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Abstract: Actuator faults and external disturbances, which are inevitable due to material fatigue,
operational wear and tear, and unforeseen environmental impacts, cause significant threats to the
control reliability and performance of networked systems. Therefore, this paper primarily focuses on
the distributed adaptive bipartite consensus tracking control problem of networked Euler–Lagrange
systems (ELSs) subject to actuator faults and external disturbances. A robust distributed control
scheme is developed by combining the adaptive distributed observer and neural-network-based
tracking controller. On the one hand, a new positive definite diagonal matrix associated with an
asymmetric Laplacian matrix is constructed in the distributed observer, which can be used to estimate
the leader’s information. On the other hand, neural networks are adopted to approximate the
lumped uncertainties composed of unknown matrices and external disturbances in the follower
model. The adaptive update laws are designed for the unknown parameters in neural networks
and the actuator fault factors to ensure the boundedness of estimation errors. Finally, the proposed
control scheme’s effectiveness is validated through numerical simulations using two types of typical
ELS models: two-link robot manipulators and quadrotor drones. The simulation results demonstrate
the robustness and reliability of the proposed control approach in the presence of actuator faults and
external disturbances.

Keywords: bipartite consensus tracking; uncertain Euler–Lagrange systems; robust control; neural
networks; distributed observer; quadrotor drone groups

1. Introduction

The cooperative control of multi-agent systems (MASs) has a broad range of potential
applications in a variety of areas, including intelligent transportation [1], drone swarms [2],
and aerospace [3]. Distributed consensus control is a fundamental issue in the study of
cooperative control. Its objective is to enable all agents to reach a consensus on their
states or outputs without the need for central coordination [4]. Early research focused
on distributed leaderless consensus, where agents only rely on their information and
that of their neighbors to make decisions, ultimately achieving consensus on the states
of all agents [5]. To enable MASs to follow a desired trajectory, the consensus tracking
problem emerged [6]. To address the consensus tracking problem, researchers introduced
the concept of the leader, allowing followers to move according to the leader’s trajectory.

In practical applications, the system inevitably encounters external environmental
disturbances and system modeling uncertainties, so ensuring its reliability and robustness is
particularly important when studying the consensus tracking control problem of MASs. For
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example, an adaptive low-gain feedback method was proposed in [7] to deal with the semi-
global robust tracking consensus problem for uncertain MASs with input saturation. A new
distributed adaptive control protocol based on the back-stepping method was proposed
in [8] to achieve the asymptotic consensus tracking control of nonlinear high-order MAS
affected by mismatched unknown parameters and uncertain external disturbances. The
authors of [9] first proposed a new adaptive bounded consensus tracking control scheme
for a class of uncertain nonlinear MASs. Furthermore, MASs always suffer from actuator
faults, which will significantly deteriorate the controller’s performance and may even lead
to system divergence without some effective countermeasures. Therefore, it is necessary
to study fault-tolerant control techniques. In [10], the authors present a solution to the
robust consensus tracking control problem for MASs with actuator faults and external
disturbances. Their approach integrates neural networks and techniques for estimating
uncertainty and disturbances. Moreover, the authors of [11] developed a neural-network-
based adaptive consensus scheme to address the consensus problem for nonlinear MASs
with actuator failure faults and bias faults. In [12], the authors investigated the distributed
tracking control problem for general linear MASs with two types of actuator faults: additive
and multiplicative.

Most studies in the field of consensus tracking control have focused exclusively on
idealized leaders, which assume the dynamic information of the leaders is accurate and
known. However, in reality, due to the complexity of the environment, the leader’s dy-
namics are often subject to various uncertainties, such as parameter uncertainties, random
disturbances, and external influences. Therefore, searching for methods to suppress the
effects of uncertainties in leader systems has become a vital issue in the research area.
In [13], the authors studied how to achieve robust tracking consensus of MASs with uncer-
tain leaders within a finite time and designed a continuous nonlinear distributed tracking
protocol based on relative position information. The authors of [14] studied the tracking
consensus problem for higher-order heterogeneous nonlinear MASs under directed signed
graphs, where the leader’s nonlinear dynamics were unknown. In [15], the authors solved
the general nonlinear consensus tracking problem of networked systems with an uncertain
leader and imperfect tracking paths. Currently, the majority of research conducted within
the field of distributed control has concentrated on the analysis of linear systems exhibiting
either first-order or second-order dynamics. However, the real world contains many non-
linear physical models, which can often be described by Euler–Lagrange equations, such
as robotic manipulators [16], fully actuated marine vehicles [17], and spacecraft [18]. An
adaptive distributed control strategy was proposed in [19] that enables multiple uncertain
ELSs to achieve consensus in the presence of an unknown dynamic leader. The authors
studied the finite-time control problem for MASs with uncertain Euler–Lagrange dynamics
and a dynamic leader under a directed communication network in [20]. A distributed
continuous estimator and an adaptive control law were proposed in [21] to estimate the
uncertainties and solve the distributed consensus tracking problem for networked ELSs.

The research in the above literature primarily focuses on multi-agent ELSs under
undirected graph topologies. However, the single-way communication described by di-
rected graph topologies can save communication resources compared to the bidirectional
communication described by undirected graph topologies. As shown in [22], the both-way
communication mode between agents under undirected graphs imposes high demands
on the bandwidth resources of networked systems. Therefore, the research on multi-agent
networked systems under directed graphs is of excellent research significance and value.
For instance, Bin et al. [23] proposed a distributed continuous algorithm to achieve con-
sensus tracking of ELSs on directed graphs, simultaneously avoiding the chattering effect.
An adaptive consensus control design method was proposed in [24] based on the inverse
optimal H∞ control criterion for networked ELSs composed of fully actuated mobile robots
under the directed graph. In addition, early research mainly focused on the cooperative in-
teraction relationships between agents. However, the competitive interaction relationships
between agents are also meaningful in the research on consensus tracking of networked
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systems. For example, individuals in a biological community may acquire limited resources
through cooperation or competition to maintain their survival. Therefore, it is necessary
and meaningful to consider the coexistence of cooperative and competitive relationships
between agents in research. An adaptive protocol based on disturbance compensation tech-
niques under an event-triggered control framework is proposed in [25] to solve the bipartite
consensus tracking problem for networked ELSs. An adaptive distributed observer method
is proposed in [26] based on networked ELSs, which can achieve leader–follower bipartite
consensus under system uncertainties and deception attacks. In [27], the author studied
the bipartite consensus control issue for networked ELSs under directed topologies with
positive and negative interaction weights and proposed an adaptive bipartite consensus
controller for systems with uncertain parameters.

