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Abstract: Wildfires, which are distinguished by their destructive nature and challenging suppression,
present a significant threat to ecological environments and socioeconomic systems. In order to address
this issue, the development of efficient and accurate fire detection technologies for early warning and
timely response is essential. This paper addresses the complexity of forest and mountain fire detection
by proposing YOLO-CSQ, a drone-based fire detection method built upon an improved YOLOv8
algorithm. Firstly, we introduce the CBAM attention mechanism, which enhances the model’s multi-
scale fire feature extraction capabilities by adaptively adjusting weights in both the channel and
spatial dimensions of feature maps, thereby improving detection accuracy. Secondly, we propose
an improved ShuffleNetV2 backbone network structure, which significantly reduces the model’s
parameter count and computational complexity while maintaining feature extraction capabilities.
This results in a more lightweight and efficient model. Thirdly, to address the challenges of varying
fire scales and numerous weak emission targets in mountain fires, we propose a Quadrupled-ASFF
detection head for weighted feature fusion. This enhances the model’s robustness in detecting targets
of different scales. Finally, we introduce the WIoU loss function to replace the traditional CIoU
object detection loss function, thereby enhancing the model’s localization accuracy. The experimental
results demonstrate that the improved model achieves an mAP@50 of 96.87%, which is superior to the
original YOLOV8, YOLOV9, and YOLOV10 by 10.9, 11.66, and 13.33 percentage points, respectively.
Moreover, it exhibits significant advantages over other classic algorithms in key evaluation metrics
such as precision, recall, and F1 score. These findings validate the effectiveness of the improved
model in mountain fire detection scenarios, offering a novel solution for early warning and intelligent
monitoring of mountain wildfires.

Keywords: wildfire; ShuffleNetv2; CBAM; quadrupled ASFF

1. Introduction

Forests, as the “green heart” and “ecological barrier” of the Earth, play an irreplaceable
role in climate regulation, water conservation, biodiversity preservation, and carbon seques-
tration. However, in recent years, the increasing frequency of wildfires has not only caused
large-scale destruction of forest resources and loss of animal and plant habitats but also trig-
gered various secondary disasters such as soil erosion and water loss, severely impacting
local ecosystems and socioeconomic conditions. For instance, the Australian bushfires that
began in late 2019 swept across approximately 20% of the country’s land area, resulting
in 33 fatalities, displacing tens of thousands of people, destroying over 3000 homes, and
burning through 24 million hectares. More than one billion mammals, birds, and reptiles
perished, with at least 34 species driven to extinction. This catastrophic event, which lasted
for nearly 200 days, is conservatively estimated to have caused USD 5 billion in health
and property damages. More recently, on 19 February 2024, a wildfire broke out in Huaga
Village, Huaga Township, Shuicheng District, Liupanshui City, Guizhou Province, China,
spreading to nearby villages in Pu’an County, Qianxinan Prefecture. Tragically, during the
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firefighting efforts in Longyin Town, two young firefighters, both in their 20s, lost their
lives.

2. Related Works

To mitigate the safety risks posed by mountain wildfires, researchers worldwide have
been exploring detection and early warning methods using satellite remote sensing and
unmanned aerial vehicle (UAV) aerial detection. Satellite remote sensing, with its advan-
tages of wide coverage, periodicity, and multi-spectral capabilities, plays an indispensable
role in mountain wildfire monitoring. Zhao et al. [1] proposed a new framework for near-
real-time, early-stage mountain wildfire detection based on Himawari-8 satellite imagery,
which outperformed the JAXA fire detection product by integrating spatiotemporal spectral
information. Similarly, Zhang et al. [2] utilized Himawari-8 satellite data to construct a
spatiotemporal spectral recursive neural network model, achieving accurate detection of
small-scale, early-stage, daytime, and night-time mountain wildfires. In addition to geo-
stationary satellites, polar-orbiting satellites such as MODIS and VIIRS have been widely
applied in mountain wildfire monitoring. Ding et al. [3] developed an adaptive mountain
wildfire detection algorithm called DBTDW based on MODIS data, which demonstrated
high applicability under various spatiotemporal conditions. Ji et al. [4] coupled the Bidi-
rectional Reflectance Distribution Function (BRDF) physical model with deep learning
techniques to achieve near-real-time monitoring of mountain wildfires using geostationary
satellite imagery. Although these methods have made progress in addressing wildfire
early warning issues, they still face limitations in monitoring range, data processing delays,
warning accuracy, high alert costs, and susceptibility to meteorological factors due to con-
straints in spatiotemporal resolution, weather conditions, and satellite transmission costs.
These limitations hinder the early detection and timely response to wildfires. In contrast to
satellite remote sensing, UAVs offer advantages such as flexibility, mobility, and the ability
to acquire high-resolution images, leading to their increasing application in mountain
wildfire detection. Mohapatra et al. [5] reviewed recent advances in UAV applications
for mountain wildfire detection, focusing on monitoring systems based on sensor nodes,
UAV aerial photography, and ground camera networks. Moghadasi et al. [6] proposed
a method for continuous mountain wildfire detection and monitoring using rotary-wing
UAV formations, optimizing UAV trajectory planning to achieve sustained observation
of suspected fire areas and fire mapping. Qiao et al. [7] designed a UAV-based mountain
wildfire detection system using visible light/infrared cameras, coupling algorithms for
smoke and flame segmentation, camera pose estimation, and feature matching to achieve
early detection and distance localization of mountain wildfires. Chuang et al. [8] proposed
using UAV swarms carrying L-band SAR and optical sensors to obtain high-resolution
real-scene images through tomographic imaging techniques, enabling early identification
of mountain wildfire hazards by inverting changes in tree dielectric constants.

In recent years, the rapid development of artificial intelligence methods such as ma-
chine learning and deep learning, and their widespread application in forest fire detection,
has significantly enhanced the capability to detect mountain wildfires. Machine learning
methods primarily involve automatically mining multi-dimensional features of images,
including spectral, textural, and spatiotemporal characteristics, to construct classification
decision functions or rules for forest fires. Representative methods include decision trees [9],
random forests [10], and support vector machines [11]. Research has shown that machine
learning methods can significantly improve fire detection accuracy in complex mountainous
terrain conditions. For example, Bar et al. [12] used Landsat-8 and Sentinel-2 medium-
resolution optical satellite images from 2016 to 2019 to identify forest fire areas in the
western Himalayan state of Uttarakhand, India, through the Google Earth Engine (GEE)
platform. They applied unsupervised classification using the Weka clustering algorithm
to identify the shape and pattern of fire areas, and employed supervised classification
algorithms such as Classification and Regression Trees (CART), Random Forest (RF), and
Support Vector Machine (SVM). Results showed that CART and RF algorithms achieved
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similarly high accuracy (97–100%) in identifying forest fire areas. Janiec et al. [13] employed
two machine learning classification methods—Maximum Entropy (MaxENT) and Random
Forest—to analyze satellite images and products of different spatial and spectral resolutions
(Landsat TM, Modis TERRA, GMTED2010, and VIIRS), vector data (OSM), and bioclimatic
variables (WORLDCLIM). They found that the Random Forest prediction model was
more effective in improving accuracy and reducing risk areas, while the MaxENT method
showed lower accuracy. Mohajane et al. [14] developed five new hybrid machine learning
algorithms—Frequency Ratio-Multilayer Perceptron (FR-MLP), Frequency Ratio-Logistic
Regression (FR-LR), Frequency Ratio-Classification and Regression Tree (FR-CART), Fre-
quency Ratio-Support Vector Machine (FR-SVM), and Frequency Ratio-Random Forest
(FR-RF)—for mapping forest fire susceptibility. The results demonstrated that these hybrid
models significantly improved the accuracy and performance of forest fire susceptibility
studies, with the FR-RF model performing best (AUC = 0.989).

