
Citation: Zhao, Z.; Wan, Y.; Chen, Y.

Deep Reinforcement Learning-Driven

Collaborative Rounding-Up for

Multi-UAV in Obstacle Environments.

Drones 2024, 8, 464. https://doi.org/

10.3390/drones8090464

Academic Editor: Pablo Rodríguez-

Gonzálvez

Received: 26 July 2024

Revised: 25 August 2024

Accepted: 4 September 2024

Published: 6 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Deep Reinforcement Learning-Driven Collaborative
Rounding-Up for Multiple Unmanned Aerial Vehicles in
Obstacle Environments
Zipeng Zhao 1,† , Yu Wan 1,† and Yong Chen 2,3,*

1 Laboratory for Big Data and Decision, National University of Defense Technology, Changsha 410003, China;
zhaozipeng22@nudt.edu.cn (Z.Z.); wanyu13@nudt.edu.cn (Y.W.)

2 Chengdu Fluid Dynamics Innovation Center No.75, West 2nd Section, 2nd Ring Road, Qingyang District,
Chengdu 610071, China

3 School of Systems Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
* Correspondence: literature_chen@nudt.edu.cn
† These authors contributed equally to this work.

Abstract: With the rapid advancement of UAV technology, the utilization of multi-UAV cooperative
operations has become increasingly prevalent in various domains, including military and civilian
applications. However, achieving efficient coordinated rounding-up of multiple UAVs remains
a challenging problem. This paper addresses the issue of collaborative drone hunting by proposing
a decision-making control model based on deep reinforcement learning. Additionally, a shared
experience data pool is established to facilitate communication between drones. Each drone possesses
independent decision-making and control capabilities while also considering the presence of other
drones in the environment to collaboratively accomplish obstacle avoidance and rounding-up tasks.
Furthermore, we redefine and design the reward function of reinforcement learning to achieve precise
control of drone swarms in diverse environments. Simulation experiments demonstrate the feasibility
of the proposed method, showcasing its successful completion of obstacle avoidance, tracking, and
rounding-up tasks in an obstacle environment.

Keywords: multi-UAV; obstacle avoidance; rounding-up; multi-agent deep reinforcement learning;
soft actor–critic algorithm

1. Introduction

The round up of UAV swarms is a complex and challenging research area that intersects
multiple disciplines, including computer science, control theory, communication technology,
and aerospace engineering. With the rapid advancement of UAV technology, multi-UAV
systems have become a hot topic in both research and application. Compared to single
UAVs, multi-UAV systems exhibit numerous advantages in task execution. Single UAVs are
often limited by endurance, payload capacity, and coverage area when faced with complex
tasks and vast regions. However, multi-UAV systems, through collaborative operations,
can effectively overcome these limitations, enhancing the efficiency and reliability of task
execution. By employing cooperative strategies such as task allocation, path planning,
and formation control, multi-UAV systems can cover larger areas and accomplish more
complex tasks in a shorter time while offering higher redundancy and fault tolerance. These
advantages make multi-UAV systems highly promising in various fields, including military
operations, disaster relief [1], communication services [2], mapping and exploration [3],
resource delivery [4], and agriculture [5]. However, the challenge lies in achieving efficient
control and coordination of UAV swarms in complex environments.

The problem of UAV swarm pursuit involves controlling one or more groups of UAVs
to track and capture targets swiftly and accurately under specific conditions. This problem
encompasses challenges in target tracking, path planning, communication coordination,
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and obstacle avoidance. To address these challenges, researchers need to conduct compre-
hensive investigations from both theoretical and practical perspectives. From a theoretical
standpoint, the pursuit problem of UAV swarms requires knowledge from multiple fields,
including optimization algorithms and control theory. Research in these domains can
provide theoretical support and technical guidance for the pursuit problem of UAV swarms.
Additionally, the study of communication protocols and collaboration strategies among
drones is crucial for achieving efficient collaboration within drone swarms. From a practical
perspective, the pursuit problem of drone swarms needs to be researched and validated
in conjunction with real-world application scenarios. This includes testing and analyzing
the performance parameters of drones, as well as simulating and replicating actual envi-
ronments. Through these experiments and simulations, the effectiveness and feasibility of
proposed control strategies and algorithms can be evaluated.

In the field of UAV cooperative control, traditional optimization algorithms such as
ant colony optimization and wolf pack algorithms face limitations in computation time,
flexibility, and intelligence, which hinder their ability to fully achieve intelligent control
and decision-making in UAV swarms. On the other hand, the recently emerging deep
reinforcement learning (DRL) algorithms, with their powerful high-dimensional perception
capabilities and ability to handle nonlinear problems, have proven effective in a wide range
of tasks, including path planning [6], collision avoidance [7], and autonomous driving [8].
DRL has also seen widespread applications in UAV swarm control. For instance, in [9],
DRL algorithms were used to control multiple UAVs to track a person in an obstacle-laden
environment, and in [10], multiple UAVs were utilized as communication relays, with
DRL algorithms optimizing to maximize the communicable area. Given the extensive
applications of deep reinforcement learning in the multi-UAV domain, DRL can similarly
be effectively employed to accomplish complex tasks involving UAV swarm coordination,
pursuit, and strike missions in challenging environments.

In this paper, our main contributions are as follows:

• We present a collaborative control strategy for unmanned aerial vehicle (UAV) forma-
tions utilizing a multi-agent deep reinforcement learning algorithm. This approach
is designed to address the challenge of coordinating UAV groups for cooperative
rounding-up tasks, with the overarching goal of enhancing strategic control capa-
bilities in battlefield environments and optimizing the efficiency of collaborative
operations within UAV groups.

• We have developed a shared experience data pool that allows each UAV to learn from
the collective experiences of the entire swarm. This shared mechanism enables each
UAV to leverage the operational experiences of others, continuously improving its
own behavioral strategies. This approach significantly enhances the adaptability of
the UAV system in dynamic environments, enabling it to respond more intelligently
to complex scenarios.

• An innovative reward function has been developed to address challenges encountered
by unmanned aerial vehicle (UAV) swarms in diverse scenarios, facilitating the suc-
cessful accomplishment of target missions within a formation. This unique approach
aims to optimize the performance of UAV swarms by tailoring the reward structure to
the intricacies of various situations.

2. Related Work

In this section, we summarize existing works in multi-UAV control. The emerging
paradigm of multi-UAV systems has given rise to a plethora of research avenues, with
the primary focus on three pivotal components: perception, coordination, and naviga-
tion. Within this complex tapestry, the incorporation of neural network controls offers
a promising dimension, enhancing the efficiency and adaptability of multi-UAV operations.
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2.1. Optimization-Based Approach

Researchers have put forward the idea of utilizing traditional optimization meth-
ods to regulate the obstacle avoidance and pursuit of multiple unmanned aerial vehi-
cles (UAVs). Optimization-based approaches have emerged as a robust framework for
controlling multiple drones, employing mathematical techniques to identify the most
optimal solution among a range of viable alternatives. These methods approach the plan-
ning dilemma as a constrained optimization problem with the objective of minimizing a
designated cost function while adhering to constraints such as collision avoidance and
formation maintenance [11–14].