Motivated by the considerations outlined above, this paper explores the adaptive
bipartite consensus tracking control for uncertain Euler–Lagrange systems (ELSs) with
actuator faults within directed graph structures. The leader agent’s state matrix is character-
ized by unknown parameters, and its output matrix is unknown to the follower agents. An
innovative control strategy is introduced in this paper, integrating a distributed observer
with a neural-network-enhanced robust tracking controller. The principal contributions of
this work are delineated as follows:

(1) This paper examines networked ELSs subject to lumped uncertainties, which en-
compass unknown system matrices, external disturbances, and actuator faults. A
neural-network-based adaptive estimator is proposed to offer feedforward compen-
sation for these uncertainties. Furthermore, adaptive updating laws are formulated
to guarantee that the estimation errors associated with the lumped uncertainties and
actuator faults are bounded, thereby tackling the robust tracking control challenge.
In contrast to existing control strategies tailored for ideal systems [11–13,15,24], the
most significant novelty of this work is the enhanced robustness of unknown systems,
enabling the control scheme to be applicable across a range of tasks, including the
cooperative control of ELSs in dynamic and complex environments.

(2) This paper addresses the issue of uncertainties in leader agents, where their higher-
order dynamic information is globally unknown. To tackle this challenge, an adaptive
distributed observer is utilized to estimate the states, state matrix unknown param-
eters, and output matrix of the leader agent. The convergence of the observer’s
estimates is rigorously proven through Lyapunov function analysis. This approach
diverges from related works that presuppose the availability of the leader’s complete
dynamic information to the follower agents, such as the state matrix or output ma-
trix [7,11,23,28]. The proposed control scheme’s adaptability enhances its applicability
to a wider array of consensus-tracking control tasks, including trajectory tracking in
intricate marine environments.

(3) This paper introduces a novel positive definite diagonal matrix to facilitate the con-
struction of a distributed observer. This innovative design effectively addresses the
challenge of asymmetric Laplacian matrices inherent in directed graphs, thereby offer-
ing a viable solution for bipartite consensus tracking control of ELSs under general
directed graph conditions. In contrast to existing control schemes confined to undi-
rected graph scenarios [4,9,14,15,21], the controller proposed herein demonstrates a
capacity to conserve communication resources.

The content of this paper is organized as follows: Section 2 provides an overview of
the foundational work and the essential mathematical preliminaries. Section 3 elaborates on
the design of the proposed control scheme and substantiates the system’s stability through
rigorous analysis. Section 4 showcases the results of simulation experiments that validate
the theoretical findings. In conclusion, Section 5 encapsulates the findings and presents the
conclusions drawn from this research.

Notations: In is an identity matrix with the dimension n × n. ⊗ stands for the

Kronecker product. diagn
i [si]

∆
= diag{s1, · · · , sn} defines a diagonal matrix, where si is
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the ith diagonal element or block. coln
i [υi]

∆
= [υT

1 , · · · , υT
n ]

T creates a column vector. 0m×n

represents a zero matrix with dimension m × n. 1N
∆
= [1, · · · , 1]T ∈ ℜN . For matrix

K = [k1, k2, . . . , kn] ∈ ℜm×n with column vectors ki ∈ ℜm , Col(K) ∆
= coln

i (ki) ∈ ℜmn is a
compound column vector where the columns ki of K are serially arranged in one column.
sgn(·) ∈ {+1,−1, 0} denotes the sign function.

2. Preliminaries and Problem Formulation
2.1. Graph Theory

This paper considers a network of agents consisting of one leader and N followers.
The leader is denoted as agent 0, and the followers are denoted as agents 1 to N. The
interactions among the N agents are represented by a directed graph G = (V , E ,A),
where V = v1, · · · , vN is the set of nodes, E = (vi, vj) ⊂ V × V is the set of edges, and
A = [aij]N×N is the adjacency matrix. If agent i can access the information of agent j, then
aij ̸= 0; otherwise, aij = 0. aij > 0 and aij < 0, respectively, represent the cooperative
and competitive relationships between agents i and j. If aij ̸= aji, the graph is directed;
otherwise, it is undirected. The Laplacian matrix is defined as L = D − A, where

D = diagN
i [ζi], with ζi =

N
∑

j=1

∣∣aij
∣∣. The in-degree matrix D is a diagonal matrix, and for

a directed graph, the diagonal elements of the in-degree matrix ζi are the sums of the
corresponding row in the adjacency matrix. An additional leader agent is introduced, with
the node set V0 = v0, and the overall node set is V̄ = V ∪ V0.

For a structurally balanced signed graph V̄ , the node set can be divided into two
mutually exclusive subsets V̄1 and V̄2. The signature matrix ∆ is defined as ∆ = diagn

i [di],
where, if V0 ∈ V̄q, then ∀vi ∈ V̄q, di = 1, indicating a cooperative relationship between
the followers and the leader; otherwise, di = −1, indicating an antagonistic relationship.
B = diagN

i [bi], where if the i-th agent is aware of the leader’s information, then bi > 0;
otherwise, bi = 0. The extended Laplacian matrix is L̄ = L + B, which describes the
communication topology between the leader and the followers.

2.2. RBF Neural Network

Radial basis function (RBF) neural networks adjust centers and widths to approxi-
mate unknown functions. Figure 1 depicts a typical structure of neural networks, clearly
illustrating the weighted process from input to output.

1z
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2( )T

3( )T

( )T
n
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Figure 1. RBF neural network structure diagram [29].

Neural networks often utilize Gaussian functions as their basis functions, which take

the form ϕij(z) = exp(−∥z−cij∥2

δ2
ij

), where z represents the input vector, while σ and c are the
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width and center parameters of the Gaussian function, respectively. This approach enables
the approximation of continuous functions with arbitrary precision over compact sets. The
neural network’s output is represented by y = ϕT(z)ω. Crucially, neural networks possess
innate function approximation capabilities that are unaffected by the inherent properties of
the system being modeled. By employing a sufficient number of Gaussian functions, this
neural network architecture can approximate continuous functions to an arbitrary degree
of accuracy within compact domains. When designing controllers for systems with model
uncertainties or disturbances, leveraging neural networks for estimation can enhance the
overall robustness of the control system.

The following Table 1 lists some important parameters and their meanings in this article.

Table 1. Parameters and their meanings.

Symbol Meaning

q leader’s state
y leader’s output

Q(w) the leader’s state matrix
w an unknown parameter vector
E the leader’s output matrix

qi, q̇i, q̈i the generalized coordinate, velocity, and acceleration
Mi(qi) the inertia matrix

Ci(qi, q̇i) the Coriolis and centrifugal terms
Gi(qi) the vector of gravitational force

ui the control input
fi(qi, q̇i, q̈i) the unknown external disturbance

piui the actuator fault
q̂i the estimations of q
ŷi the estimations of y
ŵi the estimations of w
Êi the estimations of E
ζi the column vector of output matrix observation errors
p̂i the estimation of p∗i = 1/pi

e1i, e2i the tracking error vectors
χ = [ϕ, θ, ψ]T the attitude vector of the quadrotor rigid body

q̃ the estimation errors of q
w̃ the estimation errors of w

2.3. Problem Description

Considering a networked agent system composed of one leader and N followers. The
following linear system models the leader.

q̇ = Q(w)q,

y = Eq,
(1)

where q ∈ ℜm and y ∈ ℜn denote the leader’s state and output. Q(w) represents the state
matrix, where w ∈ ℜl is an unknown parameter vector. Moreover, E ∈ ℜn×m denotes the
output matrix, which is unknown to any follower.