Unlike machine learning methods that rely on manual feature extraction, deep learning
methods primarily learn multi-scale, multi-level deep features directly from raw images,
thereby enhancing model performance in complex scenarios for fire point identification.
Currently, deep learning-based mountain wildfire detection methods can be broadly cate-
gorized into two main types. The first is based on convolutional neural networks (CNNs)
for mountain wildfire detection. Deep CNNs, with their powerful feature extraction and
semantic expression capabilities, have become a research hotspot in the field of mountain
wildfire detection. Ahmad et al. [15] proposed the FireXNet model for wildfire detection,
which adopts a lightweight structure similar to MobileNetV3 and introduces SHAP in-
terpretability analysis, achieving performance superior to models such as VGG16 and
DenseNet201 on resource-constrained devices. Wang et al. [16] proposed an efficient
real-time forest fire detection model called FireDetn for complex scenarios, introducing
multi-scale detection heads, transformer encoders, and multi-head attention mechanisms
to enhance the ability to capture global feature information and contextual information,
thereby improving average precision in complex scenarios. Johnston et al. [17] thoroughly
investigated the performance of YOLOv5 for real-time mountain wildfire detection on
embedded systems, particularly the Raspberry Pi 4. Through performance comparisons
with YOLOv3 and YOLOv3-tiny, their results showed that the proposed system achieved
high detection accuracy, low power consumption, and strong adaptability to real envi-
ronments. Mukhiddinov et al. [18] proposed an improved YOLOv5-based UAV visual
early mountain wildfire smoke detection system, enhancing network architecture and
detection speed by adding a spatial pyramid pooling fast layer, applying a bidirectional
feature pyramid network, and employing network pruning and transfer learning methods.
Their experimental results demonstrated the effectiveness of the proposed method and
its superiority over other single-stage and two-stage object detectors. Casas et al. [19]
conducted a comprehensive comparison of YOLO series models in smoke and mountain
fire detection, utilizing multiple performance metrics including recall, precision, F1 score,
and mean average precision. Their findings indicate that YOLOv5, YOLOv7, and YOLOv8
demonstrate relatively balanced performance across all metrics, while YOLO-NAS vari-
ants excel in recall but underperform in precision. This underscores the importance of
considering specific model performance in relation to practical application requirements
when selecting an appropriate model. He et al. [20] proposed two improved mountain
fire detection models based on YOLOv5, reducing model parameters by simplifying the
original network structure’s neck and head, and eliminating backbone modules. Exper-
imental results demonstrate that these lightweight models maintain high accuracy and
recall while adapting to embedded devices, enabling real-time fire monitoring. Li et al. [21]
introduced LEF-YOLO, a lightweight mountain fire detection model. By incorporating
MobileNetv3′s bottleneck structure and depth-wise separable convolutions, they reduced
model complexity. Multi-scale feature fusion strategies, coordinate attention, and spatial
pyramid pooling-fast blocks were employed to enhance feature extraction and improve
detection accuracy. The LEF-YOLO model exhibited superior detection performance on
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an extreme forest fire dataset, achieving 2.7 GFLOPs, 61 FPS, and 87.9% mAP. Gonçalves
et al. [22] compared the performance of multiple models, including YOLOv7 and YOLOv8,
in wildfire smoke detection for both ground-level and aerial imagery. They also discussed
the impact of complex scene factors on detection accuracy.

Semantic segmentation approaches for mountain fire detection aim to assign semantic
labels to each pixel in an image, enabling precise delineation of fire-affected areas. Valero
et al. [23] proposed an accurate wildfire area segmentation method based on UAV thermal
infrared videos. Their approach enhances video registration accuracy through trajectory
stabilization, foreground histogram equalization, and multi-reference frame strategies. The
KAZE feature matching algorithm is employed to achieve stable and accurate frame-by-
frame segmentation of wildfire videos, supporting fire behavior analysis. Bouguettaya
et al. [24] reviewed recent deep learning algorithms applied to UAV wildfire smoke segmen-
tation, focusing on methods based on semantic segmentation networks such as FCN, U-Net,
and SegNet. They systematically summarized key indicators, including accuracy and
computational efficiency. Muksimova et al. [25] proposed a wildfire segmentation method
based on a dual encoder-decoder structure. By improving residual modules and attention
gate mechanisms, they enhanced the network’s multi-scale feature extraction capabilities,
outperforming existing methods in terms of accuracy, speed, and robustness. To further
improve wildfire segmentation accuracy and real-time performance, some researchers have
introduced novel network structures such as transformers to this field. Ghali et al. [26] em-
ployed TransUNet and TransFire, two transformer-based semantic segmentation networks,
to achieve precise segmentation of wildfire areas in UAV aerial images, with F1 scores ex-
ceeding 99%. Garcia et al. [27] proposed a multi-layer wildfire smoke segmentation method
based on level set theory, optimizing contour smoothness and segmentation confidence to
enhance model detection performance.

AI-based fire detection methods using RGB image recognition and thermal imaging
have been widely adopted. However, thermal imaging-based fire detection methods
are often limited to infrared camera imaging areas and primarily use a single standard
deviation as a distinguishing feature, which weakens their early fire detection capability
when disturbed. Additionally, the high cost of thermal imaging equipment makes it
challenging to widely implement in large-scale environments such as forests. Moreover,
thermal imaging systems require substantial data processing power to analyze the vast
amounts of data collected, resulting in high power consumption and necessitating high-
performance computing resources. In contrast, AI-based fire detection using RGB images
employs standard cameras already widely used in most surveillance systems, making it
cost-effective and easy to integrate. RGB-based fire detection also leverages modern deep
learning models, enabling fast and accurate real-time monitoring with high inference speed
and flexibility. Therefore, this paper focuses on in-depth research into deep learning-based
fire detection using RGB images.

Fire image detection technologies based on satellite or UAV vision have achieved
notable success in mountain fire monitoring. However, their practical application still
faces several major obstacles: Complex terrain and environmental factors significantly
impact fire detection, making it challenging. The varied mountain terrain and diverse
surface coverage, combined with atmospheric interference from clouds, fog, and smoke,
make it difficult to accurately isolate fire signals from complex backgrounds, leading to
frequent missed detections or false alarms. The rapid evolution of forest fire scales requires
improved adaptability of detection models. In the early stages of mountain fires, smoke
and flame areas are small and undergo rapid spatiotemporal changes, easily blending with
complex backgrounds. Detecting small targets in the early stages of a fire is crucial for
preventing large-scale wildfires and protecting the ecological environment from damage.
Subsequently, detection algorithms need enhanced adaptability to overcome limitations
in UAV visual angles, changes in fire area scale, and visual obstructions. Large models’
high computational resource demands pose deployment challenges for onboard equipment.
Complex deep learning algorithms result in high computational resource consumption
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and long processing delays, making it difficult to meet the emergency response needs of
mountain fire disasters. In light of these challenges, this paper proposes the YOLO-CSQ
rapid mountain fire detection model based on YOLOv8n for quick identification and early
warning of mountain fires in complex scenarios. The main contributions are as follows:

(1) By adding the P2 layer output to YOLOv8n and introducing the CBAM (Convolutional
Block Attention Module) attention mechanism in the four scales of the neck network,
the model’s ability to independently extract and fuse feature information at small
scales is improved. This enables effective capture of multi-scale features of smoke
and flame targets and enhances information interaction across scales, fully utilizing
semantic information at different levels to improve small target detection capabilities
and localization accuracy for larger targets.