For the obstacle avoidance navigation problem, this can be ensured by hard constraints
that limit the trajectory to a specified convex space [13,15], or by soft constraints that di-
rectly embed the penalty function into the objective function [11]. For optimization-based
controls, it is common to separate mapping, collaboration, and planning tasks from the
broader navigation process. This approach allows for parallel execution across components,
enhancing the transparency and explainability of the overall system. X. Zhou et al. [16]
formulated the cluster control problem of UAV swarms as a multi-objective optimization
problem and improved the multi-objective pigeon-inspired optimization (MPIO) based on
the hierarchical learning behavior of the pigeon swarm to solve it in a distributed manner.
In multi-UAV systems, model predictive control (MPC) is gradually used in various envi-
ronments, including obstacle-free environments, space environments with obstacles [17],
and multi-UAV collision-free trajectory generation [18,19]. Kuriki and Namerikawa [20]
proposed a multi-UAV collaborative formation control strategy based on decentralized
MPC and consensus control with collision avoidance capabilities. Their method ensures
that each UAV can make decisions independently while ensuring the consistency of colli-
sion avoidance coupling constraints.

Regarding the tracking and rounding-up problem, Fei Yu et al. [21] analyzed the pur-
suit process based on differential games, gave a boundary setting process, and determined
the game strategy based on the kinematic characteristics of the aircraft to achieve pursuit
in an obstacle environment. Mikhail Khachumov et al. [22] combined intelligent control
theory and jointly applied precise and precise collective control with flexible intelligent
control to construct a mathematical model of UAV motion and implement pursuit research
in a simulation system. Bingda Tong et al. [23] proposed a method for Harris hawks
(Parabuteo unicinctus) to cooperatively hunt and intercept enemy drones, constructed
a simplified drone guidance model, implemented a lead–follow strategy, and successfully
intercepted enemy drones. Jiaxin Li et al. [24] designed a pursuit avoidance strategy,
combined with the UAV motion control method, and achieved good results in improving
interception time.

The optimization-based approach has undoubtedly elevated the capabilities of multi-
UAV control, encompassing obstacle avoidance, tracking, and rounding-up tasks. However,
this method encounters certain challenges that warrant attention. Particularly, in dynamic
or unpredictable environments, traditional approaches struggle to guarantee the formula-
tion of suitable control strategies at every stage of UAV swarm movement. Consequently,
this limitation can result in errors, delays, and ultimately, catastrophic crashes. Addressing
these challenges is crucial to ensure the safe and efficient operation of UAV swarms in
complex and dynamic scenarios.

2.2. Learning-Based Approach

In recent years, the field of drone control has witnessed significant advancements with
the integration of deep learning and reinforcement learning technologies. Researchers have
increasingly turned to these learning-based approaches to enhance the adaptability and
efficiency of unmanned aerial vehicle (UAV) systems. By leveraging learning methods, it
becomes possible to design an end-to-end controller that directly translates input data into
control commands, thereby greatly enhancing the capabilities and efficiency of the UAV
system. This paper explores the potential of learning-based technologies in improving the
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performance of UAV systems, offering insights into the design and implementation of an
efficient and adaptable end-to-end controller.

Inspired by biological swarm intelligence, Longting Jiang et. al. [25] constructed
a communication multi-agent deterministic policy gradient (COM-MADDPG) framework
to achieve dynamic rounding-up of target points. Chaoxu Mu et al. [26] also proposed
a leader–follower strategy model combined with the actor–critic framework to realize the
formation control problem, which effectively reduces the time complexity compared to
traditional methods. Bo Li et al. [27] considered the relationship between the enemy
and ourselves, designed an alternative maneuver strategy, and trained it using the soft
actor–critic algorithm, which improved the flexibility during the pursuit and achieved good
rounding-up effects. Xiaowei Fu et al. [28] designed a quasi-proportional guidance control
law to generate effective learning samples as an empirical data pool for the DDPG algorithm.
Experimental results show that the trained UAV can quickly track other target points,
improving efficiency. Qianxin Xia et al. [29] proposed a method based on multi-agent
reinforcement learning for formation target capture using an adaptive allocation strategy
to complete the allocation of capture points. The trained strategy model can successfully
capture escape targets through formation. Ruilong Zhang et al. [30] studied the target
pursuit–avoidance problem of multiple quadcopters in an obstacle environment, expanded
the MADDPG algorithm, and constructed a two-way coordinated target prediction network
to ensure the effectiveness in the pursuit and escape process. Yihao Sun et al. [31] proposed
a multi-agent deep deterministic policy gradient algorithm based on attention, which solved
the problem of collaborative tracking control of autonomous driving and showed scalability
in dynamic environments with obstacles. Yuanda Wang et al. [32] proposed a distributed
cooperative pursuit strategy with communication based on reinforcement learning. Based
on the deep deterministic policy gradient (DDPG) algorithm, a novel training algorithm for
ring and leader–follower network topologies was developed. Verified through extensive
simulations, the pursuer can capture agile escapees with a high success rate.

From this perspective, the challenge of cooperative obstacle avoidance and pursuit
among multiple UAVs in a three-dimensional environment have predominantly been
addressed through the utilization of traditional optimization methods, albeit lacking in-
telligent elements. However, the advent of reinforcement learning techniques presents
an opportunity to train more efficient and intelligent control strategies. In light of this,
we propose a novel approach based on deep reinforcement learning to tackle the issue of
multi-UAV collaborative pursuit. By leveraging the power of reinforcement learning, our
method aims to enhance the cooperative capabilities of UAVs in pursuit scenarios, enabling
them to navigate complex environments with greater efficiency and intelligence.

In recent years, reinforcement learning algorithms have been widely applied in decision-
making scenarios, particularly in multi-agent deep reinforcement learning (MARL) [33].
Knowledge transfer mechanisms, including shared buffers, action advising, and experience
sharing, have been extensively explored in the MARL domain. Ming Tan [34] introduced the
concept of shared buffers, where agents improve learning efficiency by sharing experiences.
This approach demonstrated the potential of cooperative agents to outperform independent
agents by leveraging shared experiences in multi-agent environments. Building on this
foundation, recent work has focused on optimizing the conditions under which knowledge
transfer occurs. For example, Tonghao Wang et al. [35] proposed an automated design
of action-advising trigger conditions using a genetic programming-based method, high-
lighting how intelligent advising can further enhance agent performance by dynamically
adjusting advising strategies according to the environment and agent needs. In research
by Tonghao Wang [36] on experience sharing-based memetic transfer learning in MARL
(MeTL-ES), a scalable approach was demonstrated where agents share implicit knowledge
without the computational burden of traditional action-advising methods. Furthermore, in
the work of Songyang Han [37], information sharing in MARL was utilized to enhance the
safety and efficiency of connected autonomous vehicles (CAVs) through innovative tech-
niques such as truncated Q-functions and safe action mapping. These studies all highlight
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the importance of knowledge transfer mechanisms in MARL, providing the basis for our
approach to advance more advanced techniques.

