (SRM) [11], Constant Penalization Coaxial Model (CPCM)
from [21].

Coaxial Thrust Coaxial Torque

RMSE NRMSE R-Value RMSE NRMSE R-Value

CRM 1.1614 0.0106 0.9997 0.0241 0.0072 0.9998

R-CRM 4.2116 0.0385 0.9956 0.1016 0.0305 0.9971

SRM [11] 12.8323 0.0775 0.9718 0.2029 0.0523 0.9911

CPCM [21] 12.7638 0.0771 0.9721 0.2029 0.0523 0.9911

3.2. Tolerance Analysis

One of the main aspects of the LASSO approach for the estimation of unknown
parameters is the proper selection of tolerance values η; a too-small tolerance may lead
to overfitting problems while a too-large value may result in a bad fit of the data. Values
chosen in Section 2 represent a good compromise among the feasible solutions for the solver
because they guarantee a good fit while reducing the number of parameters initially chosen.
The validation of the developed model is further analyzed by performing the sensitivity
analysis on the estimated coefficients (Table 1) with respect to the chosen thrust and torque
tolerance. The results are presented in Figure 3.
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(a) Upper rotor thrust.
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(b) Upper rotor torque.
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(c) Lower rotor thrust.
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(d) Lower rotor torque.

Figure 3. Thrust and torque maps for upper and lower rotor velocities, comparison between data
(red) and model (yellow and blue).
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In the test, a LASSO optimization routine for the upper and the lower rotor is per-
formed with a tolerance relaxation up to 0.1 Nm for the torque and 10 N for the thrust.

The results obtained in Figure 4 provide no remarkable findings for the upper rotor.
However, for the lower rotor, a notable transition to a quadratic model is observed when
the tolerance exceeds 10 N for thrust and 0.2 Nm for torque. Under this condition, the new
model, Reduced Coaxial Rotor Model (R-CRM), still provides lower accuracy with respect
to the CRM of Section 2, but still a better one compared with the standard rotor model
(see Table 1). Overall, it has been observed that an increase in the tolerance value in the
LASSO routine results in a decrease in the model accuracy, but with a decrease in the
complexity of the model generated. On the other hand, a decrease in the LASSO tolerance
value results in an increase in the accuracy due to an increase in the complexity of the
model, as summarized in Table 3. The obtained new model, R-CRM, presents the possibility
of directly adjusting the control allocation matrix for a no-coaxial multirotor with coaxial
contribution since it only presents a quadratic relation with respect to both rotor velocities.
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-20

0

20
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(a) Thrust lower rotor.
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(b) Torque lower rotor.
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(c) Thrust upper rotor.
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(d) Torque upper rotor.
Figure 4. Variation of estimated thrust and torque parameters for upper and lower rotors with respect
to corresponding LASSO tolerance.

Table 3. Comparison of the proposed models (CRM and R-CRM) with respect to the accuracy,
LASSO tolerance, and model complexity. The arrows indicate the relative performance of each model:
↑ denotes improvement, and ↓ denotes a decrease in the respective metric.

Accuracy Tolerance Model Complexity

CRM ↑ ↓ ↑
R-CRM ↑ ↓ ↑

3.3. Efficiency

Efficiency is a crucial factor in evaluating multirotor systems, as an efficient system can
extend flight time and prevent potential motor overheating. This consideration is significant
for coaxial multirotors, where aerodynamic interactions between the rotors impact overall
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system efficiency. In this section, the efficiency of the coaxial rotor velocities generated
by the proposed model is evaluated in comparison with the standard configuration. The
motor electric efficiency ηmotor and the propeller efficiency ηpropeller for a coaxial rotor can
be defined as:

ηprop =
Tcoax

τuωu + τlωl
(5a)

ηmotor =
τuωu + τlωl
Vu Iu + Vl Il

(5b)