(2) The ShuffleNetV2 backbone network structure is improved by introducing depth-wise
separable convolutions (DWConv), CBAM attention mechanism, and h-swish activa-
tion function, replacing the original CSPDarknet53 backbone network structure. This
reduces the model’s parameter count and computational complexity while maintain-
ing high feature extraction capabilities in a more lightweight head network, effectively
reducing the model size and making it more suitable for deployment on detection
devices with limited computational resources. Most importantly, it can enhance the
model’s ability to detect small targets.

(3) A Quadrupled-ASFF detection head is proposed, and the loss function is optimized
to enhance the model’s understanding of complex scenes (especially those with high
background noise or small-scale targets with occlusions), improving the balance
between positional accuracy and detection precision. Additionally, the WIoU loss
function is introduced to address the inability of the original CIoU loss function to pro-
vide effective gradients in certain situations (e.g., non-overlapping bounding boxes)
and to consider the distance between center points and aspect ratios of bounding
boxes, thereby enhancing the model’s localization accuracy.

The remainder of this paper is organized as follows: Section 2 introduces the theoretical
background of the original YOLOV8 detection method; Section 3 describes the network
and structural improvements; Section 4 presents the dataset preparation, classification, and
experimental results; and Section 5 discusses the results and provides conclusions.

3. YOLOv8 Detection Algorithm

YOLO (You Only Look Once), as a classic real-time object detection algorithm, has
played a significant role in defect identification, protection warning, and other fields since
its proposal in 2015. Currently, the relatively classic iterative version, YOLOV8 [28], is an
improvement based on YOLOV5 [29] proposed by Ultralytics. It also adopts a single-stage
detection strategy, integrating object localization and classification tasks into an end-to-
end convolutional neural network. Compared with traditional two-stage object detection
algorithms such as R-CNN [30], both detection speed and efficiency are significantly
improved. The YOLOV8 model includes five versions: YOLOv8n, YOLOv8s, YOLOv8m,
YOLOv8l, and YOLOv8x. Among them, YOLOv8n has the lowest complexity, maintaining
high detection accuracy while having the fastest inference speed, making it convenient for
deployment on mobile or embedded devices. Considering the requirements of lightweight
deployment on airborne platforms for mountain fire detection and the need for real-time
and high-precision detection, this paper selects YOLOV8n as the baseline model.

The YOLOV8n network structure mainly consists of three parts: Backbone, Neck,
and Head, as shown in Figure 1. The Backbone uses the CSPDarknet53 network, which
replaces the original CSP (Cross Stage Partial) module with the C2f (Cross Stage Partial
Network Fusion) module based on YOLOv5. The C2f module adopts gradient flow linking,
effectively improving the model’s nonlinear representation ability while keeping the model
lightweight, thereby better handling complex image features. In addition, the SPPF module
is retained in the Backbone, which converts the input features into adaptive-size outputs
through mapping pooling operations to better capture multi-scale features in the image. The
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Neck part adopts the Path Aggregation Network with a Feature Pyramid Network (PAN-
FPN) [31] structure to further fuse the features transmitted by the Backbone. Compared
with the PAN-FPN structure in YOLOv5, YOLOv8n removes the convolutional structure
computation after upsampling in PAN and replaces the original C3 module with the
C2f module, constructing a top-down and bottom-up network structure. This improves
the model’s feature fusion efficiency while complementing shallow location information
and deep semantic information, ensuring the completeness and diversity of the output
feature maps. The Head part adopts the same decoupled head structure as YOLOX [32],
separating the classification and detection heads, allowing each part of the model to focus
on its specific task. By further processing the feature maps output by the Neck part, it
predicts the location, category, and confidence of the target. Moreover, the Anchor Free
method used describes the detection target using multiple key points or center points and
boundary information, which is more suitable for detecting dense obstacles and targets
with large-scale variations in mountain smoke and fire detection.
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Although the YOLOv8 model has balanced overall performance and performs well
in many general scenarios, it still faces some challenges in the actual detection process
due to the complex environment of mountain fires. Firstly, the background information in
mountain fire scenes is redundant, and factors such as smoke, trees, and terrain can interfere
with the identification of fire conditions, requiring the model to have strong robustness and
generalization ability. Secondly, the shape and size of mountain fires vary, and there is a
problem of large-scale differences, requiring the model to take into account the detection of
targets at different scales. Moreover, under night conditions or low visibility conditions, the
image quality is poor, requiring the model to adapt to low light, blur, and other interference
factors. Finally, real-time performance is one of the important requirements for mountain
fire detection, requiring the model to maintain a high inference speed while ensuring
detection accuracy to support real-time detection and early warning of mountain fires.

4. Methods

To further improve the detection efficiency of mountain fire images on UAV-borne
visual platforms, this paper proposes a YOLO-CSQ object detection algorithm based on
the traditional YOLOV8n for dense small-target mountain fire detection in complex scenes.
The network structure is shown in Figure 2. Firstly, by increasing the output of the P2
layer in YOLOv8n and introducing the CBAM (Convolutional Block Attention Module)
attention mechanism in the neck network, the model’s ability to independently extract and
fuse feature information at small-scale levels is improved. This enables effective capture of
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multi-scale features of smoke and flame targets, enhances information interaction between
cross-scale features, and fully utilizes semantic information at different levels, thereby
improving the detection ability of small targets and the localization accuracy of large-range
targets. Secondly, an improved lightweight ShuffleNetV2 network is employed to replace
the original backbone network. While introducing depthwise separable convolution and
h-swish activation function, the CBAM attention mechanism is added before the P2 layer
output to improve the model’s detection performance. Subsequently, an improved four-
head ASFF (Adaptive Spatial Feature Fusion) detection head is introduced, which enhances
the detection capability of multi-scale targets by adaptively adjusting the fusion weights
of features at different scales. Finally, the WIoU loss function is introduced to replace the
original CIoU loss function, considering the specific weight of each pair of bounding boxes.
This provides a more flexible and refined evaluation mechanism for object detection tasks
in complex scenes or extreme conditions, improving the model’s learning efficiency and
generalization ability.
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4.1. Improved Attention Mechanism

Due to the influence of illumination direction and the dynamic characteristics of flame
and smoke targets, precise target detection in complex mountain fire scenes still faces enor-
mous challenges, mainly reflected in the following three aspects. First, under the influence
of the environment, there are fluctuations in the range and intensity of illumination, leading
to uneven brightness distribution of flame and smoke images, weakening the contrast
between the target and the background, and increasing the difficulty of positive target
detection for the model. Second, due to the rapid movement and deformation of flames
and smoke in the fire scene, the target edge contours become unclear, affecting the model’s
localization accuracy. Third, the complex terrain and rich vegetation cover in mountainous
areas generate a large amount of redundant background information, making it difficult
to distinguish smoke and fire targets from the background. To address these issues, some
scholars have introduced attention mechanisms into object detection models to enhance
useful feature information, suppress useless feature information, and enable the model to
adaptively focus on key regions in the image, improving the model’s detection accuracy.