Our contributions are delineated as follows:

• Collaborative control strategy: Unlike existing approaches, our work introduces
a novel multi-agent deep reinforcement learning algorithm specifically designed
for UAV formations. This strategy focuses on the coordination of UAV groups in
cooperative rounding-up tasks, aiming to enhance strategic control capabilities in
complex battlefield environments. The innovative aspect of our approach lies in its
ability to optimize the efficiency of collaborative operations within UAV groups, which
has not been fully addressed in the literature.

• Shared experience data pool: We have developed a shared experience data pool that
enables each UAV to not only make independent decisions and analyses but also
learn from the experiences of the entire UAV swarm. This shared mechanism allows
each UAV to leverage the operational experiences of others, continuously refining its
own behavioral strategies. This approach significantly enhances the UAV system’s
adaptability in dynamic environments, enabling it to respond more intelligently to
complex scenarios, marking a substantial advancement over traditional methods.

• Innovative reward function: Our work also introduces an innovative reward function
tailored to the challenges faced by UAV swarms in diverse operational scenarios. This
reward function is specifically designed to optimize UAV swarm performance, ensur-
ing successful mission completion within a formation. The novelty of our approach
lies in its customization of the reward structure to account for the complexities of
various situations, which we believe sets our work apart from other reinforcement
learning-based UAV decision-making approaches.

3. Preliminaries
3.1. Problem Scenario

In this paper, we intend to solve the problem of cooperative obstacle avoidance and
round up of UAV swarms. This task can be divided into UAV formation coordination, UAV
swarm obstacle avoidance, and UAV swarm rounding-up.

UAV swarm coordination is an effective approach for multiple drones to collabora-
tively and efficiently accomplish tasks. This relies on utilizing cameras and sensors within
the drone cluster to gather crucial information, such as the position and velocity of nearby
aircrafts. By maintaining a safe distance from each other, the swarm can navigate seamlessly
during mission execution. Collaborative drone swarms improve task efficiency, enhance
system reliability, and meet mission requirements in complex environments. In addition to
collaborative tasks, drone swarms also need to consider obstacle avoidance to ensure safe
navigation in challenging environments. This strategy enables drones to detect and evade
obstacles while maintaining a safe distance, thereby enhancing the safety and efficiency
of the drone swarm. Furthermore, drone swarms effectively encircle and capture target
objects during pursuit missions. This is particularly useful for tracking and capturing
dynamic and static moving targets, such as escaping vehicles, pedestrians, or other drones.
Applying these capabilities to various domains, including security surveillance, border
patrol, and crime prevention, can significantly improve the success rate and efficiency of
these operations.

Overall, cooperative obstacle avoidance and rounding-up of UAV formations enables
UAV swarms to operate effectively in diverse and challenging environments. We expect to
combine the UAV swarm control decision-making model to complete obstacle avoidance,
tracking, and rounding-up tasks. To this end, we designed a schematic diagram of UAV
cooperative obstacle avoidance and rounding-up in an urban scene, as shown in Figure 1.
Among them, the overall task can be divided into two sub-tasks, as shown in Figure 2,
where (a) is the formation reconstruction process of the UAV group after avoiding obstacles,
and (b) is the process of the UAV group chasing and surrounding the target point.
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Figure 1. Problem scenario considered in this article.

(a)

(b)

Figure 2. UAV swarm obstacle avoidance and rounding-up. (a) The UAV swarm in formation to
avoid obstacles. (b) The UAV swarm chasing and rounding-up at the target point.

3.2. Problem Formulation

In this section, we present a comprehensive analysis of the problem of UAV swarm
cooperative rounding-up, taking into account necessary assumptions and mitigating influ-
ential factors. Additionally, we provide a concise yet effective design of the experimental
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scene. Furthermore, we establish a robust flight control model for the UAV, serving as
a fundamental framework for subsequent experiments. By addressing these crucial aspects,
we aim to lay a solid foundation for our research and facilitate a deeper understanding
of the cooperative pursuit dynamics within UAV swarms. In this study, we address the
challenge of coordinating a multi-UAV swarm to pursue a mission target point within an
obstacle environment. In real-world mission scenarios, the drone swarm and the target
point are subject to various external factors, such as wind and gravity. However, to en-
sure the research aligns with our objectives, we focus solely on the kinematic model of
UAV speed and acceleration during the simulation process. By eliminating extraneous
factors, we aim to achieve precise motion control of the UAVs. The speed of the UAV
can be expressed as v =

(
vx, vy, vz

)
, and the acceleration of the UAV can be expressed as

a = (ax, ay, az).
In this experiment, during the movement of the UAV swarm, we regard each UAV as

a particle. The kinematic equation of UAVs in a three-dimensional space environment can
be expressed as follows: 

Xt+dt = Xt + vx ∗ dt + 1/2 ∗ ax ∗ dt2

Yt+dt = Yt + vy ∗ dt + 1/2 ∗ ay ∗ dt2

Zt+dt = Zt + vz ∗ dt + 1/2 ∗ az ∗ dt2

(1)

In Equation (1), Xt, Yt, Zt represent the spatial coordinates of the UAV at time t, where
Xt is the coordinate along the x-axis, Yt is the coordinate along the y-axis, and Zt is the
coordinate along the z-axis. Xt+dt, Yt+dt, Zt+dt represent the spatial coordinates of the UAV
at time t + dt, indicating the new position after a time increment dt. vx, vy, vz represent the
velocity components of the UAV along the x-axis, y-axis, and z-axis at time t, respectively.
ax, ay, az represent the acceleration components of the UAV along the x-axis, y-axis, and
z-axis at time t, respectively. dt denotes the time increment, which is the elapsed time from t
to t + dt. 1/2 ∗ ax ∗ dt2, 1/2 ∗ ay ∗ dt2, 1/2 ∗ az ∗ dt2 represent the displacement components
caused by the accelerations ax, ay, az over the time increment dt. These are derived from
the equations of motion for uniformly accelerated linear motion. The kinematic model of
UAV is shown in Figure 3.

Figure 3. The kinematic model of the UAV.
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To enhance the realism of our UAV model, we introduce a threat area concept, which
establishes a radius around each UAV. This area serves as a boundary within which any
approaching obstacle or aircraft is deemed a potential threat to the UAV. The threat area
is defined by two parameters: the maximum threat distance, denoted as Rmax, and the
minimum threat distance, denoted as Rmin. Figure 4 provides a visual representation of the
threat area, illustrating its schematic diagram. By incorporating this concept, we aim to
simulate real-world scenarios where UAVs must navigate and respond to potential threats
in their surroundings.

Figure 4. Visual representation of the threat area.

In our research, we introduce a critical distance parameter, denoted as Rmin, which
determines the collision threshold between the drone and any obstacle or approaching
aircraft. If the distance between the drone and an object falls below Rmin, it is considered
a collision, resulting in the drone crashing. Additionally, we define a capture criterion
based on the target point’s position within the internal area of Rmax. If the target point
remains within this region for a significant duration, we conclude that the UAV swarm has
successfully captured it. These criteria play a crucial role in evaluating the performance
and effectiveness of the UAV swarm in pursuit missions.