The following Euler–Lagrange equation is utilized to describe the dynamics of the
ith follower.

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + Gi(qi) = piui + fi(qi, q̇i, q̈i), i = 1, 2, . . . N, (2)

where qi, q̇i, q̈i ∈ ℜn are the generalized coordinate, velocity, and acceleration, respectively.
Mi(qi) ∈ ℜn×n is the inertia matrix, Ci(qi, q̇i) ∈ ℜn×n represents the Coriolis and centrifugal
terms, Gi(qi) ∈ ℜn is the vector of gravitational force, ui ∈ ℜn is the control input, and
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fi(qi, q̇i, q̈i) ∈ ℜn represents the unknown external disturbance. pi is an unknown constant.
And piui represents the actuator fault. In this paper, it is assumed that Mi(qi), Ci(qi, q̇i),
and Gi(qi) are unknown to any follower.

The dynamics (2) exhibit the following two properties [30].

Property 1. Mi(qi) is symmetric and positive definite.

Property 2. Ṁi(qi)− 2Ci(qi, q̇i) is skew-symmetric, i.e., for all x ∈ ℜn, it yields xT [Ṁi(qi)−
2Ci(qi, q̇i)]x = 0.

To realize the bipartite consensus tracking, it is necessary to give the following
assumptions.

Assumption 1. A connected, structure-balanced, and directed graph can be used to model the
communication topology of the networked MASs. In addition, it also ensures that at least one
follower will be informed about the information given by the leader.

Assumption 2. The eigenvalues of Q(w) are all simple with zero real components.

Under Assumption 2, it is assumed that

Q(w) = diagl
i [wi]⊗ v, (3)

where v =

[
0 1
−1 0

]
. It can be obtained that Q(w) is a skew-symmetric matrix.

Remark 1. Assumption 2 is rather standard in the literature on consensus tracking of networked
systems [31,32]. Under Assumption 2, the leader agent (1) can generate a set of signals commonly
seen in the industry, known as “multitone sinusoidal signals” with varying frequencies, amplitudes,
and initial phases, which align more closely with real-world scenarios [33,34]. The application
scenario of the control scheme in this paper is the signal tracking of Euler–Lagrange systems in
complex sea conditions. Hence, the control objective of this paper is to make the follower ’s state qi
and the leader ’s output y tend to be consistent.

Lemma 1 ([35]). For any α ∈ ℜl and δ, ϖ ∈ ℜ2l , we define

φ(ϖ) =

 −ϖ2 ϖ1 · · · 0
...

. . . . . .
...

0 · · · −ϖ2l ϖ2l−1

,

and then the following equation holds:

φ(ϖ)δ = −φ(δ)ϖ,
Q(α)ϖ = −φT(ϖ)α,

where Q(α) = diagl
i [αi]⊗ v, v =

[
0 1
−1 0

]
, and α = coll

i [αi], ϖ = col2l
i [αi], δ = col2l

i [δi].

Lemma 2 ([22]). Under Assumption 1, there exists a positive diagonal matrix W ∈ ℜN×N such
that WL̄ can be diagonalized and possesses eigenvalues that are both real and positive. Moreover,
there exists a symmetric positive definite matrix O ∈ ℜN×N such that

J = OWL̄, T = JWL̄ + L̄TW J (4)

are symmetric positive definite.
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Remark 2. The analysis of networked systems on undirected graphs hinges upon the symmetry
exhibited by specific matrices, such as the Laplacian matrix, which reflects the symmetric topology
characterizing undirected graphs. However, the asymmetry of the Laplacian matrix presents a
primary challenge when analyzing networked systems on directed graphs. Lemma 2 presents a
method for constructing two symmetric matrices, J and O, derived from the asymmetric matrix L̄.
By employing these two symmetric matrices in the formulation of Lyapunov equations, it becomes
feasible to extend the control scheme from undirected graphs to encompass directed graphs.

Definition 1. Consider the leader–follower systems (1) and (2). If the equation

lim
t→∞

(qi(t)− diy(t)) = 0, i = 1, . . . N,

holds, then the leader–follower MASs (1) and (2) will achieve the bipartite consensus tracking.

3. Neural-Network-Based Control Scheme Design and Analysis

The control scheme comprises a distributed observer and a neural-network-based
robust controller. The design and analysis details of the aforementioned two parts are
as follows.

3.1. Distributed Observer Design and Stability Analysis

In this part, we will design a distributed observer to estimate the leader’s dynamic
information.

Firstly, we define the observation error vectors as

eqi =
N

∑
j=1

∣∣aij
∣∣(q̂j − sgn(aij)q̂i) + bi(q − q̂i),

eyi =
N

∑
j=1

∣∣aij
∣∣(ŷj − sgn(aij)ŷi) + bi(y − ŷi),

(5)

where q̂i and ŷi represent the estimations of q and y.
Then, the distributed observer is constructed in the following way:

˙̂qi = H(ŵi)q̂i + ρ1ηieqi ,
˙̂wi = ρ2ηi φ(eqi )q̂i,
˙̂Ei = ηieyi q̂T

i ,
(6)

where ŵi and Êi represent the estimations of w and E. Parameters ρ1, ρ2 and ηi will be
specified later. And ŷi = Êi q̂i.

Remark 3. As shown in (6), the distributed observer proposed in this paper estimates the leader’s
state q, the unknown parameter w, and the output matrix E, respectively, where w and E are
globally unknown. Compared with the works of [28,36–44], which assume that some of the leader’s
dynamic information, such as the state matrix or the output matrix, is accessible to uninformed
agents, observer (6) is more consistent with the characteristics of distributed networked systems and
can be applied to tracking scenarios with complex leader dynamics, such as rotating machinery tasks
and operations in complex sea conditions.

We define the estimation errors as q̃i = q̂i − diq, w̃ = ŵi − w, and Ẽi = Êi − E. The
objective of designing the observer (6) is to make the following equations hold:

lim
t→∞

q̃i(t) = 0,

lim
t→∞

w̃i(t) = 0,

lim
t→∞

Ẽi(t) = 0.
(7)
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Let W = diagN
i [ηi], eq = colN

i [eqi ], q̄ = 1N ⊗ q, w̄ = 1N ⊗ w, ŵ = colN
i [ŵi], and

q̂ = colN
i [q̂i]. Then, we can obtain the result that

˙̂q = Q̄(ŵ)q̂ + ρ1(W ⊗ Im)eq,
˙̂w = ρ2 φ̄(eq)(W ⊗ Im)q̂,

eq = −(L̄ ⊗ Im)(q̂ − q̄),

(8)

where
φ̄(eq) = diagN

i [φ(eqi)],
Q̄(ŵ) = diagN

i [Q(ŵi)].

Then, it yields
˙̂q = Q̄(ŵ)q̂−ρ1(WL̄ ⊗ Im)(q̂ − q̄),
˙̂w = ρ2 φ̄(eq)(W ⊗ Im)q̂.