CBAM (Convolutional Block Attention Module) [33], as an attention mechanism
widely used in computer vision tasks, mainly consists of two sub-modules: Channel Atten-
tion Module and Spatial Attention Module. The Channel Attention Module obtains global
information of the feature map through global average pooling and global max pooling op-
erations, and then uses a multi-layer perceptron (MLP) [34] to learn the interdependencies
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between channels, generating channel weights to identify the importance of each channel
in the feature map. The Spatial Attention Module generates spatial weights by applying
convolutional operations, effectively focusing on the importance of each spatial region in
the feature map. CBAM combines the channel attention and spatial attention weights with
the original feature map through element-wise multiplication to enhance the features of
important channels and spatial regions while suppressing the unimportant parts. This
process significantly improves the quality of the feature map, providing richer and more
useful information for subsequent tasks such as mountain fire detection. The structure of
the CBAM attention module is shown in Figure 3.
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Assuming the input feature map has dimensions C × H × W, where C represents the
number of channels, and H and W represent the height and width of the feature map,
respectively. In the CBAM module, the channel attention module first applies Global
Average Pooling (GAP) and Global Max Pooling (GMP) operations to obtain the global
average and maximum values for each channel, generating two feature vectors FC

avg and
FC

max with dimensions of C × 1 × 1. The structure of the channel attention mechanism is
illustrated in Figure 4.
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The global average pooling operation can be expressed as:

FC
avg =

1
H × W

H

∑
i=1

W

∑
j=1

uc(i, j) (1)

The global maximum pooling operation can be expressed as:

FC
max =

1
H × W

H

∑
i=1

W

∑
j=1

uc(i, j) (2)

where FC
avg represents the output result after applying average pooling to the C − th

channel, FC
max denotes the output result after performing max pooling on the C − th

channel, and uc(i, j) represents the feature vector at spatial position (i, j) in the C − th
channel of the input feature map.

After obtaining the two feature vector descriptors, the Channel Attention Module
uses two shared multilayer perceptions (MLPs) to transform FC

avg and FC
max , learning

the interdependencies between channels. To reduce the number of model parameters,
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the number of neurons in the hidden layer is set to a reduced value RC/r·1+1, where
the reduction rate r determines the degree of neuron reduction. After processing each
descriptor through the shared network, the outputs are aggregated through element-wise
addition to obtain a unified output feature vector. The MLP output generates channel
weights through the Sigmoid activation function, and the calculation formula MC is as
follows:

MC(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))
= σ

(
W1

(
W0

(
Fc

avg

))
+W1(W0(Fc

nax ))
) (3)

where σ represents the Sigmoid activation function, and W0 ∈ RC/r∗C and W1 ∈ RC∗C/r are
the weight parameters of the multi-layer perceptron MLP.

The Spatial Attention Module is mainly a complement to the Channel Attention
Module. Its structure is shown in Figure 5. Firstly, average pooling and max pooling
operations are performed on the channel dimension to reduce the dimensionality of the
channel itself and generate two feature maps FS

avg and FS
max with a size of 1 × H × W,

respectively. The two feature maps are concatenated and sent to a convolutional layer for
learning.
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After the average pooling operation on the channel dimension, it can be represented as:

FS
avg =

1
C

C

∑
i=1

xi (4)

The max pooling operation on the channel dimension can be represented as:

Fs
max= max(xi), i ∈ [1, C] (5)

where Fs
max represents the feature map of the i − th channel of the input feature map.

Subsequently, FS
avg and FS

max are concatenated on the channel dimension to obtain a
feature map with a size of 2× H ×W, and a 7× 7 convolutional layer is applied to learn the
interdependencies between different spatial locations, ultimately obtaining the attention
features on the spatial dimension. The calculation process is as follows:

MS(F) = σ
(

f 7×7
(

Fs
avg ; Fs

max

))
(6)

where is the Sigmoid activation function σ, f 7×7(. . .) represents processing using a convo-
lutional kernel of size 7 × 7, and (; ) represents the concatenation operation on the channel
dimension.

The original feature map is element-wise multiplied with the generated channel feature
weights and spatial feature weights, respectively, to obtain the final weighted feature map:

F′′= MC(F)⊗ MS(F)⊗ F (7)

The CBAM attention mechanism effectively enhances the model’s feature extraction
ability [35]. Through adaptive adjustment of the weights of different channels and spatial
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locations in the feature map, the model’s representation ability of mountain fire region
features is enhanced, the interference of complex backgrounds and noise is suppressed, and
the feature utilization efficiency is improved, enabling the model to focus more on wildfire-
related features. Concurrently, the model’s generalization ability is enhanced, enabling it to
adapt to diverse wildfire types and shooting conditions. This results in more accurate and
robust wildfire detection results. Furthermore, the computational complexity of the CBAM
attention mechanism is relatively low, facilitating integrated operations. While improving
wildfire detection performance, it maintains the model’s detection efficiency, meeting the
requirements of practical applications.

4.2. Improved Backbone Network Architecture

The shapes of smoke and flames in mountain fire images are diverse, with blurred
boundaries, often requiring a larger receptive field to capture their contextual information.
Furthermore, the influence of illumination changes and background interference neces-
sitates a more robust model for feature extraction. Although the traditional YOLOV8n’s
CSPDarknet53 backbone network performs well in general scenarios, it still struggles to
adapt well to mountain fire target detection scenarios due to limitations in its receptive field
range and feature extraction capabilities. In comparison to the traditional CSPDarknet53,
ShuffleNetV2 [36], as a lightweight backbone network, exhibits distinctive advantages in
the context of mountain fire detection. The structure of the network is depicted in Figure 6.
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In channel splitting, the input feature channels are divided into two branches, each
with an equal number of channels, with the objective of reducing memory access costs and
improving computational efficiency. The formula representation is as follows:

cin → cout 1 = cout 2 =
cin
2

(8)
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where cin represents the number of input channels, and Cout 1 and Cout 2 represent the
number of output channels for the two branches, respectively.

Subsequently, the two branches undergo processing through a series of grouped
convolutions, such as 1 × 1 and 3 × 3, in order to achieve a balance between computational
complexity and model capacity. Finally, the results of the two processed branches are
merged, and channel shuffling is performed to enhance information flow between different
channels, thereby improving the model’s representational power. In spatial downsampling
operations, ShuffleNetV2 employs convolutions with a stride greater than 1 to achieve
feature map spatial size reduction while maintaining feature richness.

Nevertheless, ShuffleNetV2 still exhibits certain deficiencies in the context of mountain
fire detection. Firstly, the network depth and receptive field of ShuffleNetV2 remain
relatively limited, which presents a challenge in fully capturing long-range dependencies
and global contextual information in mountain fire scenes. Secondly, ShuffleNetV2 is
deficient in sufficient scale invariance, rendering it incapable of effectively handling smoke
and fire targets of varying sizes. To address these issues, this paper proposes an enhanced
ShuffleNetV2 backbone network structure, as illustrated in Figure 7. The incorporation of
depth-wise separable convolution (DWConv) [37], the CBAM attention mechanism, and the
h-swish activation function has led to a notable enhancement in the model’s performance
with regard to mountain fire detection.
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Firstly, in the feature extraction stage of the model’s backbone network, by introducing
a set of 3 × 3 depthwise separable convolution (DWConv) kernels combined with the origi-
nal convolutional layers, the model’s receptive field is expanded. This allows the network
to capture richer contextual information while only slightly increasing the computational
load. It enhances the model’s ability to recognize irregular and boundary-blurred targets in
mountain fire scenes, strengthens the robustness of feature extraction, and enables more
precise handling of the complexity in mountain fire scenes.
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Secondly, in the final stage of the backbone network, by integrating the CBAM atten-
tion mechanism, multi-scale parallel learning and cross-spatial information interaction are
realized, establishing connections between features of different scales. This improves the
model’s detection performance for multi-scale targets, particularly in capturing features of
smoke and flames with varying scales, effectively increasing the detection rate of small and
weak targets and the localization accuracy of large targets.

Finally, to further optimize the model’s performance, we replace the traditional ReLU
activation function with the h-swish activation function. By leveraging its superior nonlin-
ear expression ability and smoothness characteristics, it alleviates the gradient vanishing
problem that may be caused by the ReLU function, enabling the model to converge quickly
and enhancing its generalization ability. Moreover, introducing the h-swish activation
function reduces the model’s dependence on cross-channel correlation and spatial correla-
tion, allowing the model to focus more on channel information recognition and extraction,
thereby improving the model’s accuracy and reliability in the mountain fire detection task.