where Tcoax represents the total thrust of coaxial rotors, τ the rotor torque, ω the rotor
velocity, V the voltage and I the current. The overall efficiency can be defined as the
product of the mechanical and electrical efficiencies ηcoax = ηpropηmotor. As examined
in [28], the efficiency of coaxial rotors exhibits an upper bound for the whole thrust domain,
defined as η∗. However, η∗ is generally not reached by rotating the two propellers at the
same speed, which is the case when adopting a standard mixer. These observations align
with the findings illustrated in Figure 5, where the efficiency of the presented model is
evaluated. In particular, a set of coaxial thrusts is defined and applied to Equation (1a–d)
to compute motor speed and torque and thus the propeller efficiency (Figure 5a). The
efficiency is then compared with the case of equal rotor velocities of standard mixers.
The results show an average increment of ∆ηprop = 0.0274N/W in favor of the coaxial
model velocities. The electrical efficiency is then calculated by mapping upper and lower
currents to their respective rotor speed. Given motor efficiency and propeller efficiency,
the overall efficiency is found by multiplying the two. The data displayed in Figure 5b
highlight an average increment of ∆ηmotor = 0.0296N/W as well for the overall efficiency.
Overall, the results indicate that the rotor velocities generated by the presented coaxial
model exhibit better efficiency compared to the standard mixer where both rotors operate
at identical speeds.

0 20 40 60 80 100 120
0

0.05
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0.2

0.25

0.3

(a) Propeller efficiency.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

(b) Overall efficiency.
Figure 5. Coaxial rotor efficiencies for coaxial thrust: comparison between measured efficiency (blue),
efficiency computed from the coaxial model (yellow), and efficiency at equal rotor speed (orange).

4. Coaxial Control Allocation Strategies

The control allocation problem for coaxial underactuated multirotors consists of com-
puting optimal upper rotor velocities uu and lower rotor velocities ul so that the desired
forces and moments are achieved. Starting from the coaxial rotor models developed
in Section 2, two coaxial mixers are developed in this section to compute optimal rotor
velocities for coaxial multirotors.

4.1. Reduced Coaxial Mixer

In Section 3.2, it has been demonstrated that the coaxial rotor model presents quadratic
behavior in the case of tolerance relaxation. Under these conditions, from Equations (1a–d)
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and (2), rotor forces and torques for an upper rotor and its corresponding lower one can be
expressed: 

fu = p0,uu2
u

fl = p0,lu2
l + p1,lu2

u

τu = q0,uu2
u

τl = q0,lu2
l + q1,lu2

u

with p0, q0 > 0, p1, q1 < 0 (6)

From Equation (6), the static control allocation matrix for a coaxial multirotor with Q upper
rotors and S lower rotors is then defined as:

A =


p̃u1 . . . p̃uQ pl1 . . . plS

lsγu1
p̃u1 . . . lsγuQ

p̃uQ lsγu1
pl1 . . . lsγuS

plS
−lcγu1

p̃u1 . . . −lcγuQ
p̃uQ −lcγu1

pl1 . . . −lcγuS
plS

ηu1 q̃u1 . . . ηuQ q̃uQ ηu1 ql1 . . . ηuS qlS

 (7)

where l is the distance from the CoM of the platform to the rotor center, ηi is the i-th
rotor rotation (1 for clockwise rotation, −1 for counter-clockwise rotation), γi is the i-
th rotors angle with respect to xB, and ( f , τx, τy, τz) are, respectively, the overall thrust
and the torques in the body fixed frames. p̃u is defined as the difference between the
upper rotor coefficient and the coaxial penalization term in the corresponding lower rotor:
p̃ui = p0,ui + p1,lj

. For simplicity p0,l = pl , q0,l = ql . From Equation (6), the desired
velocities are obtained for the computed trust and torque. The introduction of penalization
terms p1,l , q1,l into the mixer structure, leads to a separation between upper and lower rotor
velocities in the computation process. Specifically, compared to a standard mixer, lower
rotor velocities are higher relative to their corresponding upper ones. This adjustment
results in improved overall system control, as analyzed in more detail in Section 5.3.
Applying the Moore pseudoinverse lower and upper rotor velocities can be obtained from
the desired body torques and the overall thrust.

4.2. Coaxial Mixer

Following CRM introduced in Section 2, the sum of body forces and body torques for
a coaxial multirotor with Q upper rotors and S lower rotors is defined as:

f =
i=Q

∑
i=1

fui +
i=S

∑
i=1

fli

τx =
i=Q

∑
i=1

lsγi fiu +
i=S

∑
i=1

lsγi fiu

τy = −
i=Q

∑
i=1

lcγi fiu −
i=S

∑
i=1

lcγi fil

τz =
i=Q

∑
i=1

ηiτiu +
i=S

∑
i=1

ηiτil

(8)

Equation (8) can be written in the more compact matrix form as:

µ = A
[

f
τ

]
(9)
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where A ∈ R4,2(Q+S) is the static control allocation matrix, f , τ ∈ R(Q+S) are, respectively,
the thrust and torque vector composed of the upper and lower rotor thrust and rotor
torques:

f =
[

f1u , . . . , fQu , f1l , . . . , fSl

]
(10)