(9)

Remark 4. To solve the asymmetric issue of L̄, we introduce the positive definite diagonal matrix
W in (6), which is constructed in Lemma 2. We utilize two symmetric positive definite matrices J
and O to design the Lyapunov Equation (16), thus extending the control scheme from undirected
topologies to generally directed topologies.

We define q̃ = colN
i [q̃i] and w̃ = colN

i [w̃i]. It can be obtained that

˙̃q = (IN ⊗ Q(w)− ρ1WL̄ ⊗ Im)q̃ + H̄(w̃)q̂,
˙̃w = ρ2 φ̄(eq)(W ⊗ Im)q̂.

(10)

According to Lemma 1, we have

˙̃q = (IN ⊗ Q(w)− ρ1WL̄ ⊗ Im)q̃ − φ̄T(q̂)w̃,
˙̃w = ρ2 φ̄(q̂)(WL̄ ⊗ Im)q̃,

(11)

where φ̄(q̂) = diagN
i [φ(q̂i)]. By derivation of Ẽ, we can obtain the result that

˙̃Ei = ηi

N

∑
j=0

aij(Ẽj − Ẽi)qqT + χi(t), (12)

where χi(t) = ηi
N
∑

j=0
aij((Ẽj − Ẽi)qq̃T

i ) + ηiEeqi q̂
T
i + ηi

N
∑

j=0
aij(Ẽj q̃j q̂T

i − Ẽi q̃i q̂T
i ).

Define the column vector of output matrix observation errors ςi = Col[Ẽi], ς0 = Col[E]
and ξi = Col[χi(t)]; then Equation (11) turns to

ς̇i = (qqT ⊗ In)ηi

N

∑
j=0

aij(ς j − ςi) + ξi, (13)

where ξi(t) = ηi
N
∑

j=0
aij[(q̃iqT ⊗ In)(ς j − ςi)) + (q̂i q̃T

j ⊗ In)ς j − (q̂i q̃T
i ⊗ Im)ς j] + ηi(q̂ieT

qi ⊗

In)ς0. Define ς = colN
i [ςi] and ξ = colN

i [ξi], which yields

ς̇ = −(IN ⊗ (qqT ⊗ In))(WL̄ ⊗ Inm)ς + ξ = −(WL̄ ⊗ (qqT ⊗ In))ς + ξ. (14)

Based on the above derivation using coordinate transformation, the objective of Section 3.2
is to investigate the stability of the systems (11) and (14) to demonstrate the convergence of
the observer (6).

In this part, we will investigate the stability of the systems (11) and (14).
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Theorem 1. Consider systems (1) and (6). Define two compact sets Υ0 ⊂ ℜm and Υ1 ⊂ ℜl with
0 ∈ Υ0, 0 ∈ Υ1. Under Assumptions 1 and 2, for any ŵi(0) ∈ Υ0, w ∈ Υ0, q̂i(0) ∈ Υ1, q(0) ∈ Υ1,
ρ2 > 0, then it yields that

lim
t→∞

q̃(t) = 0,

lim
t→∞

w̃(t) = 0.
(15)

Proof. The Lyapunov function is employed as

V = q̃T(J ⊗ Im)q̃ + ρ−1
2 w̃T(O ⊗ Il)w̃, (16)

where J ∈ ℜN×N and O ∈ ℜN×N are mentioned in Lemma 2. q̃ values represent the
estimation errors of q. w̃values represent the estimation errors of w. Im and Il represent
identity matrixes. ρ2 represents a constant. Then, it yields

V̇ =2q̃T(J ⊗ Q(w))q̃ − ρ1q̃T((JWL̄ + L̄TW J)⊗ Im)q̃ − 2q̃T(J ⊗ Im)φ̄T(q̃)w̃−
2q̃T(J ⊗ Im)φ̄T(q̄)w̃ + 2ρ−1

2 w̃T(O ⊗ Il) ˙̃w.
(17)

Given the skew-symmetric property of Q(w) and the symmetry of J, it follows that J ⊗Q(w)
is also skew-symmetric. Subsequently, we have

V̇ = −ρ1q̃T(T ⊗ Im)q̃ − 2q̃T(J ⊗ Im))φ̄T(q̃)w̃ − 2q̃T(J ⊗ φT(q))w̃ + 2ρ−1
2 w̃T(O ⊗ Il) ˙̃w.

(18)
Substituting (11) into (18), we can obtain the result that

V̇ =− ρ1q̃T(T ⊗ Im)q̃ − 2q̃T(J ⊗ Im))φ̄T(q̃)w̃ − 2q̃T(J ⊗ φT(q))w̃

+ 2w̃T(O ⊗ Il)φ̄(q̂)(WL̄ ⊗ Im)q̃

=− ρ1q̃T(T ⊗ Im)q̃ − 2q̃T(J ⊗ Im))φ̄T(q̃)w̃ + 2w̃T(O ⊗ Il)φ̄(q̃)(WL̄ ⊗ Im)q̃

+ 2w̃T(OWL̄ ⊗ φ(q))q̃ − 2q̃T(J ⊗ φT(q))w̃.

(19)

Based on Lemma 2, it yields

w̃T(OWL̄ ⊗ φ(q))q̃ = q̃T(J ⊗ φ(q))w̃. (20)

From Equation (19) and (20), we can obtain the result that

V̇ =− ρ1q̃T(T ⊗ Im)q̃ − 2q̃T(J ⊗ Im))φ̄T(q̃)w̃ + 2w̃T(O ⊗ Il)φ̄(q̃)(WL̄ ⊗ Im)q̃

≤− ρ1q̃T(T ⊗ Im)q̃ + 2∥w̃∥∥φ̄(q̃)∥∥(J ⊗ Im)∥∥q̃∥
+ 2∥w̃∥∥(O ⊗ Il)∥∥φ̄(q̃)∥∥(WL̄ ⊗ Im)∥∥q̃∥.

(21)

According to Property 9.4.11 in [45], we can obtain the result that ∥φ̄(q̃)∥ ≤ ∥Col[φ̄(q̃)]∥ =
∥q̃∥. Then it yields

V̇ ≤ −ρ1q̃T(T ⊗ Im)q̃ + 2∥w̃∥∥J∥∥q̃∥2 + 2∥w̃∥∥O∥∥WL̄∥∥q̃∥2. (22)

Define r∗ = 2∥J∥+ 2∥O∥∥WL̄∥, and the smallest eigenvalue of the matrix T is denoted as
λT . Then, according to Lemma 2, it follows that

V̇ ≤ −(ρ1λT − r∗∥w̃(t)∥)∥q̃∥2. (23)

According to Lemma 7 in [22], w̃(t) is uniformly bounded. Define w̃∗ = sup{∥w̃(t)∥} and
ρ∗1 = w̃∗r∗+1

λT
. Then, we can obtain the result that for ρ1 ≥ ρ∗1 ,

V̇ ≤ −∥q̃∥2. (24)
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Therefore, we can obtain the result that V̇ is negative semidefinite and lim
t→∞

q̃(t) = 0.

Next, we will demonstrate the convergence of w̃(t). According to (10), it yields

¨̃q = (IN ⊗ Q(w)− ρ1WL̄ ⊗ Im) ˙̃q − φ̄T(q̂) ˙̃w − φ̄T( ˙̂q)w̃.