In response to the above problem of cooperative obstacle avoidance and rounding-up
of UAV groups, we define the following constraints:

∥Pi − Pg∥ ≤ dgoal , i = 1, 2, ..., N

Rmin ≤ ∥Pi − Pj∥ ≤ Rmax, i, j = 1, 2, .., N; i ̸= j

∥Pi − Pobs∥ ≥ dobs
min, i = 1, 2, ..., N

|Vuav| ≤ Vmax

(2)

where Pi = (xi.yi, zi), Pj = (xj, yj, zj) represent the position of the drone; Pg = (xg, yg, zg)
represents the position of the target point; Pobs = (xo, yo, zo) represents the position of the
obstacle; we consider dgoal to be the target area of the drone; Rmin and Rmax define the safe
area between drones; and dobs

min means that the drone will not collide with obstacles. Finally, to
consider drone safety issues, we also set an upper speed threshold Vmax for the drones.

4. Approach

In this section, we provide a comprehensive analysis of approaches to solving the
rounding-up problem in obstacle spaces by leveraging UAV formations. We delve into
the details of deep reinforcement learning-based methods, providing a comprehensive de-
scription of each aspect. These include an introduction to the basic theory of reinforcement
learning, the design of the swarm control decision model, the architecture of the training
network, the configuration of the UAV swarm reward function, and the pseudocode for
the implementation of our algorithm. By illuminating these key components, we aim
to provide a comprehensive understanding of the proposed approach and its potential
implications in solving the rounding-up problem.
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4.1. Multi-Agent Deep Reinforcement Learning

Multi-agent deep reinforcement learning is a powerful approach to address the chal-
lenge of control decision-making for multiple agents in collaborative or competitive envi-
ronments. Unlike traditional reinforcement learning, where agents operate independently
and solely consider their own states and actions, multi-agent deep reinforcement learning
enables agents to collaborate or compete with each other in order to achieve a shared
objective or maximize their individual returns. This methodology is particularly relevant
in real-world scenarios where agents must work together or engage in competition to
accomplish common goals.

In the realm of multi-agent decision-making, the effective sharing of data among
agents and the enhancement of overall decision-making performance are crucial. To
achieve this, we propose the establishment of a comprehensive shared experience and
information buffer, which undergoes continuous optimization strategies to improve its
control capabilities. In complex environments, where multiple agents are involved, the state
input can be represented as s = [s1, s2, . . . , sn], while the action output can be expressed
as a = [a1, a2, . . . , an], with n denoting the number of agents. Each agent is driven by
a common task goal and aims to maximize its individual reward return. By executing
the strategy πθ(st|at), the state transitions from st to st+1, and each agent receives its own
reward r. Consequently, the overall reward value ∑ r can be calculated. Our primary
objective is to maximize the task reward income, expressed as max ∑ (r|s, a).

4.2. Soft Actor–Critic Algorithm

The soft actor–critic algorithm (SAC) is a deep reinforcement learning algorithm that
integrates the principles of policy gradient and Q-learning. By incorporating entropy
regularization, SAC enhances the exploration and learning capabilities of the agent while
ensuring policy stability. This algorithm serves as a powerful tool for addressing complex
decision-making problems in various domains. Through the combination of policy gradient
and Q-learning, SAC offers a comprehensive framework for optimizing the agent’s behavior
and achieving efficient policy convergence. The introduction of entropy regularization
further enriches the algorithm’s ability to explore the environment and adapt to dynamic
scenarios. As a result, SAC stands as a significant advancement in the field of deep
reinforcement learning, with promising applications in diverse domains.

The soft actor–critic (SAC) algorithm is a prominent approach in the field of rein-
forcement learning, aimed at learning the optimal action strategy by optimizing both the
strategy and value function. The primary objective of the policy function optimization
is to maximize the weighted sum of the expected return and entropy. This optimization
goal is encapsulated in the objective function, which can be mathematically expressed as
follows [38]:

J(π) = Eπθ
[
T−1

∑
t=0

rtR(st, at) + αH(π(·|st))] (3)

The policy function is optimized to maximize the weighted sum of the expected
return and entropy, striking a balance between exploration and exploitation. The ex-
pected return is computed using a value function estimator, while the entropy value
serves to encourage exploration and prevent the strategy from becoming overly determin-
istic. By adjusting the weight of entropy, we can effectively control the trade-off between
exploration and exploitation.

The optimization goal of the value function is to minimize the mean square error of the
value function so that it can accurately estimate the value of the state–action pair. We define
the value function to be parameterized by ψ, and we learn the training value function by
minimizing the squared residual, which can be expressed as follows [38]:

JV(ψ) = Est∼D[
1
2

(
Vψ(st)− Eat∼πϕ

[
Qθ(st, at)− logπϕ(at|st)

])2
] (4)
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The soft actor–critic (SAC) algorithm incorporates two value function estimators to
enhance learning ability and stability. The primary value function estimator is responsible
for estimating the value function, while the secondary estimator is utilized for calculating
the target value. This dual-Q network structure effectively reduces the estimation error of
the value function, leading to improved performance. By employing two value function
estimators, the SAC algorithm mitigates the overestimation bias commonly observed in
single-estimator approaches. The main value function estimator is updated based on the
temporal difference error, while the target value is computed using the secondary estimator.
This separation of estimation and target calculation helps to stabilize the learning process
and improve the accuracy of value function estimation. Furthermore, the SAC algorithm
incorporates a target entropy regularization term to encourage exploration and prevent
premature convergence. By maximizing the entropy of the policy distribution, the algorithm
promotes exploration in the early stages of learning, facilitating the discovery of optimal
action strategies.

Based on an understanding of the above formula, training the value function network
needs to minimize the squared difference between the prediction of the value network and
the expected prediction of the Q function. By deriving the above formula, we can obtain
the following:

∇̂ψ JV(ψ) = ∇ψVψ(st)(Vψ(st)− Qθ(st, at) + logπϕ(at|st)) (5)

The training Q function is based on the following equation:

JQ(θ) = E(st ,at)∼D[
1
2
(
Qθ(st, at)− Q̂(st, at)

)2
] (6)

where Q̂(st, at) = r(st, at) + γEst+1∼p[Vψ̄(st+1)]. Bringing this into the above formula
results in the following:

JQ(θ) = E(st ,at)∼D[
1
2

Q(st, at)− r(st, at) + γEst+1∼p[Vψ̄(st+1)]] (7)

In order to use the gradient strategy for training, we can derive the above formula
as follows:

∇̂θ JQ(θ) = ∇θQθ(st, at)(Qθ(st, at)− r(st, at)− γVψ̄(st+1)) (8)

The training policy network is based on the following formula:

Jπ(ϕ) = Est∼D,ϵt∼N
[
logπϕ

(
fϕ(ϵt, st)

∣∣st
)
− Qθ

(
st, fϕ(ϵt, st)

)]
(9)

where at = fϕ(ϵt, st). To train it using the gradient strategy, we differentiate it as follows:

∇̂ϕ Jπ(ϕ) = ∇ϕlogπϕ(at|st) + (∇at
logπϕ(at |st) −∇at Q(st, at))∇ϕ fϕ(ϵt, st) (10)

During the training process, the stochastic gradient descent method is commonly
employed to update both the policy network and the value function network. As the
multi-agent interacts with the environment, the collected experience data are stored in
a buffer. These data play a crucial role in calculating the loss values of the policy function
and the value function. Subsequently, the network parameters are updated using the
backpropagation algorithm, aiming to minimize the loss function. This iterative process
facilitates the refinement and optimization of the policy and value function networks,
enhancing the overall training performance.