4.3. Improved Quadrupled-ASFF (Adaptive Spatial Feature Fusion) Detection Head Structure

Traditional object detection networks typically employ a fixed feature fusion strategy,
combining feature maps of different scales with preset weights to generate final detection
results. However, real-world mountain fire scenes are complex and varied, with smoke and
fire targets often exhibiting significant multi-scale features. Using a “one-size-fits-all” fusion
approach can ignore the specificity of targets at different scales, making it challenging to
adapt to the multi-scale characteristics of mountain fire scenes, resulting in limited detection
performance. To address this issue, researchers have proposed introducing an Adaptive
Spatial Feature Fusion (ASFF) [38] module to adaptively adjust the fusion weights of
features at different scales, enhancing the model’s detection capability for multi-scale
targets. The core idea of ASFF is to dynamically adjust the fusion weights of different
feature maps based on the scale features of the targets, allowing the model to adaptively
focus on targets of various scales.

Figure 8 depicts the ASFF module, which initially adjusts the feature maps F1, F2, and
F3 from disparate convolutional layers to a uniform spatial resolution through up-sampling
or down-sampling. Subsequently, the system learns to generate weight maps (W1,W2, and
W3) for each feature map, which are employed to dynamically adjust the fusion weight
of each feature map at each spatial location. The weight maps are normalized through a
soft-max layer to ensure that the sum of weights is 1. For each location (x, y), the weight
maps must satisfy the following conditions and weight calculation formula:

3

∑
i=1

Wi(x, y) = 1 (9)

Wi(x, y) =
eWi(x,y)

3
∑

j=1
eWj(x,y)

(10)

where Wi represents the weight map of the i − th feature map.
After learning the weight maps, each feature map is weighted according to its cor-

responding weight map, and all the weighted feature maps are summed to form the
final fused feature map Ffused . The calculation process of the fused feature map can be
represented as:

Ffused =
3

∑
i=1

Wi · Fi (11)

where · represents element-wise multiplication; Fi represents the adjusted feature map of
the i − th scale; Wi is the learned weight map of the i − th feature map, determining its
contribution to the fusion process; and Ffused represents the final fused feature map.
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Although ASFF can adaptively adjust the weights of feature fusion and enhance
the model’s detection performance for multi-scale targets, mountain fire scenes contain
a considerable number of minute targets (e.g., distant fire points, thin smoke), rendering
it challenging to accurately localize and identify these targets solely through the original
three scales of feature maps. To further enhance the model’s detection capability for tiny
targets, this paper proposes an improved Quadrupled-ASFF detection head, as shown in
Figure 9.
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The Quadrupled-ASFF detection head introduces an additional feature map F4, cor-
responding to the P2 layer in the backbone network, on top of the original three scales of
feature maps, F1, F2, and F3. By increasing the output of the P2 layer, Quadrupled-ASFF
is able to obtain richer detail information, which enables the detection of minute targets.
Following the addition of the novel prediction head, the weight calculation formula and
feature fusion calculation formula are presented as follows:

Weight calculation formula:

Wi(x, y) =
eWi(x,y)

4
∑

j=1
eWj(x,y)

(12)

Feature fusion calculation formula:

Ffused =
4

∑
i=1

Wi · Fi (13)

The improved Quadrupled-ASFF prediction head effectively improves the model’s
detection capability for tiny targets while maintaining high recognition performance for
medium and large-sized targets by increasing the output of the P2 layer. It also enhances
the model’s understanding of complex scenes, particularly in cases with high background
noise or occlusion between targets, enabling more accurate localization and identification
of tiny targets in complex mountain fire environments.
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4.4. Improved Loss Function

The YOLOv8n algorithm employs the CIoU loss function as the default loss function
for bounding box regression. The rationale behind the utilization of CIoU loss is to address
the shortcomings of the IoU loss function, which is unable to provide effective gradients in
specific instances, such as when two bounding boxes are not in spatial overlap. Furthermore,
CIoU loss takes into account the distance between the center points of the bounding boxes
and their aspect ratios, thereby enhancing the model’s localization accuracy. The calculation
formula for CIoU loss is as follows:

LCIoU = 1 − IoU +
ρ2(b, bgt)

c2 + αv (14)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(15)

α =
v

(1 − IoU) + v
(16)

where IoU represents the intersection over the union of the predicted box and the ground
truth box; ρ

(
b, bgt) is the Euclidean distance between the center points of the predicted and

ground truth boxes; c is the diagonal length of the smallest enclosing area containing the
two boxes; v considers the aspect ratio of the predicted and ground truth boxes; w and h
are the width and height of the predicted box, respectively, while wgt and hgt are the width
and height of the ground truth box; and α is a weight parameter.

Despite the enhancements brought about by the CIoU loss function in bounding box
regression performance, it still exhibits certain limitations. In the event of a significant
discrepancy between the aspect ratio of the predicted and ground truth boxes, the model
may be unduly penalized, which could have a detrimental impact on its learning efficiency
and ultimate performance. Moreover, the CIoU loss function may lack the capacity to
generalize in complex mountain fire scene conditions.

To further enhance the model’s performance in the mountain fire detection task, this
paper introduces the WIoU loss function [39] as a replacement for the original loss function.
In calculating the IoU score, the WIoU assigns differential importance to each pair of
predicted and ground truth boxes by incorporating specific weights for the bounding boxes.
This weighted strategy enables the model to evaluate the overlap quality between different
bounding boxes in a more flexible and meticulous manner, rendering it effective in handling
object detection tasks in complex scenes. The WIoU calculation formula is as follows:

WIoU =

n
∑

i=1
wi × IoU(bi, gi)

n
∑

i=1
wi

(17)

where n represents the number of annotated defect boxes; bi represents the coordinates
of the i − th predicted box; gi represents the coordinates of the i − th ground truth box;
IoU(bi, gi) represents the IoU value between the corresponding predicted and ground truth
boxes; and wi represents the weight value.

5. Experiment
5.1. Datasets

To further verify the effectiveness of the improved model in mountain fire detection,
this paper targets forest mountain fires. In order to achieve this, relevant datasets must be
collected, organized, and labeled. Schematic of forest wildfire image acquisition is shown
in Figure 11. These datasets mainly consist of three parts:

(1) A dataset of a real fire scene is presented here. This portion of the data was derived
from video image data collected during on-site inspections and rescue support pro-
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cesses for a number of real mountain fires that occurred in the southwestern forest
region, China’s second-largest natural forest region, since 2018. The videos are con-
verted into frames in order to capture the natural state of the mountain fires and their
impact on the surrounding environment.

(2) The simulated fire scene dataset is as follows: In order to more comprehensively
simulate different types of mountain forest fire scenarios, this study employs the
use of dry tree branches and special smoke devices to simulate fire scenes under
safe and controlled conditions. High-definition cameras mounted on drones are
utilized to collect image and video data of fire smoke diffusion and flame spread from
multiple angles and heights, thereby increasing the diversity and complexity of the
dataset. During the data collection process, we adhered to the requirements of the
Technical Specifications for Drone Surveying of Forest Fires. For simulated general
forest fires, we maintained a drone flight altitude of no less than 80 m above the fire
scene. Aerial images were captured from four directions: east, south, west, and north.
The reconnaissance time, fire line, fire point, smoke point, wind direction indicator,
and other key elements were annotated in the images.