Since q̃, w̃, and q̂ are uniformly bounded (see Lemma 6 in [22]), according to (9) and (11),
we have ˙̃q, ˙̃w, and ˙̂q, which are also uniformly bounded. Therefore, ¨̃q is uniformly bounded.
By applying Barbalat’s lemma, we have lim

t→∞
˙̃q(t) = 0. From lim

t→∞
q̃(t) = 0 and (10), we can

obtain the result that

lim
t→∞

φ̄T(q̂)w̃(t) = 0, lim
t→∞

w̃T(t)φ̄(q̂)φ̄T(q̂)w̃(t) = 0.

From Lemma 7 in [22], it yields that for ρ1 ≥ ρ∗1 , the following inequality holds

ϖ1 Im ≥ 1
T

∫ t+T

t
φ̄(q̂)φ̄T(q̂)dq̂ ≥ ϖ0 Im, ∀t ≥ T0,

where ϖ1, ϖ0, T0, T are positive constants. Then, according to Lemma 1 in [46], we can
obtain the result that lim

t→∞
w̃(t) = 0.

Theorem 2. Consider systems (1) and (6). Define two compact sets Υ0 ⊂ ℜm and Υ1 ⊂ ℜl with
0 ∈ Υ0, 0 ∈ Υ1. Under Assumptions 1 and 2, for any ŵi(0) ∈ Υ0, w ∈ Υ0, q̂i(0) ∈ Υ1, q(0) ∈ Υ1,
ρ2 > 0, it yields the result that lim

t→∞
Ẽi(t) = 0.

Proof. Firstly, we consider system (14) with ξ=0 as

ς̇ = −(WL̄ ⊗ (q(t)qT(t)⊗ In))ς. (25)

According to Lemma 2, since WL̄ can be diagonalized and possesses eigenvalues that are
real and positive, there exists a matrix MH such that MHWL̄M−1

H = diagN
i [λui] = KH ,

where λui > 0 are eigenvalues of WL̄. Define kh = (MH ⊗ Inm)ς, so Equation (25) can be
transformed as

k̇h = −(KH ⊗ (q(t)qT(t)⊗ In))kh. (26)

Define −(WL̄ ⊗ (q(t)qT(t)⊗ IN)) = B̄, so Equation (25) can be simplified to

ς̇ = B̄ς. (27)

According to Lemma 1 in [32], q(t) satisfies the following inequality:

b1 Im ≥
∫ t+T0

t
q(τ)qT(τ)dτ ≥ b2 Im, (28)

where b1, b2 and T0 are positive constants. Furthermore, we can obtain the result that

b1KH ⊗ Inm ≥
∫ t+T0

t
KH ⊗ (q(τ)qT(τ)⊗ In)dτ ≥ b2KH ⊗ Inm. (29)

From Theorem 1 in [47], it can be deduced that system (26) is asymptotically stable. Equiv-
alently, system (25) is also asymptotically stable. Therefore, for a positive definite matrix
F1(t) satisfying ∥F1(t)∥ ≥ l3, where l3 is a positive constant. There exists a positive definite
matrix kh(t) that satisfies l1 ≤ ∥kh(t)∥ ≤ l2, where l1 and l2 are positive constants. The
subsequent equation holds:

k̇h(t) = −kh(t)B̄(t)− B̄T(t)kh(t)− F1(t). (30)
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Next, we analyze system (14) with ξ ̸=0. Construct the following Lyapunov function:

Va = ςTkh(t)ς. (31)

Then, we can obtain the result that

V̇a = ςT(Ż1(t) + kh(t)B̄(t) + B̄T(t)kh(t))ς + 2ςTkh(t)ξ = −ςT F1(t)ς + 2ςTkh(t)ξ

≤ −l3∥ξ∥2 + 2∥kh(t)∥∥ς∥∥ξ∥.
(32)

From Lemma 6 in [22], we have q̂i, which is uniformly bounded. Furthermore, for q(0) ∈
ℜm in system (1), we have q(t) = eQ(w)tq(0). According to Assumption 2, it yields ∥q(t)∥ =
∥q(0)∥. There exists a sufficiently large constant qm such that ∥q̂(t)∥ ≤ qm and ∥q∥ ≤ qm.
According to Equation (13), we have

∥ξi∥ ≤ηi(
N

∑
j=0

aij

∥∥∥(q̃iqT ⊗ In)(ς j − ςi)
∥∥∥+ ∥∥∥(q̂ieT

qi ⊗ In)ς0

∥∥∥
+

N

∑
j=0

aij

∥∥∥(q̂i q̃T
j ⊗ In)ς j − (q̂i q̃T

i ⊗ Im)ςi

∥∥∥)
≤ηi(

N

∑
j=0

aij

∥∥∥(q̃iqT ⊗ In)
∥∥∥∥∥∥(ς j − ςi)

∥∥∥+ ∥∥∥(q̂ieT
qi ⊗ In)

∥∥∥∥ς0∥+
N

∑
j=0

aij(
∥∥∥q̂i q̃T

j ⊗ In

∥∥∥∥∥∥ς j

∥∥∥
+

∥∥∥q̂i q̃T
i ⊗ Im

∥∥∥∥ςi∥))

≤ηi(2
N

∑
j=0

aij

∥∥∥q̃iqT
∥∥∥∥ς∥+

N

∑
j=0

aij

∥∥∥q̂ieT
qi

∥∥∥∥ς∥+
N

∑
j=0

aij

∥∥∥q̂i q̃T
i

∥∥∥∥ς∥+
∥∥∥q̂ieT

qi

∥∥∥∥E∥)

≤ηi(qm∥ς∥
N

∑
j=0

aij(3∥q̃i∥+
∥∥∥q̃j

∥∥∥) + qm

∥∥∥eqi

∥∥∥∥E∥)leηi(4qm∥ς∥∥q̃∥
N

∑
j=0

aij + qm

∥∥∥eqi

∥∥∥∥E∥).

(33)

Since ∥ξ(t)∥ ≤
N
∑

i=1
∥ξi(t)∥, it yields

∥ξ(t)∥ ≤ η(∥ς(t)∥χ0(t) + χ1(t)), (34)

where η = colN
i [ηi], χ0(t) = 4qm∥q̃(t)∥

N
∑

i=0

N
∑

j=0
aij, and χ1(t) = Nqm∥E∥

∥∥eq(t)
∥∥. Substitut-

ing into Equation (32), it follows that

V̇a ≤ −l3∥ς∥2 + 2αl2∥ς∥2χ0(t) + 2αl2∥ς∥χ1(t)

≤ −l3∥ς∥2 + 2αl2∥ς∥2χ0(t) +
αl3
4
∥ς∥2 +

4αl2
2

c3
χ2

1(t)

= − (4 − α)l3
4

∥ς∥2 + 2l2χ0(t)∥ς∥2 +
χ2

1(t)
wh

≤ −(
(4 − α)l3

4l2
− 2l2χ0(t)

l1
)Va +

χ2
1(t)
wh

,

(35)

where wh = l3
4l2

2
, and from Theorem 1, we have lim

t→∞
χ1(t) = χ0(t) = 0. Since l3 and l2 are

positive constants, as long as we ensure that ηi is no larger than 4, it can be obtained that V̇a
is negative definite. Therefore, we have lim

t→∞
ς(t) = 0.