4.3. Network Architecture

This paper presents a novel approach utilizing two deep neural networks (DNNs) to
train actor networks and critic networks. The architecture of the networks is illustrated
in Figure 5. In the actor network, the input data are passed through a four-layer neural



Drones 2024, 8, 464 11 of 26

network with dimensions Linear [18, 128], Linear [128, 128], Linear [128, 64], and Linear
[64, 2], along with the LeakyReLU activation function, to derive the corresponding strategic
actions. On the other hand, the critic network processes the input data through a four-layer
neural network with dimensions Linear [128, 128], Linear [128, 64], Linear [64, 32], and
Linear [32, 1], along with the LeakyReLU activation function, to estimate the evaluation
value of the corresponding state–action pair.

Figure 5. The architecture of the network.

In the actor network, empirical information observations obtained from the interaction
between the UAV group and the environment are taken as input. The output of the actor
network consists of a mean vector and a standard deviation vector. These vectors are
used to determine a Gaussian distribution, representing the strategy π(µ, σ). Subsequently,
an action is sampled from this distribution.

On the other hand, the critic network takes the status and actions of the drone swarm
as input and outputs a value function that evaluates the current status and actions. The
training objective of the critic network is to minimize the mean square error of the value
function and reduce the discrepancy between the predicted value and the true value of the
value function.

By simultaneously training the actor and critic networks using the SAC algorithm,
policy learning and value function learning are implemented. At each time step, the actor
network selects an action based on the Gaussian distribution generated by the mean and
standard deviation vectors. The resulting interaction with the environment provides the
next state and reward. The critic network evaluates the value of the next state, and the TD
(temporal difference) error is computed. The parameters of the critic network are updated
based on this error, improving the accuracy of the value function prediction. Additionally,
the output of the critic network serves as the advantage function for the actor network.
The actor network parameters are updated using the gradient of the advantage function,
enhancing the strategy.

Overall, this research paper presents a comprehensive framework that combines
actor and critic networks to optimize the decision-making process of a UAV group in
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an interactive environment. The proposed approach demonstrates promising results in
improving the performance and efficiency of the UAV group.

4.4. Reward Function

In order to assess the learning performance of drone swarms in the context of swarm
rounding-up, it is crucial to establish a reliable measure of success. To address this, this
research paper introduces a novel reward function that serves as an evaluation metric for
the drones’ learning capabilities.

The defined reward function takes into account various factors that contribute to the
overall success of the drone swarm. These factors include the efficiency of the swarm in
completing the rounding-up task, the accuracy of the drones’ actions, and coordination
and collaboration among the individual drones. By considering these key aspects, the
reward function provides a comprehensive assessment of the learning performance of the
drone swarm.

In the experimental setup, we defined the operating space as a 30 × 30 area, with each
UAV having a radius of 1, a safety distance of 1.2, and a maximum speed of 2. Obstacles in
the environment were also assigned a radius of 1. In the context of a rounding-up mission,
drones play a crucial role in starting from a designated point, reaching the target location
for rounding-up, and executing precise directional strikes. Throughout the itinerary of the
drone group, several factors require careful consideration, including maintaining a proper
formation, avoiding obstacles, and ensuring the successful completion of the rounding-up
task. To effectively evaluate the performance of the drone group based on these aspects, a
mixed reward function is proposed in this research paper:

r = rg + ra + r f + rs (11)

where rg represents the reward obtained by the UAV group reaching the rounding-up target
position, ra represents the reward obtained by the UAV group avoiding collision during
the march, r f represents the reward obtained by the UAV group maintaining the formation
during the march, and rs represents the reward obtained by controlling the speed of the
drone swarm approaching the target position.

Based on the environmental parameter settings, we consider a UAV to have reached
the target when it is within a distance of 2 from the target point. Additionally, we describe
the UAV’s progress toward the target using a negative scoring function. Furthermore, we
define the UAV’s heading as moving toward the target when the heading angle is less
than 70◦. The UAV’s performance is considered optimal when the heading angle is less
than 40◦—this parameter was refined through continuous adjustments based on training
outcomes. The reward rg for the UAV swarm reaching the rounding-up target position
consists of two parts. One part is the reward obtained when the position is closed, and
the other part is the reward obtained when the angle towards the target position is correct,
which can be expressed as follows:

rg = rgoal + rangle (12)

where

rgoal =

{
−dg/14 + 1 dg > 2

+100 dg ≤ 2
(13)

rangle =


0 angle ≤ 40◦

−1.5 40◦ < angle ≤ 70◦

−3 else
(14)

Considering the parameters of the UAVs and obstacles, we determined that if the
edge-to-edge distance between UAVs, or between a UAV and an obstacle, is greater than
0.2—meaning the center-to-center distance between UAVs is greater than 2.2—then the
UAVs are within a safe distance. Additionally, we consider that when the distance between
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UAVs is less than 0.5, or the distance between a UAV and an obstacle is less than 1.2, the
UAV is deemed to be at serious risk of damage, and a significant negative reward is applied.

The reward ra obtained by the UAV swarm to avoid collision during its travel is set
based on the relative distance do between the UAV swarm and the obstacle, which can be
expressed as follows:

ra =


−100 do ≤ 1.2
−30 1.2 < do ≤ 1.5
−20 1.5 < do ≤ 2.2

0 else

(15)

The reward r f obtained by the UAV swarm maintaining the formation during the march
is based on the relative distance du within the UAV swarm, which can be expressed as follows:

r f =


−50 du ≤ 0.5
−8 0.5 < do ≤ 1.3
−4 1.3 < do ≤ 2.2

0 else

(16)

Regarding speed, our goal is to keep the drone close to its maximum speed while
maintaining a certain margin, so we assign a positive reward when the speed is below 1.8
and a large negative reward when the speed exceeds 2.2.

The reward rs obtained by the speed control of the UAV group approaching the target
position is based on the speed vu setting of the UAV when the UAV group approaches the
target position, which can be expressed as follows:

rs =


0 0 < vu ≤ 1.8

−2.0 1.8 < vu ≤ 2.2
−6.5 vu > 2.2

(17)

In this section, we propose the implementation of a mixed reward function to eval-
uate the performance of drone clusters in rounding-up missions. The reward function
takes into account various factors such as obstacle collisions, aircraft collisions, and yaw
flight, assigning a negative reward value in these instances, which ultimately leads to
mission failure. However, this approach also serves the purpose of optimizing the overall
strategy employed.