τ =
[
τ1u , . . . , τQu , τ1l , . . . , τSl

]
(11)

The desired rotor thrust and torque are then computed by computing the Moore–Penrose
inverse of matrix A: [

f d

τd

]
= A+µ (12)

where A+ is the pseudoinverse of matrix A. From Equations (1a–d), (8) and (12), the relationship
between the desired forces and torque and rotor velocities is found:

f d
u

τd
u

f d
l

τd
l

 =


Γ f

u(Uu)
Γτ

u(Uu)

Γ f
l (Uu, Ul)

Γτ
l (Uu, Ul)

 (13)

where f d
u , f d

l , τd
u , τd

l are, respectively, the desired force and torque of upper and lower

rotors, Γ( f ,τ)
u ∈ RQ, Γ( f ,τ)

l ∈ RS are the vectors for each rotor in the CRM model (Section 2),
Uu ∈ RQ and Ul ∈ RS are the vectors containing the upper and lower rotor velocities. From
Equation (13), the upper rotor velocities vector is then computed by solving Q polynomial
of order N. After computing Uu, the lower part of Equation (13) becomes:

[
f d
l

τd
l

]
= Θl



φ1(ū1)
T

. . .
φi(ūi)

T

. . .
φS(ūQ̃)

T

φ1(ū1)
T

. . .
φi(ūi)

T

. . .
φS(ūQ̃)

T


(14)

where Θl ∈ RS,2×S is the diagonal matrix containing the thrust and the torque coefficient
vector for the lower rotor (Θl = diag(θ f

1l , . . . , θ
f
Sl , θτ

1l , . . . , θτ
Sl) and φi(ui) ∈ Rp,1 is the

regression matrix for the i-th lower rotor coefficient, which depends on the i-th upper
normalized rotor velocity ūi estimated from Equation (13), and Q̃, which represents the
total number of upper rotors with coaxial interaction (Q̃ < Q). In Equation (14), the lower
rotor velocities represent the unknown quantities and they can be computed by computing
the roots of Q polynomials or order M. The overall process of computing upper and lower
rotor velocities is then summarized in Algorithm 1.

Algorithm 1 Coaxial Control Allocation algorithm

1: Compute f d
i , τd

i from µ (Equation (12))
2: if motor is upper rotor then
3: Find rotor velocity by solving Equation (13) for uu,i
4: else if motor is lower rotor then
5: Find corresponding coaxial upper rotor velocity ucoax

u,i
6: Evaluate Equation (14) at ucoax

u,i and solve for ul,i
7: end if
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5. Control Allocation Experiments

The following section focuses on the evaluation of the proposed control allocation
with a coaxial multirotor in simulation and on a real platform. All comparisons have been
analyzed regarding tracking errors for position, orientation, thrust, and body torques.

5.1. Experimental Setup

A custom coaxial octarotor platform was designed (Figure 6), with a custom-made
core and equipped with eight rotors KDE5215XF-220 with propellers 18.5′′ × 6.3 in a coaxial
contra-rotating configuration. The rotors were arranged symmetrically, with equal spacing,
each positioned at a distance of l = 0.25 m from the drone’s Center of Mass, as highlighted
in Figure 6. In terms of sensor setup, it was equipped with a VectorNav VN-100 IMU Sensor
and a custom-built autopilot framework. The overall weight of the platform, with batteries,
is approximately 20 Kg. The rotor and propeller mounted are the same as the ones used in
Section 3 for the model validation.

Figure 6. Coaxial platform rotor top view highlighting rotor number, rotation sign, and body frames.
Upper rotor numbers and rotation signs are highlighted in green, while lower rotor numbers and
rotation signs are in blue.

5.2. Control Allocation Implementation

This section is devoted to the implementation of the proposed control allocation
strategies in the prototype for experiment evaluation in simulation and flight tests.