The proof is completed.

Remark 5. According to Theorem 1 and 2, we can obtain the result that the following equations
hold: lim

t→∞
q̃i = lim

t→∞
w̃i = lim

t→∞
Ẽi = lim

t→∞
ỹi = ŷi − diy and lim

t→∞
eqi = lim

t→∞
eyi = 0.
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3.2. Robust Tracking Controller Design and Stability Analysis

We will propose a neural-network-based robust controller to let the tracking error
converge to zero in this part. In the meantime, adaptive update laws are devised to ensure
the boundedness of the estimation errors of lumped uncertainties composed of unknown
matrices and external disturbances in the follower model.

Firstly, we define the tracking error vectors as

e1i = qi − ŷi,

e2i = q̇i − βi,
(36)

where βi = ÊiQ(ŵi)q̂i − K1ie1i and K1i is a positive definite matrix. Subsequently, we need
to estimate the following lumped uncertainty composed of unknown matrices and external
disturbances in the follower model.

δi = −Gi − Ciβi − Mi β̇i + fi. (37)

For the sake of simplicity, we assume that the lumped uncertainty δi can be formulated
over a designated compact set Ω f ⊂ ℜr and using a neural network as

δi(qi, q̇i) = ϕT
i (qi, q̇i)ωi + ϖ f i, (38)

where ϕT
i (qi, q̇i) ∈ ℜr×b is the basis function, and ωi ∈ ℜb is an unknown parameter

vector. ϖ f i is the neural network estimation error, which is bounded by a vector χ f i, that

is,
∥∥∥ϖ f i

∥∥∥ ≤ χ f i. The estimation of ωi is represented as ω̂i(t). The estimated value of δi is

represented as δ̂i. Then, δ̂i can be represented as follows:

δ̂i(qi, q̇i) = ϕT
i (qi, q̇i)ω̂i(t). (39)

The estimation errors are defined as ω̃i = ωi − ω̂i and δ̃i = δi − δ̂i. To achieve the ap-
proximation of the follower to the dynamic of the leader, the compact set of states can
be determined based on the sensor’s initial rough estimate of the distance between the
leader and the follower. This generates a compact set with a wide range initially. Then, the
compact set range can be continuously adjusted to optimize the neural network model.

Remark 6. As shown in Equation (37), δi is a lumped uncertainty composed of unknown matri-
ces and external disturbances in the follower model. Neural networks are employed to estimate
the lumped uncertainty δi online and design a feedforward term ϕT

i ω̂i in the controller (40) to
compensate it, thus improving the robustness of the system.

The neural-network-based robust controller is designed as follows:

ui = − p̂i(K2ie2i + e1i + ϕT
i ω̂i + τisgn(e2i)), (40)

where p̂i is the estimation of p∗i = 1
pi

. K2i is a positive definite matrix, and τi is a positive
constant satisfying τi ≥ χ f i.

The adaptive update laws are designed as follows:

˙̂ωi = m f ϕT
i e2i,

˙̂pi = −e2iθi,
(41)

where m f is a positive constant and θi = K2ie2i + e1i + ϕT
i ω̂i + τisgn(e2i). Then, we define

p̃i = p∗i − p̂i and p̄i = pi p̃iθi.
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Remark 7. The design of the neural-network-based robust controller comprises three components.
The state feedback term −K2ie2i − e1i serves to realize the fundamental functions of the controller.
The neural network estimation feedforward term −ϕT

i ω̂i is employed to enhance the stability of the
system. The term −τisgn(e2i) is utilized to mitigate the impact of neural network estimation errors
on the system.

To summarize, the control strategy of the closed-loop tracking control system is
illustrated in the diagram shown in Figure 2. The control scheme proposed in this paper
consists of a distributed observer and a neural-network-based robust controller. For the
leader model (1) with uncertain parameters w and uncertain output matrix E, a distributed
observer (6) is proposed to estimate the global information of the leader (1). On this basis,
the estimations of the leader information ŵi, q̂i, Êi, and ŷi are substituted into the neural-
network-based robust controller (40). Then, we design adaptive update laws (41) to ensure
the effectiveness of the neural network estimation of the lumped uncertainty. We can see
that the estimations ŵi, q̂i and Êi obtained through the distributed observer (6) play a role
in the adaptive laws.

Leader agent Observation error
,yi qie e

Distributed observer

ˆˆ ˆ ˆ, , ,i i i iw E q y

, ,i i iq q q
Robust controllerEuler-Lagrange

System（Follower）

Neural
network

Adaptive
law

Disturbance
if

iu

,q y

ˆ ˆ,i ip( , )T

i i iq q

Observer

Controller

Actuator fault 
ip

Figure 2. Schematic diagram of the closed-loop tracking control system.

Theorem 3. Consider the leader–follower systems (1) and (2). Suppose Assumptions 1 and 2 hold.
If the neural-network-based robust controller and adaptive update laws are designed as (40) and
(41), then the leader–follower systems (1) and (2) will achieve consensus tracking.

Proof. By the derivation of e1i and e2i, we can obtain the result that

ė1i = e2i + βi − ˙̂yi,

ė2i = q̈i − β̇i.
(42)

Consider the Lyapunov function as

Vbi =
1
2

eT
1ie1i. (43)

By the derivation of (43), and according to (42), it yields

V̇bi = −eT
1iK1ie1i + eT

1ie2i + eT
1i(ÊiQ(ŵi)q̂i − ˙̂yi). (44)
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Substituting (42) into (2), it can be obtained that

Mi ė2i + Cie2i = ui + δi. (45)

Then, we consider the second Lyapunov function as

Vci = Vbi +
1
2

eT
2i Mie2i. (46)

Then, we have

V̇ci = −eT
1iK1ie1i + eT

1ie2i + eT
1i(ÊiQ(ŵi)q̂i − ˙̂yi) +

1
2

eT
2i Ṁi(qi)e2i + eT

2i Mi(qi)ė2i. (47)

Substituting (45) into (47), and according to Property 2, it follows that

V̇ci = −eT
1iK1ie1i + eT

1ie2i + eT
1i(ÊiQ(ŵi)q̂i − ˙̂yi) + eT

2i(ui + δi). (48)

Then, we consider the third Lyapunov function as

Vdi = Vci +
ω̃T

i ω̃i

2m f
+

N

∑
i=1

pi( p̃i)
2

2
. (49)

Then, we have

V̇di = V̇ci −
ω̃T

i
˙̂ωi

m f
−

N

∑
i=1

pi p̃i ˙̃pi (50)

Substituting (38), (40), (48) into (50), we can obtain the result that

V̇di =− eT
1iK1ie1i + eT

1ie2i + eT
1i(ÊiQ(ŵi)q̂i − ˙̂yi) + eT

2i(−K2ie2i − e1i − ϕT
i ω̂i − τisgn(e2i)