4.5. Swarm Control Algorithm

In this study, we employed the soft actor–critic (SAC) algorithm as the foundation
for our control strategy. The pseudocode for the training algorithm is outlined as follows.
Initially, the network undergoes a random initialization process, setting the starting and
ending mission coordinates for the UAV formation. Subsequently, the process enters a loop
where the drone utilizes visual information to make decisions and execute actions based
on factors such as the proximity between adjacent drones, obstacles, and target points.
These actions lead to transitions to the next state, accompanied by corresponding rewards.
Furthermore, we store the previous state value, action value, reward value, current state
value, and completion signal value in a cache space, which is then utilized for network
training through value sampling. Notably, information sharing is facilitated among the
drones within this system. The overall algorithm is described in Algorithm 1, providing
a comprehensive overview of the methodology employed in this research.
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Algorithm 1: Soft Actor–Critic (SAC) Algorithm for Multi-UAV Flocking
Rounding-Up.

Input: Iterations MAX_EPISODE, MAX_STEP_SIZE;
Initialize actor network πθ and critic network q1 and q2;
for episode=1 to MAX_EPISODE do

Initialize the initial and final position coordinates of each UAV;
for step = 1 to MAX_STEP_SIZE do

for each UAV (e = 1 to 5) do
Calculate current observation st;
Determine if collision has occurred and if the destination has been
reached;

end
Determine action at by executing πθ ;
Execute a in the environment;
if the size of memory > 10000 then

Randomly sample a batch of transitions (st, at, r, st+1, d) from buffer;
Compute targets for the Q functions;
Update Q-functions (q1 network and q2 network) parameters;
Update policy (πθ network) weights;
Adjust temperature α;
Update target network weights;

for each UAV (e = 1 to 5) do
Observe the next state st+1, the reward r, and the done signal d to
indicate whether st+1 is terminal;

Store data (st, at, r, st+1, d) in replay buffer;
end
if All reached then

Initialize the initial and final position coordinates of each UAV;
end

end
Output: Trained actor network πθ

5. Experiment and Result Analysis

In this section, we present a comprehensive evaluation of our novel multi-UAV for-
mation control, cooperative rounding-up, and obstacle avoidance methods. To assess the
effectiveness of our approach, we conducted experiments using the Gazebo9 simulation
environment. Gazebo is a highly advanced platform that offers a realistic simulation
environment closely resembling the physical characteristics of real-world robots. In this
evaluation, we focus on the performance of the controller trained using the soft actor–
critic (SAC) algorithm and compare it with other state-of-the-art reinforcement learning
algorithms. Through rigorous comparison and verification, we demonstrate that our pro-
posed system outperforms existing methods. To further validate the functionality of our
designed system, we devised two complex mission scenarios for evaluation: (1) fixed-
point rounding-up, and (2) dynamic tracking and rounding-up. These scenarios provide
a comprehensive assessment of the system’s capabilities and showcase its potential in
real-world applications.

Fixed-point rounding-up and strike can be explained as knowing that the target point
needs to be hit and sending a drone group to round up and strike the target point. Dynamic
tracking and rounding-up can be explained as knowing the movement trajectory of the
target point to be hit and sending a group of drones to track and round up the moving
target point.
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5.1. Experimental Parameters and Hardware Settings

In our simulation environment, we configured a drone swarm consisting of five
drones, each equipped with two simulated cameras: a grayscale camera and a stereo
camera. The grayscale camera is capable of recording grayscale images at a resolution of
720 × 540 pixels, with a frame rate of 20 frames per second. On the other hand, the stereo
cameras capture depth images at a resolution of 224 × 224 pixels, also at a frame rate of
20 Hz. These cameras work in conjunction with an onboard PyTorch-based end-to-end
controller, which is responsible for controlling the drones. The drone swarm relies on visual
perception to gather information about nearby drones and obstacles and utilizes obstacle
avoidance and rounding-up actions to earn rewards. In the experimental setup, we trained
the system within a 30 × 30 area ({(x,y)| −20 ≤ × ≤ 10, −20 ≤ y ≤ 10). We deployed five
UAVs, each with a radius of 1 m. To ensure collision avoidance, a safety distance of 1.2 m
was maintained, and the maximum speed was capped at 2 m. Additionally, four cylindrical
obstacles with a radius of 1 m each were placed within the environment. During the
training process, the start and end points were randomly generated to enhance the system’s
adaptability and intelligence. For a detailed overview of the environmental parameters
used in our experiments, please refer to Table 1.

Table 1. Environment parameter settings.

Parameters Value

Regional space {(x,y)| −20 ≤ x ≤ 10, −20 ≤ y ≤ 10}
Number of obstacles 4

Radius of obstacle 1
Number of target points 1

Number of drones 5
Radius of the drone 1

Drone maximum speed 2

In the experiment, the PPO algorithm, DDPG algorithm, and SAC algorithm were
used to train the strategy. During the training process, batch size is the number of samples
extracted from the experience pool during each training of the UAV, and discount rate
represents the number of samples taken when calculating the loss value, or the discount
on future rewards. The optimization algorithm is the Adam algorithm, the initial value of
the entropy regularization coefficient is 1, the target entropy value is −2, etc. The specific
parameter settings are shown in Tables 2–4.

When training the policy model, we used the PyTorch framework to design the neural
network model and optimizer. The CPU was Intel@Xeon Silver 4210R 2.4G, 10C/20T, and
the GPU was NVIDIA RTX 3090-24G, which was used to accelerate the training of the
policy network. The computer memory was 32G.

Table 2. SAC algorithm parameter settings.

Parameters Value

Number of training rounds 2000
Batch size 500

Maximum number of steps 600
Experience pool size 800,000
Actor learning rate 0.0001

Evaluator learning rate 0.0002
α learning rate 0.0001

Init alpha 1
Target entropy −2
Discount rate 0.98
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Table 3. DDPG algorithm parameter settings.

Parameters Value

Number of training rounds 2000
Batch size 500

Maximum number of steps 600
Experience pool size 800,000
Actor learning rate 0.0001

Evaluator learning rate 0.0002
α learning rate 0.0001

Init alpha 1
Target entropy −2
Discount rate 0.98

Table 4. PPO algorithm parameter settings.

Parameters Value

Number of training rounds 2000
Batch size 500

Maximum number of steps 600
Actor learning rate 0.0001

Evaluator learning rate 0.0002
Update times 10

Clipping value 0.2
Attenuation coefficient 0.99

Discount rate 0.98

5.2. Results and Analysis

In this section, we present the configuration of our experimental task environment,
which is based on the description provided in the previous section. We proceed to display
and analyze the experimental results obtained from the drone swarm. The primary objec-
tive of the swarm is to learn and explore, with the aim of achieving formation, obstacle
avoidance, and tracking and rounding-up capabilities. To facilitate the training process of
the strategy, we devised a hybrid reward function that assigns appropriate rewards and
penalties to the UAV swarm. Additionally, we conducted tests to evaluate the performance
of the resulting policy in completing tasks within an obstacle environment.