5.2.1. Reduced Coaxial Mixer

From the geometry of the platform described in Section 5.1 and Equations (6)–(9), the
allocation matrix is introduced:

A =


46.98 46.98 46.98 46.98 69.89 69.89 69.89 69.89
−8.49 8.49 8.49 −8.49 12.62 −12.62 −12.62 12.62
−8.49 −8.49 8.49 8.49 −12.62 −12.62 12.62 12.62
−2.44 2.44 −2.44 2.44 −2.00 2.00 −2.00 2.00

 (15)

where the thrust and torque coefficient for upper rotors are equal to p0,u = 77.65 and q0,u = 1.93,
respectively, while lower rotor thrust and torque coefficients are p0,l = 69.89 and q0,l = 2.0,
respectively. Aerodynamic interaction components are equal to p1,l = −30.7 for lower thrust
and q1,l = −0.5 for lower torque. The coefficient values adopted in Equation (15) correspond
to those identified through the methodology described in Section 3 utilizing LASSO constraint
relations, as detailed in Section 3.2. From Equation (15), the normalized rotor velocity vector u
is computed via the Moore–Penrose inverse method u = A+µ with A+ the Moore–Penrose
inverse matrix of A, and µ = ( f , τx, τy, τz)T the desired forces and momentum vector.
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5.2.2. Coaxial Mixer

Given the geometry of the platform detailed in Section 5.1, the coaxial mixer of the
Equation (9) matrix becomes:

A =


1 1 1 1 1 1 1 1 01,8

−0.18 0.18 0.18 −0.18 0.18 −0.18 −0.18 0.18 01,8
−0.18 −0.18 0.18 0.18 −0.18 −0.18 0.18 0.18 01,8

01,8 −1 1 −1 1 −1 1 −1 1

 (16)

where A ∈ R4,16 is the control allocation matrix. Following the algorithm proposed in
Section 4.2, the desired rotor forces and torques are then computed from the Moore–Penrose
inverse matrix, as specified in Equation (12). Therefore the relationship between desired
forces, torque and rotor velocities for i-th upper rotor and the corresponding j-th lower
rotor defined in Equation (13) becomes:

f d
i

τd
i

f d
j

τd
j

 =


55.9517u2

i + 22.4464ui
1.2437u2

i + 0.7155ui
(2.755u2

i + 64.721)u2
j + (12.402 − 2.547ui)uj + (0.801 − 37.502u2

i )

(0.307ui + 1.466)u2
j + 0.573uj − 0.695u2

i

 (17)

where the values correspond to the ones identified in Section 3, in particular the ones
provided in Table 1, omitting components whose values can be considered negligible. From
Equation (16) optimal rotor velocities can be determined using the procedure outlined in
Algorithm 1.

5.2.3. Standard Mixer

For comparison purposes, a standard mixer has been implemented, based on the
platform’s geometry. The mixer design follows the approach introduced in [11]. The rotor
thrust and torque constants are identified using the rotor testing platform depicted in
Figure 1, with the lower rotor removed during the experiments. The identification process
relies on the least squares method for the estimation for both the thrust and rotor constants.
The resulting identified rotor thrust and torque values are 73.06 N and 1.9 Nm, respectively.
Consequently, the standard mixer matrix is derived as follows:.

A =


73.06 73.06 73.06 73.06 73.06 73.06 73.06 73.06
−13.20 13.20 13.20 −13.20 13.20 −13.20 −13.20 13.20
−13.20 −13.20 13.20 13.20 −13.20 −13.20 13.20 13.20
−0.026 0.026 −0.026 0.026 −0.026 0.026 −0.026 0.026

 (18)

From Equation (18), the normalized rotor velocities vector is found via the Moore–Penrose
inverse method.

5.3. Software-In-The-Loop

Before testing on the real platform, a simulator was designed to evaluate the proposed
mixers on coaxial platforms. The simulator was developed from [36], with the integration
of the coaxial aerodynamic interference (developed in Section 2.1) into the rotor model.
To test the simulator with the proposed approaches, the coaxial platform described in
Section 5.1 equipped with rotors from Section 3 was integrated into the simulator. As
a result, the simulator incorporates the coaxial rotor model of Section 2, developed as
a Gazebo Plugin and the coaxial mixers developed in Section 4. An IMU sensor and an
odometry sensor have been integrated as well as the flight controller proposed in [37]. In
order to evaluate the performance of the proposed approach comprehensively, three tests
are developed: one employing a standard mixer, one mixer integrating the coaxial rotor
model (Algorithm 1), and another one adopting a mixer designed with the reduced coaxial
rotor model (Equation (7)). A circular reference has been generated for the three tests, with
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a circular trajectory of radius 2 m and a sinusoidal signal for attitude values around 4.5 m
after initially hovering at 3 m. All tests were executed utilizing identical controllers and
providing the same trajectory to the platform; the only difference is represented by the
adopted mixer among the three tests. Data from each experiment were collected through
rosbags, including odometry and IMU sensor data, trajectory reference, thrust and torque
generated, and rotor speed computed by the chosen mixer. Figure 7 illustrates data from the
three experiments. In particular, Figure 7g demonstrates the circular trajectory and the 3D
position of the drone for the three tests. The results indicate good tracking performance in
the XY plane, as detailed in Figure 7f,e. However, there is a noticeable difference in altitude
tracking across the three tests. This discrepancy is more pronounced when observing the
attitude tracking error in Figure 7d, in particular with respect to the hovering thrust. This
aspect is further evaluated in Table 4 where the average error of pose and control allocation
with the different mixers is reported for the tests. The control allocation error mentioned
in Table 4 refers to the error between the desired thrust f d and torque τd and the real
ones ( f , τ):