+ ϕT
i ωi + ϖ f i + p̄i)−

N

∑
i=1

pi p̃i ˙̃pi −
ω̃T

i
˙̂ωi

m f

=− eT
1iK1ie1i + eT

1ie2i + eT
1i(ÊiQ(ŵi)q̂i − ˙̂yi)− eT

2iK2ie2i − eT
2ie1i − eT

2iϕ
T
i ω̂i − eT

2iτisgn(e2i)

+ eT
2iϕ

T
i ωi + eT

2iϖ f i −
ω̃T

i
˙̂ωi

m f
+ eT

2i p̄i −
N

∑
i=1

pi p̃i ˙̃pi

=− eT
1iK1ie1i − eT

2iK2ie2i + eT
1i(ÊiQ(ŵi)q̂i − ˙̂yi)− eT

2iτisgn(e2i) + eT
2iϕ

T
i ω̃i

+ eT
2iϖ f i −

ω̃T
i

˙̂ωi

m f
+ eT

2i P̄i −
N

∑
i=1

pi p̃i ˙̃pi.

(51)

Substituting (41) into (51), it yields

V̇di = −eT
1iK1ie1i − eT

2iK2ie2i + eT
1i(ÊiQ(ŵi)q̂i − ˙̂yi)− eT

2iτisgn(e2i) + eT
2iϖ f i

≤ −eT
1iK1ie1i − eT

2iK2ie2i + eT
1i(ÊiQ(ŵi)q̂i − ˙̂yi)− τi∥e2i∥+ ∥e2i∥

∥∥∥ϖ f i

∥∥∥
≤ −eT

1iK1ie1i − eT
2iK2ie2i + eT

1i(ÊiQ(ŵi)q̂i − ˙̂yi)− τi∥e2i∥+ ∥e2i∥χ f i

≤ −eT
1iK1ie1i − eT

2iK2ie2i + eT
1i(ÊiQ(ŵi)q̂i − ˙̂yi).

(52)

From (6), we have

V̇di ≤ −eT
1iK1ie1i − eT

2iK2ie2i + eT
1i(ÊiQ(ŵi)q̂i − ˙̂Ei q̂i − Êi ˙̂qi)

= −eT
1iK1ie1i − eT

2iK2ie2i + eT
1i(ÊiQ(ŵi)q̂i − ηieyi q̂T

i q̂i − ÊiQ(ŵi)q̂i − Êiρ1ηieqi )

= −eT
1iK1ie1i − eT

2iK2ie2i + eT
1i(−eyiηi q̂T

i q̂i − Êiρ1ηieqi ),

(53)

where eqi and eyi are the observation errors defined in (5). According to Remark 5, we have
lim
t→∞

eqi = lim
t→∞

eyi = lim
t→∞

ỹi = 0. Since K1i and K2i are positive definite, it yields lim
t→∞

V̇di ≤
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−eT
1iK1ie1i − eT

2iK2ie2i; that is, V̇di is negative definite when t tends to infinity. Therefore, it
yields lim

t→∞
e1i(t) = lim

t→∞
e2i(t) = 0. Then, we have lim

t→∞
e1i = lim

t→∞
qi − ŷi = lim

t→∞
qi − diy = 0.

Based on Definition 1, the leader–follower systems described by Equations (1) and (2) can
reach bipartite consensus tracking. The proof is finished.

4. Simulation Results

Numerical simulations are carried out in this part. Two different simulation models are
employed to verify the designed consensus tracking control protocol through simulation;
one is a two-link robot manipulator, and the other is a mathematical model of a quadrotor
drone. The results are shown below.

4.1. Example 1: Two-Link Robot Manipulator

A two-link robot manipulator benchmark model is used for simulation in this subsec-
tion, as shown in Figure 3.

1iq

2iq

1il
2il

1im

2im

X

Y

Figure 3. The two-link robot manipulator model.

Based on the Euler–Lagrange mechanism, the manipulator model is obtained given by

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + Gi(qi) = piui + fi(qi, q̇i, q̈i), i = 1, 2, . . . 4,

where

qi = col[qi1, qi2], Mi(qi) =

[
di1 + di2 + 2di3 cos(qi2) di2 + 2di3 cos(qi2)

di2 + 2di3 cos(qi2) di2

]
,

Ci(qi, q̇i) =

[
−di3 sin(qi2)q̇i2 −di3 sin(qi2)(q̇i1 + q̇i2)
di3 sin(qi2)q̇i1 0

]
,

Gi(qi) =

[
di4g cos(qi1) + di4g cos(qi1 + qi2)

di5g cos(qi1 + qi2)

]
,

di1 = Ji1 + mi2l2
i1, di2 = 0.25mi2l2

i2 + Ji2, di3 = 0.5mi2li1li2, di4 = (0.5mi1 + mi2)li1,

di5 = 0.5mi2li2, fi(qi, q̇i, q̈i) = 5% · [Mi(qi)q̈i + Ci(qi, q̇i)q̇i + Gi(qi)],

g = 9.8 m/s2 is the gravitational acceleration. mi1, mi2 are masses of links. li1 denotes lengths
of links. li2 represents the distance from the center of the mass to the joints. Ji1 and Ji2 denote
moments of inertia of links. di1~di5 represent different constant values in the inertia matrix,
Coriolis and centrifugal force matrix, and gravity force vector. qi = col[qi1, qi2] represent
the different joint angle positions of the two mechanical arms of the robotic manipulator,
where i represents the ith agent. We consider a group of two-link manipulators consisting
of four followers. The communication topology among manipulators is shown in Figure 4.
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The first follower can obtain the information of the leader. Simulation parameters are given
in Table 2. The initial values are selected as follows:

q11(0) = 5π, q12(0) = −5π, q21(0) = 10π, q22(0) = −5π, q31(0) = 15π, q32(0) = 5π,

q41(0) = 20π, q42(0) = 5π, p1 = 0.98, p2 = 0.95, p3 = 0.9, p4 = 0.92, q̇i1(0) = q̇i2(0) = 0,

q(0) = col(2, 0.6, 2, 0.8, 2, 1).

0

1

2

4

3

1

1

1

-1-1 -1

Figure 4. The communication topology among the networked agent system.

Table 2. Parameters of two-link manipulators.

Parameter Manipulator 1 Manipulator 2 Manipulator 3 Manipulator 4

li1 (m) 0.98 1 0.96 1
li2 (m) 1 0.95 1 1.02

mi1 (kg) 1.02 0.96 1.01 1.04
mi2 (kg) 1.12 1.15 1.07 1.09

Ji1 (kg · m2) 0.23 0.21 0.19 0.21
Ji2 (kg · m2) 0.41 0.4 0.42 0.41

The following linear system is used to represent the dynamics of the leader, which can
denote a signal generator in complex sea conditions under Assumption 2.

q̇ = Q(w)q,
y = Eq.

The leader’s system matrices are set as:

w = col[2, 5, 8], E =

[
0.1 0 0.2 0 0.3 0
0 0.3 0 0.2 0 0.1

]
.