5.2.1. Learning Curve

In this article, we utilize three currently mainstream reinforcement learning algorithms
(SAC algorithm, DDPG algorithm, and PPO algorithm) to solve the drone swarm rounding-
up problem. It should be noted that we ensured that the three algorithm training strategies
achieved convergence. Based on the reward function mentioned in the previous article, we
measured the rewards obtained by the five drones in each episode and drew a learning
curve to evaluate whether the five drones could perform better in the current policy
network. During the training process, the fluctuations in the reward function curve were
normal. These fluctuations typically arise from the algorithm’s exploratory phase, where
various action combinations are attempted; the complexity of the tasks being tackled; the
inherent randomness of the environment; and the non-linear nature of the problems being
addressed. As shown in Figure 6, the polyline represents the cumulative rewards obtained
by the five drones in the current mission space at the end of each episode of training,
where (a) is the learning curve of fixed-point rounding-up, and (b) is the learning curve of
dynamic rounding-up. As can be seen from Figure 6, under the same important parameter
settings, whether it is a static tail scene or a dynamic rounding-up scene, the SAC algorithm
can obtain higher rewards than the DDPG algorithm and the PPO algorithm.
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(a) (b)
Figure 6. Learning curve of rounding-up. (a) The learning curve of fixed-point rounding-up. (b) The
learning curve of dynamic rounding-up.

5.2.2. Simulation Results and Visual Analysis

In order to test the performance of each strategy, we saved the previously trained
control strategy model, then carried out the UAV’s fixed-point rounding-up and dynamic
tracking rounding-up and strike missions and analyzed its flight trajectory.

A. UAV Swarm Fixed-Point Rounding-up and Strike Mission Test

The UAV group-targeted rounding-up strike mission is a military action that uses a
group composed of multiple UAVs to round up and strike specific targets. In this type of
mission, using information from onboard sensors, the drone swarm will work together to
round up the target in a specific area, prevent it from escaping or administering further
damage, and then strike the target in order to destroy or neutralize the target.

The flight trajectory is shown in Figure 7. It can be seen from the figure that, in the
beginning, there was a certain distance between the UAV group and the target point, and
there were obstacles in the way. As our UAV group adjusted, it gradually approached the
enemy and finally moved around the enemy’s strike point, maintaining a certain distance
from the target point and rounding-up the target in a specific area.

(a)

Figure 7. Cont.
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(b)

(c)

Figure 7. UAV swarm obstacle avoidance and fixed-point rounding-up test. (a) Test with PPO
algorithm. (b) Test with DDPG algorithm. (c) Test with SAC algorithm.

Figure 7 illustrates the fixed-point search process of three algorithms across four
directions. Panels (a), (b), and (c) show the motion trajectories of the PPO, DDPG, and SAC
algorithms, respectively, in the upward, downward, leftward, and rightward directions.
The PPO algorithm struggles with the fixed-point roundup task, demonstrating subpar
performance. While the DDPG algorithm completes the task, it fails to produce optimal
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movement trajectories. In contrast, the SAC algorithm excels in both obstacle avoidance
and fixed-point rounding-up tasks, delivering consistently smooth and efficient trajectories.

B. UAV Swarm Dynamic Tracking, Rounding-up, and Strike Mission Test

UAV group dynamic tracking and rounding strike missions refer to military actions
that use a group composed of multiple UAVs to track, round-up, and strike moving targets
in real time. In this kind of mission, we have anticipated the enemy’s movement, and
under the condition of avoiding obstacles, the drone swarm works together to round-up
the dynamic target, force it to stop, or directly destroy it.

The flight trajectory is shown in Figure 8. It can be observed from the figure that with
time, the UAV group constantly adjusts its direction and speed, gradually approaches the
moving enemy target point, reduces the distance from the enemy target point, and finally
successfully captures the enemy target.

(a)

Figure 8. Cont.
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(b)

Figure 8. Cont.
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(c)

Figure 8. UAV swarm dynamic obstacle avoidance and rounding-up test with three algorithms (The
scenes of the 100th, 150th, 200th, 300th, and 600th steps in the exercise process are shown, respectively).
(a) Test with PPO algorithm. (b) Test with DDPG algorithm. (c) Test with SAC algorithm

Figure 8 shows the movement trajectories of five drones and three algorithms chasing
the target point in the dynamic rounding-up scene, where (a) is the test trajectory diagram
of the PPO algorithm, (b) is the test trajectory diagram of the DDPG algorithm, and (c) is
the test trajectory diagram of the SAC algorithm. Three of the algorithms intercepted the
trajectory state diagrams when step = 100, 150, 200, 300, and 600, respectively.

As can be seen in Figure 8, in the PPO algorithm, the UAV swarm cannot successfully
bypass obstacles and collide with obstacles. Although there is a tendency to move closer to
the target point, it cannot successfully complete the dynamic round-up task. In the DDPG
algorithm, the UAV swarm can successfully bypass obstacles and complete the round-up
task, but the internal distance of the UAV is not maintained very well, and there is a risk of
collision. In the SAC algorithm, the UAV swarm can complete the obstacle avoidance and
round-up tasks very well, and the obstacle avoidance and round-up trajectories are also
more in line with the ideal state.

To summarize, by testing the effects of the three algorithms in two rounding-up
scenarios, we found that compared to the PPO algorithm and DDPG algorithm, the SAC
algorithm can complete these tasks better. The SAC algorithm can be completed faster and
better in both fixed-point rounding-up tasks and dynamic rounding-up tasks, while PPO is
not suitable for these tasks.

5.3. Evaluation Metrics

To assess the efficacy of the three algorithms in both fixed-point and dynamic round-
up tasks, we devised three key performance indicators: efficiency, safety, and energy
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consumption. By leveraging these indicators, we aim to discern which algorithm is better
suited for the specific demands of this application scenario.

5.3.1. Efficiency Assessment

In terms of efficiency, we measured the number of steps taken by various algorithms to
complete the two tasks, with each step set at 0.05 s. A shorter acquisition time indicates that
the algorithm is capable of quickly identifying and rounding-up the target. Among them,
we believe that a distance of 2 m from the target point represents a successful rounding-up.

Figure 9a–c represent the changes in the distance of the drone swarm to the target
point over time in the fixed-point rounding-up mission of the three algorithms, respectively.
It can be observed that the three algorithms are all approaching the mission target point, but
the UAV under the PPO algorithm converges prematurely and has not yet fully reached the
rounding-up range. Both the DDPG and SAC algorithms can complete this task, but judging
from the number of running steps, DDPG requires about 156 steps to complete, while SAC
only takes 130 steps to complete. From this point of view, the SAC algorithm is better than
the DDPG algorithm. Figure 9d–f represent the changes in the distance of the drone swarm
to the target point over time in the dynamic rounding-up task of the three algorithms,
respectively. It can be observed that while all three algorithms tend to complete the task,
the PPO algorithm fails to maintain the surrounding state after approaching the target
point. This inability to closely follow the mission point ultimately leads to mission failure.
Both the DDPG algorithm and the SAC algorithm can complete this task, but in terms of
rounding-up stability and the number of steps completed, the DDPG algorithm takes about
248 steps to complete, and the distance remains unstable, while the SAC algorithm only
takes about 130 steps to complete, and the distance remains stable. From this point of view,
the SAC algorithm has a better performance for both fixed-point rounding-up tasks and
dynamic rounding-up tasks.