(3) Integration of the public dataset: In order to further enrich the data foundation of this
research and verify the generalization ability of the improved YOLOv8n algorithm
in different fire scenarios, this paper selects and integrates public datasets such as
FLAME [40] and Alert Wildfire [41]. Some datasets examples are shown in Figure 10.

Due to the random nature of mountain fires and the variability in the collection of image
backgrounds, this dataset primarily encompasses bright backgrounds, night-time backgrounds,
and similar scenes of fire and smoke. The specific distribution is presented in Table 1.

In order to enhance the accuracy and robustness of the fire monitoring model, this
research collects a substantial quantity of mountain fire image data and employs the
LABLEIMG tool to meticulously annotate flames and smoke. Furthermore, the model
is capable of distinguishing various fire scene situations, including those with multiple
targets, small targets, targets under occlusion, and images that may be similar to flames and
smoke. Furthermore, in order to enhance the representativeness and comprehensiveness of
the dataset, a series of data augmentation methods have been introduced. These include
image cropping, rotation, flipping, and scaling operations, as well as the use of mosaic
techniques to randomly stitch and combine images. This expands the diversity of mountain
fire image samples and improves the model’s adaptability and generalization ability in
practical applications.

The specific preprocessing steps are as follows:

(1) The original RGB image is converted to a single-channel grayscale image, and Gaus-
sian filtering is applied to the grayscale image in order to reduce the impact of noise
through smoothing.

(2) The image size is randomly changed in order to enable the model to learn flames and
smoke at different scales.

(3) The image is rotated at multiple different angles in order to increase the model’s
ability to identify target orientations.

(4) Mosaic techniques are applied in order to randomly stitch four different images
together in order to enhance the diversity of the dataset.
After the screening process, 25,026 images were obtained, encompassing 52,694 anno-
tation points. The data were divided into three sets: a training set (17,518 images), a
validation set (5005 images), and a test set (2503 images). The ratio of the three sets
was 7:2:1. This division was intended to facilitate comprehensive training, testing,
and validation of the improved YOLOv8 model. Additionally, it allowed for the
evaluation of the model’s effectiveness and reliability in fire detection.
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Table 1. Dataset distribution.

Application Scenario Quantity

Daylight 10,265
Dark 9761

Similar to fire 2157
Similar to smoke 3294

5.2. Experimental Environment

The model was trained using the Windows 10 operating system, an NVIDIA GeForce
GTX 3060 graphics processing unit (GPU), the PyTorch 17.0 deep learning framework, the
Python 3.8 programming language, and the CUDA 10.2 parallel computing platform. The
experiments were conducted with the YOLO8n pre-trained weights. The initial learning
rate was set to 0.01, and the batch size was set to 64.
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5.3. Evaluation Metrics

In order to provide an intuitive and comprehensive evaluation of the performance
of the improved network, this paper employs a range of indicators, including Precision,
Recall, and F1-score, to assess the model’s performance. The calculation formula and its
significance are presented below in Table 2 for clarity.

Table 2. Evaluation Indications.

Indicators Notations Meanings

Precision P = TP
TP+FP

Measures the ratio of correctly identified objects to all objects
identified by the model. A higher precision means fewer false

positives among the objects identified by the model.

Recall R = TP
TP+FN

Measures the ratio of correctly identified objects to all actual
objects. A high recall means that the model can capture more true

objects and reduce false negatives.

F1-Score F1 − score = 2×Precision×Recall
Precision+Recall

A comprehensive indicator reflecting the model’s precision and
robustness, the harmonic mean of precision and recall, used to

comprehensively evaluate the model’s accuracy.

mAP mAP = 1
N

N
∑

i=1
APi

The average of AP values for all categories, providing an overall
measure of the model’s performance across all categories.

Parameters —— The number of parameters that need to be learned in the model,
an important indicator for measuring model complexity.

GFLOPS —— The number of floating-point operations used to measure the
complexity of the algorithm/model.

5.4. Experiment Results
5.4.1. Overall Comparative Analysis of Models

A comparison of the loss curves reveals in Figure 12 that the enhanced YOLOv8 model
demonstrates a notable advantage over the original YOLOv8n model in the context of
mountain fire image detection. In comparison to the original model, the improved model
demonstrates a more rapid rate of convergence during the initial stages of training. This
enables the model to efficiently learn and extract crucial features of mountain fire images,
as well as to swiftly optimize its parameters. Concurrently, the enhanced model exhibits
enhanced stability in the latter stages of training, with diminished fluctuations in the loss
function curve. In contrast, the loss curve of the original model continues to exhibit certain
fluctuations and instability. This indicates that the improved model is capable of continuous
optimization and fine-tuning of parameters, resulting in a stabilized loss function at a lower
level. This, in turn, leads to enhanced robustness and generalizability. Furthermore, the loss
function of the enhanced model reaches a lower value, indicating that it is more adept at
accurately locating and identifying mountain fire targets, thereby reducing the occurrence
of missed detections and false alarms. In conclusion, the enhanced YOLOv8 model exhibits
notable advantages in terms of convergence speed, training stability, and detection accuracy,
rendering it more suitable for the early warning and real-time monitoring of mountain
fires.
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Figure 13 illustrates the change in mAP@50 with the number of iterations (epochs)
during the training process of the enhanced YOLOv8 model (YOLO-CSQ) and the original
YOLOv8 model. It can be observed that at the outset of model training, both models
exhibit a rapid increase in mAP@50. However, the original YOLOv8 model exhibits
considerable fluctuations, with a tendency to stabilize only after 100 rounds. In contrast,
the improved model stabilizes and gradually increases in performance after 50 rounds. In
the middle and later stages, the improved model exhibits a relatively stable trend without
significant fluctuations, indicating enhanced accuracy, stability, and robustness. Following
the unfreezing of the training, both the original model and the improved model exhibited
a slight increase. However, throughout the training process, the MAP@50 value of the
improved model remained consistently higher than that of the original model, ultimately
reaching 96.87%, a notable improvement compared to the original model. This suggests
that the enhanced model exhibits enhanced detection accuracy and is better able to identify
fire targets in images.

Figure 14 illustrates the mAP@50-95 change curve of the enhanced YOLOv8 model
and the original YOLOv8 model throughout the training process. It is evident that during
the initial training stage, both models exhibit a rapid rise, accompanied by varying degrees
of fluctuations. However, after 50 training rounds, the enhanced model outperforms the
original model, demonstrating a consistent and significant improvement in mAP@50-95,
reaching a final value of 76.6%. This indicates that the enhanced model exhibits enhanced
robustness and superior object detection performance.

As shown in Figure 15, a precision–recall curve analysis reveals that the enhanced
YOLOV8 model demonstrates exceptional detection efficacy for flame targets. Throughout
the entire recall interval, precision remains consistently high, exceeding 0.9. Even when
recall approaches 1.0, the model can still maintain a precision of approximately 0.8. This
indicates that while the model is highly accurate in detecting true flame targets, it is also
capable of effectively controlling the false detection rate, thereby ensuring the accuracy
of the detection results. This high-precision detection is of paramount importance for fire
warning and emergency response, providing the most reliable data support for related
decision-making and avoiding the serious consequences that could result from missed or
false alarms.
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With regard to smoke targets, although the overall detection accuracy of the model is
not as high as that of flame targets, the precision–recall curve still presents a relatively full
and smooth shape, without obvious jumps or collapses. This indicates that the model is
capable of maintaining relatively stable detection accuracy for smoke targets at different
recall levels, thereby demonstrating robust performance. In practical applications, even in
the face of complex and changing environmental factors, the model can provide relatively
consistent and credible detection results. In particular, when the recall rate exceeds 0.8,
the precision rate can still be maintained at approximately 0.7, which meets the usage
requirements in the majority of scenarios.
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In conclusion, the precision–recall curve for the improved model demonstrates a high
level of precision and a favorable shape, with a considerable area under the curve. This
indicates that the improved YOLOv8 model achieves high average precision values for both
targets and exhibits excellent detection performance. The curve for flame targets is consis-
tently above that of smoke targets, primarily due to the visual feature differences between
flames and smoke. Flames possess more pronounced and discernible visual characteristics,
including vivid colors, clear textures, and edges, which facilitate the model’s learning
and recognition. In contrast, the visual features of smoke are relatively indistinct and
uncertain, with lower distinguishability from the background, posing greater difficulties
and challenges for detection.