The activation functions of each follower are described as

ϕ1i(z) = ϕ2i(z) = [ϕi1(z), . . . , ϕi6(z)]T .

In this paper, we choose Gaussian functions as activation functions. The details are as

follows: ϕij(z) = exp(−∥z−cij∥2

δ2
ij

), j = 1, . . . , 6, where z = [qi, q̇i, βi]
T ∈ ℜ6. We assume

that all the followers have the same activation functions. cij represents the center of the
receptive field, which is evenly distributed in [−5, 5]4 × [−0.5, 0.5]2. δij = 2 is the width of
the Gaussian function. The initial weights ω̂1i and ω̂2i are chosen as ω̂1i(0) = ω̂2i(0) = 06×2.
The control parameters are selected as K1i = K2i = 40I2, τi = 10, ρ1 = 80, and ρ2 = 60. We
select W = diag(α1, . . . αN) = diag(1, 2, 3, 4). In order to show the numerical simulations
intuitively, we define q̄0i=∥q̃i∥, w̄i = ∥w̃i∥, and Ēi =

∥∥Ẽi
∥∥.

Table 3 lists the comparison results between this article and [22].
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Table 3. The comparison results.

The Tracking Errors
Overall

Performance
e and δ

Overall
Performance in [22]

e and δ

Steady-State
Performance

e and δ

Steady-State
Performance in [22]

e and δ

e11 −0.039, 0.280 0.979, 1.475 −0.006, 0.008 1.623, 0.325
e12 0.065, 0.652 0.571, 1.760 −0.003, 0.009 1.360, 0.324
e13 0.072, 0.972 0.473, 1.708 −0.006, 0.014 1.062, 0.322
e14 −0.011, 1.192 0.091, 1.595 0.006, 0.014 1.322, 0.366

In Table 3, e represents the average value of the tracking errors, and δ represents
the standard deviation of the tracking errors. By comparison, it can be observed that the
method adopted in this paper results in smaller tracking errors and also smaller fluctuation
ranges, thereby enhancing the robustness of the system.

The systems described by Equations (1) and (2) can achieve bipartite consensus track-
ing, as illustrated in Figures 5. Furthermore, Figure 6 demonstrates the convergence of
the tracking errors of the networked agent system to zero. Figures 6 and 7 indicate that
the distributed observer (6) can effectively estimate the leader’s dynamic information,
including the state q, the unknown parameter w, and the output matrix E. The control
inputs shown in Figure 8 indicate that by using neural networks, the estimation errors of
the lumped uncertainties δi are bounded.

To highlight this paper’s contribution, we compare it with article [22], a leading work
in the consensus tracking of an uncertain leader under directed graphs. We introduce the
same external disturbance fi to the follower model in article [22] and compare the results
by observing the figures of tracking errors (Figures 6 and 9).
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Figure 5. The trajectories of (a) qi1(t) and y1(t); (b) qi2(t) and y2(t).
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Figure 6. The trajectories of (a) tracking errors e1i(t); (b) estimation errors q̄0i(t).
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Figure 7. The trajectories of (a) estimation errors w̄i(t); (b) estimation errors Ēi(t).
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Figure 8. The trajectories of (a) control inputs ui(t); (b) estimation errors δ̃i(t).
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Figure 9. The trajectories of the tracking errors in [22].

Remark 8. Figures 6 and 9 show that the neural-network-based robust controller proposed in
this paper effectively suppresses external disturbances and enhances the robustness of the system.
Compared with the control strategy in article [22], the proposed scheme offers notable research
significance in real-world applications.
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4.2. Example 2: Quadrotor Drone

In this subsection, a mathematical model of a quadrotor drone is utilized for simulation
as follows:

Mi(χi)χ̈i + Ci(χi, χ̇i)χ̇i = uχi + fχi (54)

where χi = [ϕi, θi, ψi]
T denotes the attitude vector of the quadrotor rigid body expressed

in the inertial frame. The matrix Ci(χi, χ̇i) is the Coriolis term containing the gyroscopic
and centrifugal terms, and Mi(χi) is the inertia matrix. uχi is the total control torque for
the rotational motion, fχi denotes the disturbance torque. The explicit expression of Mi(χi)
and Ci(χi, χ̇i) can be seen in [48].

The following linear system is used to represent the dynamics of the leader, which can
denote a signal generator in complex sea conditions under Assumption 2.

q̇ = Q(w)q,
y = Eq.

The leader’s system matrices are set as

w = col[2, 5, 8], E =

0.1 0 0.2 0 0.3 0
0 0.3 0 0.2 0 0.1

0.1 0.3 0.2 0.2 0.1 0.2

.

The rest of the control parameters are the same as in Example 1. We define the tracking
error vectors as ϕ̃i = ϕi − diy1, θ̃i = θi − diy2, and ψ̃i = ψi − diy3.

In order to verify that the proposed control scheme’s adaptability enhances its applica-
bility to a wider array of consensus tracking control tasks, we conduct an additional set of
experiments by altering the output matrix of the leader system. The leader’s output matrix
is set as

E =

 0.5 0.1 0.1 0.1 0.1 0.2
0.1 0.5 0.1 0.1 0.3 0.1
0.1 0.1 0.5 0.1 0.1 0.3


As shown in Figures 10–13, the systems described by (1) and (54) can achieve bipartite

consensus tracking. Figures 11 and 13–15 indicate that the tracking errors of attitudes of
quadrotor drones converge to zero.
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Figure 10. The trajectories of (a) ϕi(t) and y1(t); (b) θi(t) and y2(t).
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Figure 11. The trajectories of (a) ψi(t) and y1(t); (b) ϕ̃i(t).
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Figure 12. The trajectories of (a) ϕi(t) and y1(t); (b) θi(t) and y2(t).
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Figure 13. The trajectories of (a) ψi(t) and y1(t); (b) ϕ̃i(t).
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Figure 14. The trajectories of (a) θ̃i(t); (b) ψ̃i(t).
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Figure 15. The trajectories of (a) θ̃i(t); (b) ψ̃i(t).

5. Conclusions

This paper has investigated the bipartite consensus tracking problem for networked
ELSs with an uncertain leader agent across directed topologies. The ELSs under considera-
tion are afflicted by unknown dynamic matrices, external disturbances, and actuator faults.
A novel control strategy, integrating a distributed observer with a neural-network-based
robust controller, has been devised. Neural networks are employed to approximate the
lumped uncertainties, which include unknown matrices and external disturbances within
the follower model. The distributed observer is tailored to estimate the leader’s dynamic
information. Adaptive update laws have been formulated for the unknown parameters
within the neural networks and the actuator fault factors, ensuring the boundedness of
the estimation errors. A neural-network-based robust controller is proposed to ensure
that tracking errors asymptotically converge to zero. Numerical simulations have been
conducted to substantiate the efficacy of the proposed control strategy. In future work,
we will delve into the bipartite consensus tracking control scheme with event-triggered
communications, which is anticipated to further enhance the efficiency and practicality of
the system.
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