(a) (b) (c)

(d) (e) (f)
Figure 9. Efficiency assessment. (a) Test fixed-point rounding-up with PPO. (b) Test fixed-point
rounding-up with DDPG. (c) Test fixed-point rounding-up with SAC. (d) Test dynamic rounding-up
with PPO. (e) Test dynamic rounding-up with DDPG. (f) Test dynamic rounding-up with SAC.

5.3.2. Safety Assessment

In terms of safety, we measured and recorded the minimum distance between drones and
obstacles, the minimum distance between drones, and the minimum average distance between
drones throughout the mission. Reducing the risk of collision shows that the algorithm can
effectively prevent drone collisions and ensure mission safety. In addition, a higher obstacle
avoidance ability indicates that the algorithm can quickly identify and avoid obstacles, thereby
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ensuring the safe flight of the drone. Among them, we consider a safe distance of 1.2 m
between drones and obstacles and a safe distance of 0.5 m between drones.

Figure 10a,b represent the safety indicators of the three algorithms in fixed-point
rounding-up tasks and dynamic rounding-up tasks: the minimum distance between drones
relative to obstacles, the minimum distance between drones, and the average distance
between drones, respectively, where (a) is a fixed-point roundup task. Both the DDPG
algorithm and the SAC algorithm can achieve the purpose of safe obstacle avoidance
and collision prevention, while the UAV collides with obstacles under the PPO algorithm.
(b) represents the dynamic round-up task, in which only UAVs under the SAC algorithm
can safely avoid obstacles. UAVs operating under both the DDPG algorithm and the PPO
algorithm are at risk of colliding with obstacles or aircrafts.

(a) (b)
Figure 10. Safety assessment. (a) Test fixed-point rounding-up. (b) Test dynamic rounding-up.

5.3.3. Energy Consumption Assessment

In terms of energy consumption, we recorded the flight acceleration of the drone
when using different methods to complete two tasks for evaluation. In terms of energy
consumption, we recorded the average acceleration of the UAV swarm during flight when
completing two tasks using different methods to evaluate the UAV energy consumption.
We believe that the smaller the acceleration, the smoother the drone operates, and the
smaller the energy consumption. A lower energy consumption means the algorithm can
use the drone’s energy more efficiently, extending the duration of the mission and the
energy consumption of the drone. The smaller the acceleration, the smaller the energy
consumption. A lower energy consumption means that the algorithm is able to use the
drone’s energy resources more efficiently, extending the duration of the mission.

Figure 11 represents the average acceleration of the UAV swarm for the two tasks
controlled by the three algorithms obtained after running the strategy 20 times. Comparing
the three algorithms, it is obvious that whenever there is a fixed-point rounding-up task
or a dynamic rounding-up task, the average acceleration of the UAV group under the
SAC algorithm is the smallest; that is, the energy consumption is lower than the other
two algorithms.

Based on the analysis in Section 5.2 regarding learning rate and simulation visualiza-
tion, as well as the various evaluation metrics discussed in Section 5.3, several conclusions
can be drawn. First, the SAC algorithm demonstrates a significantly better learning rate
compared to the DDPG and PPO algorithms. With the same critical parameter settings, SAC
consistently achieves higher rewards in both static tail scenarios and dynamic rounding
scenarios. Second, the trajectory visualization analysis reveals that the SAC algorithm
produces smoother paths and more accurately reaches target positions, especially in dy-
namic scenarios, compared to DDPG and PPO. Third, the efficiency evaluation shows that
SAC allows the UAVs to approach the target point more quickly and maintain a more
stable formation around the target. In terms of safety, the SAC-based UAVs maintain safer
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distances from neighboring UAVs and obstacles throughout the entire flight compared to
DDPG and PPO. Lastly, the energy consumption assessment indicates that UAVs under the
SAC algorithm exhibit the lowest average acceleration, implying lower energy consump-
tion compared to the other two algorithms. The comparison results of the three result in
two different outcomes after 20 repeated test run scenarios, as shown in Table 5.

Figure 11. Energy consumption assessment.

Table 5. Comparison results of three results in two different scenarios.

Senarios Method Efficiency Safety—Obstacle Safety—Inner Consumption Success Rate

SAC 153 ± 35 2.42 ± 0.82 2.20 ± 0.28 10.35 ± 1.30 100%
Static DDPG 221 ± 123 1.36 ± 1.41 1.76 ± 0.47 10.90 ± 1.34 75%

PPO / 0.60 ± 0.16 1.02 ± 0.27 12.61 ± 1.17 0

SAC 147 ± 16 1.27 ± 0.39 1.54 ± 0.28 9.95 ± 1.60 100%
Dynamic DDPG 238 ± 33 1.15 ± 0.58 0.13 ± 0.06 11.59 ± 1.23 100%

PPO 157 ± 10 0.00 ± 0.10 0.81 ± 0.36 12.87 ± 1.03 50%

“/” indicates that the UAV did not reach the target point.

In the table above, we have summarized and compared the performance of the three
algorithms across two different scenarios. The comparison includes the number of steps
required to reach the target point (efficiency); the minimum distance between UAVs and
obstacles, as well as between UAVs themselves (safety); the average acceleration during
UAV operation (consumption); and the overall success rate.

In conclusion, UAV swarms utilizing the SAC algorithm can effectively accomplish
obstacle avoidance and encirclement tasks, demonstrating superior performance in both
static and dynamic scenarios. In contrast, the DDPG and PPO algorithms show relatively
poor performances, making them less suitable for handling high-complexity tasks.

6. Conclusions

This research paper proposes a new method using multi-agent deep reinforcement
learning to solve the challenge of collaborative obstacle avoidance and round-up of drone
swarms, enabling multiple drones to exhibit enhanced collaborative round-up capabilities
and higher intelligence. Through a series of experiments, we evaluate the effectiveness
of the policy model trained using reinforcement learning by analyzing the average re-
ward function curve and drone-tracking graph. Second, we propose three performance
evaluation metrics to discern which algorithm is more suitable for the specific needs of
this application scenario. The feasibility and effectiveness of the proposed multi-agent
deep reinforcement learning method were verified based on a large number of simulations.
Experimental and simulation results show that the method based on multi-agent deep
reinforcement learning achieves good results in the rounding-up scenario and successfully
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achieves the goal of using multiple drones to capture target points. However, it is important
to note that the current scenario is relatively simple.

In our research, we utilized Gazebo to establish a robust and versatile simulation
environment that closely mirrors real-world UAV dynamics, providing a strong foundation
for validating our theoretical approaches and enabling potential real-world applications.
While the direct transfer from simulation to reality, as demonstrated in previous studies,
is promising, we recognize Gazebo’s inherent limitations, particularly its idealization of
environmental complexity and simplification of hardware constraints. These factors must
be carefully addressed during the transition from simulation to real-world implementation
to ensure the effectiveness and reliability of UAV systems. Moving forward, we plan to
extend our research by conducting real-world UAV flight experiments.
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