In conclusion, a comparison and analysis of the performance of the original YOLOv8
model and the improved YOLOv8 model on different evaluation metrics reveals the fol-
lowing conclusions: the improved YOLOv8 model demonstrates significant advantages in
precision, recall, and other aspects, thereby substantiating the effectiveness and feasibility
of the improvement strategies in enhancing mountain fire detection performance.

5.4.2. Ablation Experiment

In order to gain a more nuanced understanding of the influence of each improvement
module on the model’s detection performance, this paper presents four sets of ablation
experiments, conducted over 300 iterations under identical parameter settings. The results
obtained are presented in Table 3.

A comparison of the results of the ablation experiments reveals that the detection
performance of the enhanced YOLOv8 model on mountain fire images has been significantly
enhanced. With the original YOLOv8 model serving as a benchmark, the enhanced model’s
mAP is 85.97%, F1 score is 81.34%, model parameter quantity is 11.2M, and computational
complexity is 8.9 GFLOPS.

Table 3. Results of ablation experiments.

Model mAP@50 mAP@50-95 Precision Recall F1-Score Parameters GFLOPs

Original YOLOv8 85.97 75.97 80.34 81.69 81.34 11.2 8.9
+CBAM 87.95 76.12 86.57 84.87 81.35 13.1 7.2

+CBAM + Improved ShufflenetV2 90.85 76.19 87.79 85.76 83.82 5.2 19.3
+CBAM + Improved ShufflenetV2

+Quadrupled ASFF 94.34 76.21 89.95 87.75 87.81 5.7 16.7

YOLO-CSQ 96.87 76.60 93.91 88.87 88.35 5.7 15.9

The introduction of the CBAM attention mechanism into the model resulted in an
increase of 1.98% in mAP@50 and 6.23% in precision. This indicates that by adaptively
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adjusting weights in the channel and spatial dimensions, the model can focus more on the
salient features of fire targets and suppress background interference, thereby improving
detection accuracy. Concurrently, the expansion in parameters is relatively modest, sug-
gesting that the integration of the CBAM module markedly enhances performance without
imposing undue computational burden. Subsequently, the replacement of the original
backbone network with the improved ShuffleNetV2 resulted in an increase in mAP@50
by 2.9%, reaching 90.85%, while the number of parameters was reduced by 60.3% to only
5.2 M. This is due to the unique channel split and shuffle operations of ShuffleNetV2, which
can significantly reduce the number of parameters and computational complexity while
ensuring feature extraction capabilities, thus making the model more lightweight and
efficient. However, it should also be noted that the introduction of grouped convolution
and channel reordering strategies in the improved module has led to additional compu-
tational overhead, significantly increasing the algorithm’s GFLOPS to 19.3, indicating an
increase in computational complexity. Subsequently, the introduction of the enhanced
Quadrupled-ASFF detection head resulted in a 3.49% increase in the model’s mAP@50,
reaching 94.34%. This effectively enhanced the model’s ability to detect small targets and
enhanced the model’s understanding of complex scenes. Finally, the replacement of the
CIoU loss with the WIoU loss resulted in the model’s overall performance reaching its
optimum, with mAP@50 at 96.87% and precision also rising to 93.91%. Furthermore, recall
and F1-score remained high at over 88%. The introduction of weight coefficients in the
WIoU loss function enables the model to focus its learning on targets with ambiguous
features, such as small targets and blurred targets. This results in faster loss convergence
and further improves detection accuracy. It is noteworthy that although the computa-
tional complexity of the model with the WIoU loss function is slightly higher than that of
the model with the improved ShuffleNetV2, it still maintains relatively low parameters,
meeting the requirements for deployment on terminals.

The results of the ablation experiments demonstrate that the model has achieved
notable improvements in accuracy (mAP) and overall performance (F1-score) through the
introduction of the CBAM attention mechanism, an enhanced ShuffleNetV2 backbone net-
work, an optimized ASFF detection head, and a refined loss function. These enhancements
have resulted in a reduction in the model’s complexity while maintaining its efficacy. This
suggests that the enhanced YOLOv8 model exhibits notable advantages in mountain fire
image detection.

5.4.3. Comparison Experiment

To further verify the performance of the improved YOLOV8 network for mountain fire
detection, representative single-stage object detection models, such as SSD and other YOLO
series models, as well as the two-stage object detection model Faster R-CNN, were selected for
comparison experiments. The results of the experimental analysis are presented in Table 4.

Table 4. Summary of multi-model horizontal comparison experimental results.

Model mAP50 mAP50-95 Precision Recall F1-Score Parameters GFLOPs

Faster RCNN 63.40 51.22 57.00 65.91 63.15 137.1 8.1
SSD 60.78 53.54 59.17 55.32 67.29 26.2 9.2

YOLOV5 75.96 68.14 67.26 66.93 69.36 3.2 24.3
YOLOV7tiny 78.21 71.23 71.39 73.14 72.00 13.3 13.7

YOLOV8 85.97 75.97 80.34 81.69 81.34 11.2 8.9
YOLOV9 85.21 74.21 80.68 81.22 80.19 7.1 6.3

YOLOV10 83.54 72.16 79.27 80.57 79.32 15.4 21.6
YOLO-CSQ 96.87 76.60 93.91 88.87 88.35 5.7 15.9

A comparison of the performance of the enhanced YOLOV8 model with that of
other established object detection models in the context of mountain fire detection re-
veals that the enhanced YOLOV8 model exhibits certain advantages in terms of accuracy,
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speed, and model size. Specifically, the mean average precision (mAP) at 50% of the im-
proved YOLOV8n model reaches 96.87%, an increase of 10.9% compared to the original
YOLOV8 and 11.66% higher than the best-performing YOLOV9, reflecting a high level of
detection accuracy. The improved YOLOV8 model also maintains a leading advantage
in mAP@50-95, at 76.60%, indicating that the model performs exceptionally well at dif-
ferent IoU thresholds and has stronger robustness. In terms of precision, the improved
YOLOV8 achieves a score of 93.91%, representing an increase of 13.57% compared to the
original. In contrast, the precision of other models is generally below 82%. These results
demonstrate that the aforementioned optimization measures have a significant impact on
the model’s localization and classification capabilities, resulting in enhanced accuracy in
the detection of fire targets in complex backgrounds. In terms of recall and F1-score, the
enhanced YOLOV8 also maintains a high level of approximately 88%, achieving an optimal
balance between precision and recall, with optimal overall performance.

By comparing model efficiency, it can be observed that the improved YOLOV8 has
only 5.7 M parameters, which is significantly lower than the two-stage Faster R-CNN and
the traditional single-stage SSD. It also outperforms the YOLOV9 and YOLOV10 models in
the same series, making it more lightweight and easier to deploy. The improved model’s
GFLOPs is 15.9, which, although higher than the original YOLOV8 and similar models, is
still lower than YOLOV5 and YOLOV10, placing it at a moderate level. This demonstrates
that the improved YOLOV8 model maintains a high inference speed while enhancing
accuracy, achieving a relatively balanced trade-off between accuracy and detection speed.
The optimization of the model’s performance is mainly attributed to the introduction of
the CBAM attention mechanism, the WIOU loss function, the improved ShuffleNetV2
network, and the use of the Q-ASFF detection head, which enhance feature utilization
while maintaining a certain level of computational complexity.