eca
f = f d − f , eca

τ = τd − τ (19)

Comparing the error in the XY plane in Table 4, the Reduced-Coaxial Mixer results in
marginally better performance with respect to the other methods for XY position tracking.
Although a noticeable improvement is detected in thrust error, where the test with the
Coaxial Mixer (Figure 7i) achieved an allocation error of 0.58 N, the Standard Mixer test
shows the worst performance among all mixers with an average of almost 5 N, as also
shown in Figure 7i,j. The motivation can be found by comparing the standard rotor model
with the model presented in Equation (6). In the latter, the thrust component associated
with the upper rotor velocities penalizes the overall thrust of the back rotor. As a result, the
control system is unable to maintain a hovering position at 3m during the test, as shown in
Figure 7, at approximately 20–25 s. As a consequence, the Coaxial Mixer outperforms the
Standard Mixer and Reduced-Coaxial Mixer in terms of attitude tracking for the given tests
Reduced-Coaxial Mixer appears to be a good compromise between the two.

Table 4. Tracking error and control allocation error in simulation tests using the Coaxial Mixer,
Standard Mixer, and Reduced-Coaxial Mixer (R-Coaxial Mixer).

Errors
Control Allocation Method

Coaxial Mixer (Section 4.2) Standard Mixer [5] R-Coaxial Mixer (Section 4.1)

epx [m] 0.3653 0.3656 0.3652
epy [m] 0.3662 0.3661 0.3659
epz [m] 0.0698 0.6373 0.3335
eca

τx
[Nm] 0.10785 0.10451 0.10624

eca
τy

[Nm] 0.08570 0.08423 0.0850
eca

τz
[Nm] 0.4667 0.00105 0.00108

eca
f [N] 0.58 4.78 2.75

Further, the behavior of the three mixers for attitude tracking has been analyzed. Yaw
error is consistent for the three tests, as illustrated in Figure 7h, although comparing the
yaw momentum error in Table 4, Coaxial mixer performs worse with respect to the other two.
This can be explained by the fact that the Coaxial Mixer computes lower rotor velocities,
prioritizing rotor thrust tracking with respect to rotor torques, while the Reduced-Coaxial
Mixer achieves a balance between thrust and torque tracking.

For roll and pitch behavior, the momentum error is analyzed in Table 5: the perfor-
mance is similar among all the tests.

Overall, the introduced mixers demonstrate the capability to differentiate lower rotor
velocities relative to upper rotor velocities (as illustrated in Figure 7a,b), which enables the
compensation of thrust and torque loss in lower rotors from the aerodynamic interaction
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with upper rotors; in contrast, a state-of-the-art mixer is not capable of differentiating
between upper and lower velocities. As a consequence, the two presented mixers gener-
ally improve the altitude and attitude tracking of the control system without penalizing
its stability.
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Figure 7. Simulation flight test with Coaxial Mixer (coax), Reduce-Coaxial Mixer (r-coax), and with
Standard Mixer (std).

5.4. Flight Test

Indoor flight tests have been conducted for the Standard Mixer and Reduced-Coaxial
mixer, which overall appears to decrease allocation error in terms of thrust and torque.
Further, due to its structure, it can be easily integrated into a standard mixer structure
and it presents low computation consumption with respect to the Coaxial Mixer. Both tests
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were conducted utilizing the platform of Section 5.1 equipped with the same propellers
and motors from Section 3, and the same controller structure and parameters for the two
tests (Figure 8). The only variable was the type of mixer. The experiments consisted of two
manual flights; in each one, the pilot hovers over the platform to a prescribed altitude and
maneuvers it in roll pitch and yaw rate. The results of the experiments are presented in
Table 5 and Figure 9.