In conclusion, the series of improvements implemented in the YOLOV8 model in
this paper, including attention mechanisms, backbone networks, detection heads, and
loss functions, have demonstrably enhanced the model’s performance in the mountain
fire detection task. The model outperforms traditional object detection models in key
performance indicators, including accuracy, speed, and model size. It offers an efficient,
accurate, and lightweight solution for the development of a mountain fire monitoring and
early warning system.

5.4.4. Multi-Model Scenario Application Comparison

In order to intuitively demonstrate the superiority of the improved YOLOV8 model
for mountain fire target detection, three groups of typical scenario images were selected:
bright multi-target, complex and dim multi-target, and occluded weak multi-target. A
total of nine models were employed for the detection of mountain fire targets. The models
included in the study were Faster R-CNN, SSD, YOLOV5, YOLOV7, YOLOV8, YOLOV9,
YOLOV10, and the improved YOLOV8. The results are presented in Figures 16 and 17. The
detection results of each algorithm include the recognition of flames and smoke, as well as
the corresponding confidence scores, which are presented in the form of bounding boxes.

Through analysis, it can be found that in the bright multi-target mountain fire scene, all
nine models effectively detect the fire and smoke areas, and the improved YOLOV8 model
maintains a relatively high confidence level. For the small target fire areas in the scene,
Faster R-CNN and SSD do not make effective identifications. Although YOLOV5-V9 can
partially identify the areas where small target fires are located, their range delineation is
relatively rough, and there are omissions. Only the improved YOLOV8 model achieves
precise detection of smoke areas and all weak fire points. In the complex and dim multi-
target scene, due to environmental factors, each model exhibits varying degrees of false
detection and missed detection. For example, the YOLOV8, YOLOV9, YOLOV7tiny, and
YOLOV5 models mistakenly identify the residential area lights on the right side of the
image as flame targets. SSD and Faster RCNN fail to effectively identify the smoke areas
in the image. Although the recently released YOLOV10 model achieves precise detection
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of dim and weak mountain fire targets, its detection range is relatively rough. Only the
improved YOLOV8 model effectively identifies the dim and weak mountain fire targets.
Finally, in the multi-weak target scene with dense smoke occlusion, all models effectively
identify the mountain fire targets. However, YOLOV8 and YOLOV9 have more precise
identification ranges, and the improved YOLOV8 model is the only one that identifies the
weak fire point in the upper right corner based on these results, verifying the detection
performance of the improved YOLOV8 model for partially occluded targets.
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The comparative analysis presented above reveals that the bounding boxes of the
enhanced YOLOV8 model exhibit a greater degree of overlap with the boundaries of the
flame and smoke regions, thereby enhancing the precision of the detection process. In
contrast, other models, such as Faster R-CNN, SSD, and other YOLO series models, generate
bounding boxes that are broader or positionally deviated in complex scenarios, which
can easily lead to missed and false detections. Moreover, the improved YOLOV8 model
exhibits high confidence scores in multiple complex scenarios, thereby demonstrating its
superior reliability and efficacy in reducing false alarms and missed detections in practical
applications. This enhances the model’s practicality in mountain fire detection tasks. It
is noteworthy that the enhanced YOLOV8 model exhibits superior performance in the
detection of small target fires in images, particularly in scenarios with multiple bright
targets and complex, dim, and weak targets. The improved YOLOV8 model is the only one
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that successfully marks all small fire points, thereby enabling early warning of mountain
fires.

6. Discussion
6.1. Results Discussion

The results of multiple comparative experiments demonstrate that the YOLO-CSQ
model proposed in this paper exhibits certain performance advantages in forest fire image
recognition tasks. By optimizing the model structure and training strategies, the enhanced
YOLOV8 model is capable of precise and comprehensive detection of flame and smoke
targets within complex forest fire scenarios. In particular, the YOLO-CSQ model addresses
the limitations of the original model in identifying and detecting small and weak targets.
This results in significantly enhanced detection accuracy and robustness of small ignition
points in fire scenes, providing crucial technical support for early warning and rapid
response to forest fires. In comparison to other prevalent object detection models, the
YOLO-CSQ model exhibits notable advantages in terms of detection accuracy, real-time
performance, and scene adaptability. This evidence substantiates the practical value and
extensive applicability of the YOLO-CSQ model in the domain of forest fire monitoring
and prevention.

6.2. Limitations and Room for Improvement

Although the enhanced YOLOv8 model demonstrates remarkable detection efficacy in
mountain fire detection, it is important to acknowledge that there are still certain limitations
and potential for further improvement. First, in terms of data collection, according to the
requirements of the Technical Specifications for Drone Surveying of Forest Fires [42], for
general forest fires, the flight altitude should be no less than 80 m above the fire scene.
Aerial images should be captured from the east, south, west, and north directions, with
annotations for frontline reconnaissance time, fire points, smoke points, wind direction
indicators, and other key elements. For large and above forest fires, the flight altitude
should be no less than 120 m above the fire scene. Panoramic images of the fire scene
should be captured upon arrival at the fire scene and after the fire is handled, which will
be used for subsequent case studies. For major and especially significant forest fires, the
flight altitude should be no less than 200 m. Oblique photography and 3D modeling
of the fire scene should be conducted to assist the command department in developing
firefighting strategies. However, the data used in this paper, although integrating both
publicly available datasets and self-collected image data, are limited by environmental
conditions. The simulated fire experiments cannot fully cover all UAV fire data collection
scenarios. This limitation indirectly affects the generalization capability and adaptability
of the dataset, which still needs further enhancement. In the future, the integration of the
improved YOLOv8 model with other technologies (such as semantic segmentation and
trajectory prediction) will be considered to achieve more comprehensive and intelligent
mountain fire monitoring and early warning.

7. Conclusions

This paper proposes a multi-scale fire detection algorithm based on the improved
YOLOV8 network as a means of achieving intelligent and rapid inspection of forest fires.
YOLO-CSQ effectively addresses the challenges of severe external interference, the potential
for false alarms, and the occurrence of missed detections in mountain fire detection. The
main work of this paper is as follows:

(1) The CBAM attention mechanism was introduced to enhance the interaction between
cross-scale features, improve the model’s ability to detect multi-scale targets, and
enhance localization accuracy. The ShuffleNetV2 backbone network was improved to
increase the model’s convergence speed and generalization ability. The Quadrupled-
ASFF detection head was introduced to adaptively adjust the fusion weights of differ-
ent scale features. The enhanced detection ability of multi-scale targets, particularly
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those of a small and weak nature, is achieved through the adoption of the WIoU loss
function in place of the original CIoU loss function. This results in an improvement in
the model’s learning efficiency and generalization ability, while simultaneously pro-
viding a more flexible and detailed evaluation mechanism for target detection tasks in
complex scenes or extreme conditions. In comparison to the traditional YOLOV8 net-
work, the enhanced YOLOV8 network exhibits superior detection performance, with
mAP and F1 score improvements of 8.84% and 9.92%, respectively.

(2) In a series of tests conducted on a range of complex scenarios, including bright
multi-target scenes, complex and dim small target scenes, and occluded scenes, the
improved YOLOV8 network demonstrated superior detection performance when
compared with Faster R-CNN, MobileNetV2, SSD, and other YOLO series models.
This network is particularly well-suited to the detection of multi-form fire information
in complex forest mountain fire scenarios, offering a high degree of practicality.
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