Figure 8. Coaxial platform during indoor tests.

Table 5. The table presents the average errors between desired and estimated moments (roll, pitch,
yaw) and thrust for both Coaxial and Standard Mixer configurations. The estimated values are
derived by applying rotor speeds to the coaxial model outlined in Section 2.

Error Comparison Desired and Estimated Moments and Thrust.

Coaxial Mixer (Section 4.2) Standard Mixer [5]
eca

τxyz
[Nm] 0.019633, 0.009605, 0.110167 0.141473, 0.076642, 0.3597

eca
f [N] 11.017573 24.684715

In particular, Table 5 provides the control allocation errors, while Figure 9 illustrates
the behavior of the platform during the two tests. The main difference between the
two tests is the differentiation of upper and lower rotor velocities in the coaxial mixer,
which does not exist in the normal mixer. This differentiation between upper and lower
velocities, as a consequence, improves the distribution of forces across the eight rotors,
as illustrated in Figure 9e,j, and when the platform hovers for 50, 75, 100 seconds, the
Reduced-Coaxial Mixer distributes thrust more evenly. In contrast, for tests performed with
the Standard Mixer, there are observable differences between the upper rotor thrust and
the respective lower rotor thrust throughout the entire test, regardless of yaw behavior, as
shown in Figure 9j. Consequently, better tracking of the desired thrust torque is achieved
in the coaxial test, as evidenced in Table 5, where the Standard Mixer achieves an average
thrust error of approximately 11.01 N and the coaxial test reaches an average error 24.7N
approximately, which seems reasonable with respect to the value found in the experiments
in Section 5.3, with a small difference that is due to model error and real flight condition.
Regardless of the mixer adopted in the test, in both flights, the platform reaches stable flight
conditions in altitude and attitude mode, as shown by the comparison between the reference
and the measured roll rate and pitch rate for coaxial and standard tests (respectively,
Figure 9b,g). On the other hand, yaw behavior tracking appears to perform with worse
tracking performance regardless of the mixer adopted (Figure 9c,h). In particular, it is
possible to notice how rotors spinning counterclockwise (rotors 1, 3, 5, and 7) exhibit a
higher rotational speed compared to the clockwise-spinning rotors for a standard mixer test
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(Figure 9i) and coaxial mixer test (Figure 9d). This is due to the big inertia of the platform
due to its size and mass distribution, which makes the control of yaw difficult and requires
the pilot to constantly adjust it.
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Figure 9. Flight test data with standard mixer and coaxial mixer: body rate tracking, desired thrust,
desired normalized rotor speed, and estimated rotor thrust.

6. Conclusions

This study introduces two novel mixers for coaxial multirotor systems, which offer a
significant advancement over the conventional mixer strategy by explicitly incorporating
the aerodynamic interactions between coaxial rotors. Key findings include:

• Incorporating aerodynamic interactions into lower rotor models results in a reduction
of both thrust and torque errors compared to standard models, with a decrease in
thrust error of approximately 12 N and a reduction in total torque error of about
0.043 Nm.

• Adoption of a LASSO-based technique as the identification method for model pa-
rameters prevents model overfitting and decreases initial model complexity, thereby
improving computational efficiency, with the price of lower accuracy, but still a better
one with respect to state-of-the-art solutions. Relaxation of LASSO tolerance results in
a further reduction in model complexity, resulting in a quadratic model.
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• Two coaxial mixer strategies were implemented based on coaxial rotor models: Coaxial
Mixer and Reduced-Coaxial Mixer. The Coaxial Mixer utilizes the pseudo-inversion of
a static control allocation matrix, while for Reduced-Coaxial Mixer rotor velocities are
derived from the solution of second-order equations. Both mixers improve thrust track-
ing accuracy and rotor efficiency compared to standard mixer solutions. Specifically:

– Coaxial Mixer generates the minimum thrust and position errors but results in
increased attitude error compared to the Reduced-Coaxial Mixer.

– Reduced-Coaxial Mixer achieves better attitude and torque tracking but larger
thrust and position errors with respect to the previous one.

Furthermore, the presented works introduce an approach to model coaxial aerodynamic
interaction in the rotor model and integrate them in coaxial mixing strategies. Proposed
models and mixing strategies have been tested in a real prototype and in simulation.
Future work will involve testing the model with various propeller types and coaxial
distances, as well as exploring its applicability to multirotors with partial rotor overlap.
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